### 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Fitting Models with R

statistics-lab™ 为您的留学生涯保驾护航 在代写多元统计分析Multivariate Statistical Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写多元统计分析Multivariate Statistical Analysis代写方面经验极为丰富，各种代写多元统计分析Multivariate Statistical Analysis相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Fitting Models with R

After the data have been inspected comes the next step of analysis, interpretation, inference, drawing conclusions, shaking the data down, or whatever phrase is in current vogue. This rests upon fitting models, fully parametric, semi-parametric, or non-parametric. The first example of fitting a fully parametric model occurs here in Section $3.2$, that of a non-parametric model in Section 4.1, and that of a semi-parametric one in Section 4.2. We will make use of the gold-standard R-package survival, which includes routines to perform a variety of tasks as well as some data sets to illustrate them. A high priority for the budding survival analyst is to learn how to use survival and other packages listed on the CRAN Web site.

In addition to the software available in survival, some homegrown programs are used. These are either to make the computations more transparent or to fill minor gaps in the available software. The first such instance occurs in Section 3.2. The R-code used in this book, together with the data sets not subject to copyright restriction, is available on the Web site referred to in the Preface.

## 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Simulating Data with R

Simulation is a powerful tool in statistics. Many modern techniques using simulation have been developed on the back of fast computing. In this section an introductory exercise in simulating data will be described. It is often useful in assessing the performance of proposed methodology to be able to test its performance on data whose structure is known and controlled. It is a particularly powerful approach in situations where the framework is straightforward to set up but the consequences of interest are analytically intractable.

Let us generate some right-censored survival times whose mean depends on some recorded factors. Sophisticated usage of $\mathrm{R}$ is not the point here-just a demonstration of some basic commands. Suppose that $T_{i}$, the breakdown time of the $i$ th machine, has an exponential distribution with mean a given function of $x_{1}$, a measure of the intensity of usage, and $x_{2}$, a measure of the frequency and quality of maintenance. (No prizes for guessing that I have my car in mind here-see the observation with the smallest $x_{2}$.) Some basic $R$ code to achieve this is as follows:
$\mathrm{n}=25 ; \mathrm{b} 0=1.5 ; \mathrm{b} 1=1.2 ; \mathrm{b} 2=-2.5 ;$ #n sample size, $(\mathrm{b} 0, \mathrm{~b} 1, \mathrm{~b} 2)=$ regression coeffs
$x 1 m r e p(0, n) ; x 2 m x 1 ;$ timmxl; #initialise $x 1, x 2$, tim as vectors of $0 s$ of length $n$
for (i in $1: n){x 1[i]=r u n i f(1, \min =0, \max =1) ; x 2[i]=r u n i f(1) ;$
$1 a m-\exp (\mathrm{b} 0+\mathrm{b} 1 * x 1[i]+\mathrm{b} 2 * \mathrm{x} 2[i]) ;$ timrexp $(1$, ratem $1 \mathrm{am}) ;$ tim[i]min(ti, 10$) ;}$
for $(i \operatorname{in} 1 \mathrm{n})} \mathrm{v} 1 \mathrm{me}(x 1[i], x 2[i]$, tim[i]}; v 2 mformat (v1, widthmg, digits $=2)$;
$\operatorname{cat}(* \ln , v 2) ;}$
Note the exciting variety of brackets: (…) to enclose the arguments of a function, […] for indices of a vector or matrix, and ${\ldots}$ to group sets of instructions in a for loop. The for loop runs through the sample elements one by one. The functions runif and rexp generate samples from uniform and exponential distributions, respectively: look them up, using help (runif) and help (rexp), for their full capabilities. For example, $x 1=$ runif $(n)$ outside the for loop would have had the same effect. The function c (…) concatenates (look that word up too), for example, $a=c(b, c)$ puts b and c together into $a$, and cat prints stuff out. The model here for the mean breakdown time, $\lambda_{i}^{-1}$, is of log-linear form: $\log \lambda_{i}=b_{0}+b_{1} x_{i 1}+b_{2} x_{i 2}$, and the signs of the regression coefficients, $b_{1}$ and $b_{2}$, are meant to reflect the expected effects of $x_{1}$ and $x_{2}$. The times are right-censored at value 10 . The data, printed out, can be copied and pasted into a data file.

