### 数学代写|黎曼几何代写Riemannian geometry代考|MATH3405

statistics-lab™ 为您的留学生涯保驾护航 在代写黎曼几何Riemannian geometry方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写黎曼几何Riemannian geometry代写方面经验极为丰富，各种代写黎曼几何Riemannian geometry相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 数学代写|黎曼几何代写Riemannian geometry代考|Appetizer and Introduction

It is a natural and indeed a classical question to ask: “What is the effective resistance of, say, a hyperboloid or a helicoid if the surface is made of a homogeneous conducting material?”.

In these notes we will study the precise meaning of this and several other related questions and analyze how the answers depend on the curvature and topology of the given surfaces and manifolds. We will focus mainly on minimal submanifolds in ambient spaces which are assumed to have a well-defined upper (or lower) bound on their sectional curvatures.

One key ingredient is the comparison theory for distance functions in such spaces. In particular we establish and use a comparison result for the Laplacian of geometrically restricted distance functions. It is in this setting that we obtain information about such diverse phenomena as diffusion processes, isoperimetric inequalities, Dirichlet eigenvalues, transience, recurrence, and effective resistance of the spaces in question. In this second edition of the present notes we extend those previous findings in four ways: Firstly, we include comparison results for the exit time moment spectrum for compact domains in Riemannian manifolds; Secondly, and most substantially, we report on very recent results obtained by the first and third author together with C. Rosales concerning comparison results for the capacities and the type problem (transient versus recurrent) in weighted Riemannian manifolds; Thirdly we survey how some of the purely Riemannian results on transience and recurrence can be lifted to the setting of spacelike submanifolds in Lorentzian manifolds; Fourthly, the comparison spaces that we employ for some of the new results are typically so-called model spaces, i.e., warped products (gen= eralized surfaces of revolution) where ‘all the geometry’ in each case is determined by a given radial warping function and a given weight function.In a sense, all the different phenomena that we consider are ‘driven’ by the Laplace operator which in turn depends on the background curvatures and the weight function. One key message of this report is that the Laplacian is a particularly ‘swift’ operator – for example on minimal submanifolds in ambient spaces with small sectional curvatures – but depending on the weight functions. Specifically, we observe and report new findings about this behaviour in the contexts of both Riemannian, Lorentzian, and weighted geometries, see Sections 12 and $20-27$. Similar results generally hold true within the intrinsic geometry of the manifolds themselves – often even with Ricci curvature lower bounds (see, e.g., the survey [Zhu]) as a substitute for the specific assumption of a lower bound on sectional curvatures.

## 数学代写|黎曼几何代写Riemannian geometry代考|The Comparison Setting and Preliminaries

We consider a complete immersed submanifold $P^{m}$ in a Riemannian manifold $N^{n}$, and denote by $\mathrm{D}^{P}$ and $\mathrm{D}^{N}$ the Riemannian connections of $P$ and $N$, respectively. We refer to the excellent general monographs on Riemannian geometry – e.g., [Sa], [CheeE], and [Cha2] – for the basic notions, that will be applied in these notes. In particular we shall be concerned with the second-order behavior of certain functions on $P$ which are obtained by restriction from the ambient space $N$ as displayed in Proposition $3.1$ below. The second-order derivatives are defined in terms of the Hessian operators Hess ${ }^{N}$, Hess ${ }^{P}$ and their traces $\Delta^{N}$ and $\Delta^{P}$, respectively (see, e.g., [Sa] p. 31). The difference between these operators quite naturally involves geometric second-order information about how $P^{m}$ actually sits inside $N^{n}$. This information is provided by the second fundamental form $\alpha$ (resp. the mean curvature $H$ ) of $P$ in $N$ (see [Sa] p. 47). If the functions under consideration are essentially distance functions in $N$ – or suitably modified distance functions then their second-order behavior is strongly influenced by the curvatures of $N$, as is directly expressed by the second variation formula for geodesics ([Sa] p. 90).

As is well known, the ensuing and by now classical comparison theorems for Jacobi fields give rise to the celebrated Toponogov theorems for geodesic triangles and to powerful results concerning the global structure of Riemannian spaces ([Sa], Chapters IV-V). In these notes, however, we shall mainly apply the Jacobi field comparison theory only off the cut loci of the ambient space $N$, or more precisely, within the regular balls of $N$ as defined in Definition $3.4$ below. On the other hand, from the point of view of a given (minimal) submanifold $P$ in $N$, our results for $P$ are semi-global in the sense that they apply to domains which are not necessarily distance-regular within $P$.

