数学代考|计算复杂性理论代写computational complexity theory代考|ALife Summary

如果你也在 怎样代写计算复杂性理论computational complexity theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

计算复杂性理论computational complexity theory的重点是根据资源使用情况对计算问题进行分类,并将这些类别相互联系起来。计算问题是一项由计算机解决的任务。一个计算问题是可以通过机械地应用数学步骤来解决的,比如一个算法。

statistics-lab™ 为您的留学生涯保驾护航 在代写计算复杂性理论computational complexity theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写计算复杂性理论computational complexity theory代写方面经验极为丰富,各种代写计算复杂性理论相关的作业也就用不着说。

我们提供的计算复杂性理论computational complexity theory及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代考|计算复杂性理论代写computational complexity theory代考|ALife Summary

数学代考|计算复杂性理论代写computational complexity theory代考|ALife Summary

Based on the previous discussion, the essential features of an ALife program can be summarized as follows:

  • Population: A population of organisms or individuals is considered. The population may be diversified, and individuals may vary their characteristics, behaviors, and accumulated resources, in both time and space.
  • Interaction: Interaction requires sensing of the immediate locale, or neighborhood, on the part of an individual. An organism can simply become “aware” of other organisms in its vicinity or it may have a richer set of interactions with them. The individual also interacts with its (non-agent) environment in its immediate locale. This requirement introduces spatial aspects into the problem, as organisms must negotiate the search for resources through time and space.
  • Sustainment and renewal: Sustainment and renewal requires the acquisition of resources. An organism needs to sense, find, ingest, and metabolize resources, or nourishment as an energy source for processing into other forms of nutrients. Resources may be provided by the environment, i. e., outside of the agents themselves, or by other agents. The need for sustainment leads to competition for resources among organisms. Competition could also be a precursor to cooperation and more complex emergent social structures if this proves to be a more effective strategy for survival.
  • Self-reproduction and replacement: Organisms reproduce by following instructions at least partially embedded within themselves and interacting with the environment and other agents. Passing on traits to the next generation implies a requirement for trait transmission. Trait transmission requires encoding an organism’s traits in a reduced form, that is, a form that contains less than the total information representing the entire organism. It also requires a process for transforming the organism’s traits into a viable set of possible new traits for a new organism. Mutation and crossover operators enter into such a process. Organ-

isms also leave the population and are replaced by other organisms, possibly with different traits. The organisms can be transformed through changes in their attributes and behaviors, as in, for example, learning or aging. The populations of organisms can be transformed through the introduction of new organisms and replacement, as in evolutionary adaptation.

As we will see in the section that follows, many of the essential aspects of ALife have been incorporated into the development of agent-based models.

数学代考|计算复杂性理论代写computational complexity theory代考|Agent-Based Modeling Topologies

Agent-based modeling owes much to artificial life in both form and substance. Modeling a population of heterogeneous agents with a diverse set of characteristics is a hallmark of agent-based modeling. The agent perspective is unique among simulation approaches, unlike the process perspective or the state-variable approach taken by other simulation approaches.

As we have seen, agents interact with a small set of neighbor agents in a local area. Agent neighborhoods are defined by how agents are connected, the agent interaction topology. Cellular automata represent agent neighborhoods by using a grid in which the agents exist in the cells, one agent per cell, or as the nodes of the lattice of the grid. The cells immediately surrounding an agent comprise the agent’s neighborhood and the agents that reside in the neighborhood cells comprise the neighbors. Many agent-based models have been based on this cellular automata spatial representation. The transition from a cellular automata, such as the game of Life, to an agent-based model is accomplished by allowing agents to be distinct from the cells on which they reside and allowing the agents to move from cell to cell across the grid. Agents move according to the dictates of their behaviors, interacting with other agents that happen to be in their local neighborhoods along the way.

Agent interaction topologies have been extended beyond cellular automata to include networks, either pre-

defined and static as in the case of autocatalytic chemical networks, or endogenous and dynamic, according to the results of agent interactions that occur in the model. Networks allow an agent’s neighborhood to be defined more generally and flexibly, and in the case of social agents, more accurately describe social agents’ interaction patterns. In addition to cellular automata grids and networks, agent interaction topologies have also been extended across a variety of domains. In summary, agent interaction topologies include:

  • Cellular automata grids (agents are cells or are within in cells) or lattices (agents are grid points),
  • Networks, in which agents of vertices and agent relationships are edges,
  • Continuous space, in one, two or three dimensions;
  • Aspatial random interactions, in which pairs of agents are randomly selected; and
  • Geographical Information Systems (GIS), in which agents move over geographically-defined patches, relaxing the one-agent per cell restriction.

