统计代写|贝叶斯统计代写Bayesian statistics代考|Measures of spatial association for areal data

如果你也在 怎样代写贝叶斯统计这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

贝叶斯统计学是一个使用概率的数学语言来描述认识论的不确定性的系统。在 “贝叶斯范式 “中,对自然状态的相信程度是明确的;这些程度是非负的,而对所有自然状态的总相信是固定的。

statistics-lab™ 为您的留学生涯保驾护航 在代写贝叶斯统计方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写贝叶斯统计代写方面经验极为丰富,各种代写贝叶斯统计相关的作业也就用不着说。

我们提供的贝叶斯统计及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
The Hole Argument (Stanford Encyclopedia of Philosophy)
统计代写|贝叶斯统计代写Bayesian statistics代考|Measures of spatial association for areal data

统计代写|贝叶斯统计代写beyesian statistics代考|Measures of spatial association for areal data

Exploration of areal spatial data requires definition of a sense of spatial distance between all the constituting areal units within the data set. This measure of distance is parallel to the distance $d$ between any two point referenced spatial locations discussed previously in this chapter. A blank choropleth map, e.g. Figure $1.12$ without the color gradients, provides a quick visual measure of spatial distance, e.g. California, Nevada and Oregon in the west coast are spatial neighbors but they are quite a long distance away from Pennsylvania, New York and Connecticut in the east coast. More formally, the concept of spatial distance for areal data is captured by what is called a neighborhood, or a proximity, or an adjacency, matrix. This is essentially a matrix where each of its entry is used to provide information on the spatial relationship between each possible pair of the areal units in the data set.

The proximity matrix, denoted by $W$, consists of weights which are used to represent the strength of spatial association between the different areal units. Assuming that there are $n$ areal units, the matrix $W$ is of the order $n \times n$ where each of its entry $w_{i j}$ contains the strength of spatial association between the units $i$ and $j$, for $i, j=1, \ldots, n$. Customarily, wii is set to 0 for each $i=1, \ldots, n$. Commonly, the weights $w_{i j}$ for $i \neq j$ are chosen to be binary where it is assigned the value 1 if units $i$ and $j$ share a common boundary and 0 otherwise. This proximity matrix can readily be formed just by inspecting a choropleth map, such as the one in Figure 1.12. However, the weighting function can instead be designed so as to incorporate other spatial information, such as the distances between the areal units. If required, additional proximity matrices can be defined for different orders, whereby the order dictates the proximity of the areal units. For instance we may have a first order proximity matrix representing the direct neighbors for an areal unit,

a second order proximity matrix representing the neighbors of the first order areal units and so on. These considerations will render a proximity matrix, which is symmetric, i.e. $w_{i j}=w_{j i}$ for all $i$ and $j$.

The weighting function $w_{i j}$ can be standardized by calculating a new proximity matrix given by $\tilde{w}{i j}=w{i j} / w_{i+}$ where $w_{i+}=\sum_{j=1}^{n} w_{i j}$, so that each areal unit is given a sense of “equality” in any statistical analysis. However, in this case the new proximity matrix may not remain symmetric, i.e. $\tilde{w}{i j}$ may or may not equal $\tilde{w}{j i}$ for all $i$ and $j$.

When working with grid based areal data, where the proximity matrix is defined based on touching areal units, it is useful to specify whether “queen” or “rook”, in a game of chess, based neighbors are being used. In the $R$ package spdep, “queen” based neighbors refer to any touching areal units, whereas “rook” based neighbors use the stricter criteria that both areal units must share an edge (Bivand, 2020).

There are two popular measures of spatial association for areal data which together serve as parallel to the concept of the covariance function, and equivalently variogram, defined earlier in this chapter. The first of these two measures is the Moran’s $I$ (Moran, 1950) which acts as an adaptation of Pearson’s correlation coefficient and summarizes the level of spatial autocorrelation present in the data. The measure $I$ is calculated by comparing each observed area $i$ to its neighboring areas using the weights, $w_{i j}$, from the proximity matrix for all $j=1, \ldots, n$. The formula for Moran’s $I$ is written as:
$$
I=\frac{n}{\sum_{i \neq j} w_{i j}} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(Y_{i}-\bar{Y}\right)\left(Y_{j}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}},
$$
where $Y_{i}, i=1, \ldots, n$ is the random sample from the $n$ areal units and $\bar{Y}$ is the sample mean. It can be shown that $I$ lies in the interval $[-1,1]$, and its sampling variance can be found, see e.g. Section $4.1$ in Banerjee et al. (2015) so that an asymptotic test can be performed by appealing to the central limit theorem. For small values of $n$ there are permutation tests which compares the observed value of $I$ to a null distribution of the test statistic $I$ obtained by simulation. We shall illustrate these with a real data example in Section 3.4.
An alternative to the Moran’s $I$ is the Geary’s $C$ (Geary, 1954) which also measures spatial autocorrelation present in the data. The Geary’s $C$ is given by
$$
C=\frac{(n-1)}{2 \sum_{i \neq j} w_{i j}} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(Y_{i}-Y_{j}\right)^{2}}{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}} .
$$
The measure $C$ being the ratio of two weighted sum of squares is never negative. It can be shown that $E(C)=1$ under the assumption of no spatial association. Small values of $C$ away from the mean 1 indicate positive spatial association. An asymptotic test can be performed but the speed of convergence to the limiting null distribution is expected to be very slow since it is a ratio of weighted sum of squares. Monte Carlo permutation tests can be performed and those will be illustrated in Section $3.4$ with a real data example.

