### 统计代写|统计推断作业代写statistics interference代考|Interpretations of uncertainty

statistics-lab™ 为您的留学生涯保驾护航 在代写统计推断statistics interference方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写统计推断statistics interference方面经验极为丰富，各种代写统计推断statistics interference相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• Advanced Probability Theory 高等楖率论
• Advanced Mathematical Statistics 高等数理统计学
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 统计代写|统计推断作业代写statistics interference代考|General remarks

We can now consider some issues involved in formulating and comparing the different approaches.

In some respects the Bayesian formulation is the simpler and in other respects the more difficult. Once a likelihood and a prior are specified to a reasonable approximation all problems are, in principle at least, straightforward. The resulting posterior distribution can be manipulated in accordance with the ordinary laws of probability. The difficulties centre on the concepts underlying the definition of the probabilities involved and then on the numerical specification of the prior to sufficient accuracy.

Sometimes, as in certain genetical problems, it is reasonable to think of $\theta$ as generated by a stochastic mechanism. There is no dispute that the Bayesian approach is at least part of a reasonable formulation and solution in such situations. In other cases to use the formulation in a literal way we have to regard probability as measuring uncertainty in a sense not necessarily directly linked to frequencies. We return to this issue later. Another possible justification of some Bayesian methods is that they provide an algorithm for extracting from the likelihood some procedures whose fundamental strength comes from frequentist considerations. This can be regarded, in particular, as supporting
$5.2$ Broad roles of probability
a broad class of procedures, known as shrinkage methods, including ridge regression.

The emphasis in this book is quite often on the close relation between answers possible from different approaches. This does not imply that the different views never conflict. Also the differences of interpretation between different numerically similar answers may be conceptually important.

## 统计代写|统计推断作业代写statistics interference代考|Broad roles of probability

A recurring theme in the discussion so far has concerned the broad distinction between the frequentist and the Bayesian formalization and meaning of probability. Kolmogorov’s axiomatic formulation of the theory of probability largely decoupled the issue of meaning from the mathematical aspects; his axioms were, however, firmly rooted in a frequentist view, although towards the end of his life he became concerned with a different interpretation based on complexity. But in the present context meaning is crucial.

There are two ways in which probability may be used in statistical discussions. The first is phenomenological, to describe in mathematical form the empirical regularities that characterize systems containing haphazard variation. This typically underlies the formulation of a probability model for the data, in particular leading to the unknown parameters which are regarded as a focus of interest. The probability of an event $\mathcal{E}$ is an idealized limiting proportion of times in which $\mathcal{E}$ occurs in a large number of repeat observations on the system under the same conditions. In some situations the notion of a large number of repetitions can be reasonably closely realized; in others, as for example with economic time series, the notion is a more abstract construction. In both cases the working assumption is that the parameters describe features of the underlying data-generating process divorced from special essentially accidental features of the data under analysis.

That first phenomenological notion is concerned with describing variability. The second role of probability is in connection with uncertainty and is thus epistemological. In the frequentist theory we adapt the frequency-based view of probability, using it only indirectly to calibrate the notions of confidence intervals and significance tests. In most applications of the Bayesian view we need an extended notion of probability as measuring the uncertainty of $\mathcal{E}$ given $\mathcal{F}$, where now $\mathcal{E}$, for example, is not necessarily the outcome of a random system, but may be a hypothesis or indeed any feature which is unknown to the investigator. In statistical applications $\mathcal{E}$ is typically some statement about the unknown parameter $\theta$ or more specifically about the parameter of interest $\psi$. The present

discussion is largely confined to such situations. The issue of whether a single number could usefully encapsulate uncertainty about the correctness of, say, the Fundamental Theory underlying particle physics is far outside the scope of the present discussion. It could, perhaps, be applied to a more specific question such as a prediction of the Fundamental Theory: will the Higgs boson have been discovered by 2010 ?

One extended notion of probability aims, in particular, to address the point that in interpretation of data there are often sources of uncertainty additional to those arising from narrow-sense statistical variability. In the frequentist approach these aspects, such as possible systematic errors of measurement, are addressed qualitatively, usually by formal or informal sensitivity analysis, rather than incorporated into a probability assessment.

## 统计代写|统计推断作业代写statistics interference代考|Frequentist interpretation of upper limits

First we consider the frequentist interpretation of upper limits obtained, for example, from a suitable pivot. We take the simplest example, Example 1.1, namely the normal mean when the variance is known, but the considerations are fairly general. The upper limit
$$\bar{y}+k_{c}^{} \sigma_{0} / \sqrt{n},$$ derived here from the probability statement $$P\left(\mu<\bar{Y}+k_{c}^{} \sigma_{0} / \sqrt{n}\right)=1-c,$$
is a particular instance of a hypothetical long run of statements a proportion $1-c$ of which will be true, always, of course, assuming our model is sound. We can, at least in principle, make such a statement for each $c$ and thereby generate a collection of statements, sometimes called a confidence distribution. There is no restriction to a single $c$, so long as some compatibility requirements hold.
Because this has the formal properties of a distribution for $\mu$ it was called by R. A. Fisher the fiducial distribution and sometimes the fiducial probability distribution. A crucial question is whether this distribution can be interpreted and manipulated like an ordinary probability distribution. The position is:

• a single set of limits for $\mu$ from some data can in some respects be considered just like a probability statement for $\mu$;
• such probability statements cannot in general be combined or manipulated by the laws of probability to evaluate, for example, the chance that $\mu$ exceeds some given constant, for example zero. This is clearly illegitimate in the present context.

That is, as a single statement a $1-c$ upper limit has the evidential force of a statement of a unique event within a probability system. But the rules for manipulating probabilities in general do not apply. The limits are, of course, directly based on probability calculations.

Nevertheless the treatment of the confidence interval statement about the parameter as if it is in some respects like a probability statement contains the important insights that, in inference for the normal mean, the unknown parameter is more likely to be near the centre of the interval than near the end-points and that, provided the model is reasonably appropriate, if the mean is outside the interval it is not likely to be far outside.

A more emphatic demonstration that the sets of upper limits defined in this way do not determine a probability distribution is to show that in general there is an inconsistency if such a formal distribution determined in one stage of analysis is used as input into a second stage of probability calculation. We shall not give details; see Note 5.2.

The following example illustrates in very simple form the care needed in passing from assumptions about the data, given the model, to inference about the model, given the data, and in particular the false conclusions that can follow from treating such statements as probability statements.

5.2概率

## 统计代写|统计推断作业代写statistics interference代考|Frequentist interpretation of upper limits

• 一组限制μ从某些数据中可以在某些方面被认为就像一个概率陈述μ;
• 这种概率陈述通常不能被概率法则组合或操纵来评估，例如，μ超过某个给定的常数，例如零。在目前的情况下，这显然是非法的。

## 广义线性模型代考

statistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。