数学代考|计算复杂性理论代写computational complexity theory代考|Social Agent-Based Modeling

Early social agent-based models were based on ALife’s cellular automata approach. In applications of agent-based modeling to social processes, agents represent people or groups of people, and agent relationships represent processes of social interaction [33].

Social Agents Sakoda [61] formulated one of the first social agent-based models, the Checkerboard Model, which had some of the key features of a cellular automaton. Following a similar approach, Schelling developed a model of housing segregation in which agents represent homeowners and neighbors, and agent interactions represent agents’ perceptions of their neighbors [62]. Schelling studied housing segregation patterns and posed the question of whether it is it possible to get highly segregated settlement patterns even if most individuals are, in fact, “colorblind? The Schelling model demonstrated that segregated housing areas can develop spontaneously in the sense that system-level patterns can emerge that are not necessarily implied by or consistent with the objectives of the individual agents (Fig. 6). In the model, agents operated according to a fixed set of rules and were not adaptive.

Identifying the social interaction mechanisms for how cooperative behavior emerges among individuals and groups has been addressed using agent-based modeling and evolutionary game theory. Evolutionary game theory accounts for how the repeated interactions of players in a game-theoretic framework affect the development and evolution of the players’ strategies. Axelrod showed, using a cellular automata approach, in which agents on the grid employed a variety of different strategies, that a simple TitFor-Tat strategy of reciprocal behavior toward individuals is enough to establish sustainable cooperative behavior $[4,5]$. In addition, Axelrod investigated strategies that

were self-sustaining and robust in that they reduced the possibility of invasion by agents having other strategies.
Epstein and Axtell introduced the notion of an external environment that agents interact with in addition to other agents. In their groundbreaking Sugarscape model of artificial societies, agents interacted with their environment depending on their location in the grid [26]. This allowed agents to access environmental variables, extract resources, etc., based on location. In numerous computational experiments, Sugarscape agents emerged with a variety of characteristics and behaviors, highly suggestive of a realistic, although rudimentary and abstract, society (Fig. 7). They observed emergent processes that they interpreted as death, disease, trade, wealth, sex and reproduction, culture, conflict and war, as well as externalities such as pollution. As agents interacted with their neighbors as they moved around the grid, the interactions resulted in a contact network, that is, a network consisting of nodes and links. The nodes are agents and the links indicate the agents that have been neighbors at some point in the course of their movements over the grid. Contact networks were the basis for studying contagion and epidemics in the Sugarscape model. Understanding the agent rules that govern how networks are structured and grow, how quickly information is communicated through networks, and the kinds of relationships that networks embody are important aspects of modeling agents.

数学代考|计算复杂性理论代写computational complexity theory代考|ALife Summary

计算复杂性理论代写

数学代考|计算复杂性理论代写computational complexity theory代考|ALife Summary

基于前面的讨论,ALife 程序的基本特征可以总结如下:

  • 种群:考虑生物体或个体的种群。人口可能是多样化的,个人可能会在时间和空间上改变他们的特征、行为和积累的资源。
  • 交互:交互需要感知个人的直接区域或邻域。一个有机体可以简单地“意识到”它附近的其他有机体,或者它可能与它们有更丰富的相互作用。个人还在其直接区域中与其(非代理)环境进行交互。这一要求将空间方面引入了问题,因为生物必须通过时间和空间来协商寻找资源。
  • 维持和更新:维持和更新需要获取资源。有机体需要感知、发现、摄取和代谢资源,或将营养物作为能量来源,以加工成其他形式的营养物。资源可以由环境提供,即在代理本身之外,或由其他代理提供。维持的需要导致生物之间对资源的竞争。如果证明是一种更有效的生存策略,竞争也可能是合作和更复杂的新兴社会结构的前兆。
  • 自我繁殖和替换:生物通过遵循至少部分嵌入自身的指令并与环境和其他代理相互作用进行繁殖。将性状传递给下一代意味着对性状传递的要求。特征传递需要以简化形式编码有机体的特征,即包含少于代表整个有机体的全部信息的形式。它还需要一个将有机体的特征转化为新有机体的一组可行的新特征的过程。突变和交叉算子进入这样的过程。器官-

主义也离开人口并被其他生物取代,可能具有不同的特征。有机体可以通过其属性和行为的变化来改变,例如学习或衰老。有机体的种群可以通过引入新的有机体和替换来改变,就像在进化适应中一样。