Let $T$ be the random variable representing the lifetime under study. The distribution function $F$ and the survivor function $\bar{F}$ of $T$ are defined by the probabilities
$$F(t)=\mathrm{P}(T \leq t), \quad \bar{F}(t)=\mathrm{P}(T>t),$$
so $F(t)+\bar{F}(t)=1$ for all $t$. Note that $F(t)$ is an increasing, and $\bar{F}(t)$ a decreasing, function of $t$; normally, $F(t)$ will rise from 0 to 1 , and $\bar{F}(t)$ will fall from 1 to 0 , over the range of $t$. When $T$ is essentially positive, as it is in most applications, $F(0)=0$ and $\bar{F}(0)=1$. The density function is defined as
$$f(t)=d F(t) / d t=-d \bar{F}(t) / d t$$
correspondingly,
$$F(t)=\int_{0}^{t} f(s) d s, \quad \bar{F}(t)=\int_{t}^{\infty} f(s) d s .$$
(Unless otherwise stated, it will be tacitly assumed that continuous survival distributions have densities, that is, that they are absolutely continuous.)

Modern survival analysis is mostly based around hazard functions. (This has nothing to do with the over-zealous health-and-safety culture that blights our lives nowadays.) These functions are concerned with the probability of imminent failure, that is, that, having got this far, you will get no further. The formal definition of the hazard function $h$ of $T$ is
$$h(t)=\lim _{\delta \downarrow 0} \delta^{-1} \mathrm{P}(T \leq t+\delta \mid T>t)$$
11

The right-hand side is equal to
\begin{aligned} \lim {\delta \downarrow 0} \delta^{-1} \mathrm{P}(tt) &=\lim {\delta \downarrow 0} \delta^{-1}{\bar{F}(t)-\bar{F}(t+\delta)} / \bar{F}(t) \ &=-{d \bar{F}(t) / d t} / \bar{F}(t)=-d \log \bar{F}(t) / d t . \end{aligned}
In different contexts $h(t)$ is variously known as the instantaneous failure rate, age-specific failure rate, age-specific death rate, intensity function, and force of mortality or decrement. Integration yields the inverse relationship
$$F(t)=\exp \left{-\int_{0}^{t} h(s) d s\right}=\exp {-H(t)},$$
where $H(t)$ is the integrated hazard function and the lower limit 0 of the integral is consistent with $\bar{F}(0)=1$. For a proper lifetime distribution, that is, one for which $\bar{F}(\infty)=0, H(t)$ must tend to $\infty$ as $t \rightarrow \infty$.

Both the distribution function $F$ and the hazard function $h$ are concerned with the probability that failure occurs before some given time. The difference is this: with the former, you are stuck at time zero looking ahead to a time maybe a long way into the future (with a telescope); with the latter, you are moving along with time and just looking ahead to the next instant (with a microscope).

## 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Simulating Data with R

n=25;b0=1.5;b1=1.2;b2=−2.5;#n 样本大小，(b0, b1, b2)=回归系数
X1米r和p(0,n);X2米X1;tmmxl; ＃初始化X1,X2, tim 作为向量0s长度n

\operatorname{cat}(* \ln , v 2) ;}\operatorname{cat}(* \ln , v 2) ;}

F(吨)=磷(吨≤吨),F¯(吨)=磷(吨>吨),

F(吨)=dF(吨)/d吨=−dF¯(吨)/d吨

F(吨)=∫0吨F(s)ds,F¯(吨)=∫吨∞F(s)ds.
（除非另有说明，将默认假设连续生存分布具有密度，即它们是绝对连续的。）

H(吨)=林d↓0d−1磷(吨≤吨+d∣吨>吨)
11

F(t)=\exp \left{-\int_{0}^{t} h(s) d s\right}=\exp {-H(t)},F(t)=\exp \left{-\int_{0}^{t} h(s) d s\right}=\exp {-H(t)},

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。