## 数学代写|黎曼几何代写Riemannian geometry代考|Analysis of Riemannian Distance Functions

Let $\mu: N \mapsto \mathbb{R}$ denote a smooth function on $N$. Then the restriction $\tilde{\mu}=\mu_{\left.\right|{P}}$ is a smooth function on $P$ and the respective Hessians $\operatorname{Hess}^{N}(\mu)$ and $\operatorname{Hess}^{P}(\tilde{\mu})$ are related as follows: Proposition $3.1([\mathrm{JK}]$ p. 713$)$. \begin{aligned} \operatorname{Hess}^{P}(\tilde{\mu})(X, Y)=& \operatorname{Hess}^{N}(\mu)(X, Y) \ &+\left\langle\nabla^{N}(\mu), \alpha(X, Y)\right\rangle \end{aligned} for all tangent vectors $X, Y \in T P \subseteq T N$, where $\alpha$ is the second fundamental form of $P$ in $N$. Proof. \begin{aligned} \operatorname{Hess}^{P}(\tilde{\mu})(X, Y) &=\left\langle\mathrm{D}{X}^{P} \nabla^{P} \tilde{\mu}, Y\right\rangle \ &=\left\langle\mathrm{D}{X}^{N} \nabla^{P} \tilde{\mu}-\alpha\left(X, \nabla^{P} \tilde{\mu}\right), Y\right\rangle \ &=\left\langle\mathrm{D}{X}^{N} \nabla^{P} \tilde{\mu}, Y\right\rangle \ &=X\left(\left\langle\nabla^{P} \tilde{\mu}, Y\right\rangle\right)-\left\langle\nabla^{P} \tilde{\mu}, \mathrm{D}{X}^{N} Y\right\rangle \ &=\left\langle\mathrm{D}{X}^{N} \nabla^{N} \mu, Y\right\rangle+\left\langle\left(\nabla^{N} \mu\right)^{\perp}, \mathrm{D}_{X}^{N} Y\right\rangle \ &=\operatorname{Hess}^{N}(\mu)(X, Y)+\left\langle\left(\nabla^{N} \mu\right)^{\perp}, \alpha(X, Y)\right\rangle \ &=\operatorname{Hess}^{N}(\mu)(X, Y)+\left\langle\nabla^{N} \mu, \alpha(X, Y)\right\rangle \end{aligned}
If we modify $\mu$ to $F \circ \mu$ by a smooth function $F: \mathbb{R} \mapsto \mathbb{R}$, then we get
Lemma 3.2.
\begin{aligned} \operatorname{Hess}^{N}(F \circ \mu)(X, X)=& F^{\prime \prime}(\mu) \cdot\left\langle\nabla^{N}(\mu), X\right\rangle^{2} \ &+F^{\prime}(\mu) \cdot \operatorname{Hess}^{N}(\mu)(X, X) \end{aligned}
for all $X \in T N^{n}$

In the following we write $\mu=\tilde{\mu}$. Combining (3.1) and (3.3) then gives
Corollary 3.3.
\begin{aligned} \operatorname{Hess}^{P}(F \circ \mu)(X, X)=& F^{\prime \prime}(\mu) \cdot\left\langle\nabla^{N}(\mu), X\right\rangle^{2} \ &+F^{\prime}(\mu) \cdot \operatorname{Hess}^{N}(\mu)(X, X) \ &+\left\langle\nabla^{N}(\mu), \alpha(X, X)\right\rangle \end{aligned}
for all $X \in T P^{m}$.
In what follows the function $\mu$ will always be a distance function in $N$-either from a point $p$ in which case we set $\mu(x)=\operatorname{dist}{N}(p, x)=r(x)$, or from a totally geodesic hypersurface $V^{n-1}$ in $N$ in which case we let $\mu(x)=$ dist ${N}(V, x)=$ $\eta(x)$. The function $F$ will always be chosen, so that $F \circ \mu$ is smooth inside the respective regular balls around $p$ and inside the regular tubes around $V$, which we now define. The sectional curvatures of the two-planes $\Omega$ in the tangent bundle of the ambient space $N$ are denoted by $K_{N}(\Omega)$, see, e.g., [Sa], Section II.3. Concerning the notation: In the following both Hess $^{N}$ and Hess will be used invariantly for both the Hessian in the ambient manifold $N$, as well as in a purely intrinsic context where only $N$ and not any of its submanifolds is under consideration.

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。