正如我们将在接下来的部分中看到的,ALife 的许多基本方面已被纳入基于代理的模型的开发中。

数学代考|计算复杂性理论代写computational complexity theory代考|Agent-Based Modeling Topologies

基于代理的建模很大程度上归功于形式和实质上的人造生命。对具有多种特征的异构代理群体进行建模是基于代理的建模的标志。代理视角在模拟方法中是独一无二的,与其他模拟方法所采用的过程视角或状态变量方法不同。

正如我们所看到的,代理与本地区域中的一小组相邻代理进行交互。代理邻域由代理如何连接、代理交互拓扑定义。元胞自动机通过使用一个网格来表示代理邻域,其中代理存在于单元中,每个单元一个代理,或者作为网格点阵的节点。直接围绕代理的单元包括代理的邻域,并且驻留在邻域单元中的代理包括邻居。许多基于代理的模型都基于这种元胞自动机空间表示。从元胞自动机(例如生命游戏)到基于代理的模型的过渡是通过允许代理与其所在的单元不同并允许代理在网格中从一个单元移动到另一个单元来完成的。

代理交互拓扑已经扩展到元胞自动机之外,包括网络,无论是预

根据模型中发生的代理相互作用的结果,定义和静态的,如自催化化学网络的情况,或内生的和动态的。网络允许更广泛和灵活地定义代理的邻域,并且在社交代理的情况下,更准确地描述社交代理的交互模式。除了元胞自动机网格和网络之外,代理交互拓扑也已扩展到各种领域。总之,代理交互拓扑包括:

  • 元胞自动机网格(代理是细胞或在细胞内)或格子(代理是网格点),
  • 网络,其中顶点的代理和代理关系是边,
  • 连续空间,一维、二维或三维;
  • 空间随机交互,其中随机选择代理对;和
  • 地理信息系统 (GIS),其中代理在地理定义的块上移动,放宽了每个单元一个代理的限制。

数学代考|计算复杂性理论代写computational complexity theory代考|Social Agent-Based Modeling

早期的基于社交代理的模型基于 ALife 的元胞自动机方法。在将基于代理的建模应用于社会过程中,代理代表人或人群,代理关系代表社会互动的过程[33]。

社交代理 Sakoda [61] 制定了第一个基于社交代理的模型,即棋盘模型,它具有元胞自动机的一些关键特征。遵循类似的方法,谢林开发了一种住房隔离模型,其中代理人代表房主和邻居,代理人互动代表代理人对其邻居的看法[62]。谢林研究了住房隔离模式并提出了一个问题,即即使大多数人实际上是“色盲”,是否有可能获得高度隔离的居住模式?Schelling 模型表明,隔离住宅区可以自发发展,因为系统级模式可能会出现,这些模式不一定由个体代理人的目标暗示或与个体目标一致(图 6)。在模型中,

使用基于代理的建模和进化博弈论已经解决了识别个人和群体之间如何出现合作行为的社会互动机制。进化博弈论解释了博弈论框架中参与者的重复交互如何影响参与者策略的发展和演变。Axelrod 表明,使用元胞自动机方法,其中网格上的代理采用各种不同的策略,一个简单的针对个人的互惠行为的 TitFor-Tat 策略足以建立可持续的合作行为[4,5]. 此外,Axelrod 还研究了以下策略:

是自我维持和强大的,因为它们减少了具有其他策略的特工入侵的可能性。
Epstein 和 Axtell 引入了代理与其他代理交互的外部环境的概念。在他们开创性的人工社会 Sugarscape 模型中,代理根据其在网格中的位置与环境进行交互 [26]。这允许代理根据位置访问环境变量、提取资源等。在众多的计算实验中,Sugarscape 代理出现了具有各种特征和行为的各种特征和行为,高度暗示了一个现实的社会,尽管是基本的和抽象的社会(图 7)。他们观察到了被他们解释为死亡、疾病、贸易、财富、性和繁殖、文化、冲突和战争的紧急过程,以及污染等外部因素。当代理在网格周围移动时与他们的邻居互动时,这些交互产生了一个联系网络,即一个由节点和链接组成的网络。节点是代理,链接指示代理在其在网格上的移动过程中的某个时间点是邻居。联系网络是在 Sugarscape 模型中研究传染和流行病的基础。了解管理网络如何构建和增长的代理规则、信息通过网络传递的速度以及网络体现的关系类型是建模代理的重要方面。联系网络是在 Sugarscape 模型中研究传染和流行病的基础。了解控制网络如何构建和增长的代理规则、信息通过网络传递的速度以及网络体现的关系类型是建模代理的重要方面。联系网络是在 Sugarscape 模型中研究传染和流行病的基础。了解控制网络如何构建和增长的代理规则、信息通过网络传递的速度以及网络体现的关系类型是建模代理的重要方面。

数学代考|计算复杂性理论代写computatiknal complexity theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注