统计代写|贝叶斯统计代写beyesian statistics代考|Internal and external standardization for areal data

Internal and external standardization are two oft-quoted keywords in areal data modeling, especially in disease mapping where rates of a disease over different geographical (areal) units are compared. These two are now defined along with other relevant key words. To facilitate the comparison often we aim to understand what would have happened if all the areal units had the same uniform rate. This uniform rate scenario serves as a kind of a null hypothesis of “no spatial clustering or association”. Disease incidence rates in excess or in deficit relative to the uniform rate is called the relative risk. Relative risk is often expressed as a ratio where the denominator corresponds to the standard dictated by the above null hypothesis. Thus, a relative risk of $1.2$ will imply $20 \%$ increased risk relative to the prevailing standard rate. The relative risk can be associated with a particular geographical areal unit or even for the whole study domain when the standard may refer to an absence of the disease. Statistical models are often postulated for the relative risk for the ease of interpretation.

Return to the issue of comparison of disease rates relative to the uniform rate. Often in practical data modeling situation, the counts of number of individuals over different geographies and other categories, e.g. sex and ethnicity, are available. Standardization, internal and external, is a process by which we obtain the corresponding counts of diseased individuals under the assumption of the null hypothesis of uniform disease rates being true. We now introduce the notation $n_{i}$, for $i=1, \ldots, k$ being the total number of individuals in region $i$ and $y_{i}$ being the observed number of individuals with the disease, often called cases, in region $i$. Under the null hypothesis
$$
\bar{r}=\frac{\sum_{i=1}^{k} y_{i}}{\sum_{i=1}^{k} n_{i}}
$$
will be an estimate of the uniform disease rate. As a result,
$$
E_{i}=n_{i} \bar{r}
$$
will be the expected number of individuals with the disease in region $i$ if the null hypothesis of uniform disease rate is true. Note that $\sum_{i=1}^{k} E_{i}=\sum_{i=1}^{k} y_{i}$ so that the total number of observed and expected cases are same. Note that to find $E_{i}$ we used the observations $y_{i}, i=1, \ldots, k$. This process of finding the $E_{i}$ ‘s is called internal standardization. The word internal highlights the use of the data itself to perform the standardization.

The technique of internal standardization is appealing to the analysts since no new external data are needed for the purposes of modeling and analysis. However, this technique is often criticized since in the modeling process $E_{i}$ ‘s are treated as fixed values when in reality these are functions of the random observations $y_{i}$ ‘s of the associated random variables $Y_{i}$ ‘s. Modeling of the $Y_{i}$ ‘s while treating the $E_{i}$ s as fixed is the unsatisfactory aspect of this strategy. To overcome this drawback the concept of external standardization is often used and this is what is discussed next.

统计代写|贝叶斯统计代写beyesian statistics代考|Spatial smoothers

Observed spatially referenced data will not be smooth in general due to the presence of noise and many other factors, such as data being observed at a

coarse irregular spatial resolution where observation locations are not on a regular grid. Such irregular variations hinder making inference regarding any dominant spatial pattern that may be present in the data. Hence researchers often feel the need to smooth the data to discover important discernible spatial trend from the data. Statistical modeling, as proposed in this book, based on formal coherent methods for fitting and prediction, is perhaps the best formal method for such smoothing needs. However, researchers often use many non-rigorous off-the shelf methods for spatial smoothing either as exploratory tools demonstrating some key features of the data or more dangerously for making inference just by “eye estimation” methods. Our view in this book is that we welcome those techniques primarily as exploratory data analysis tools but not as inference making tools. Model based approaches are to be used for smoothing and inference so that the associated uncertainties of any final inferential product may be quantified fully.

For spatially point referenced data we briefly discuss the inverse distance weighting (IDW) method as an example method for spatial smoothing. There are many other methods based on Thiessen polygons and crude application of Kriging (using ad-hoc estimation methods for the unknown parameters). These, however, will not be discussed here due to their limitations in facilitating rigorous model based inference.

To perform spatial smoothing, the IDW method first prepares a fine grid of locations covering the study region. The IDW method then performs interpolation at each of those grid locations separately. The formula for interpolation is a weighted linear function of the observed data points where the weight for each observation is inversely proportional to the distance between the observation and interpolation locations. Thus to predict $Y\left(\mathrm{~s}{0}\right)$ at location $\mathbf{s}{0}$ the IDW method first calculates the distance $d_{i 0}=\left|\mathbf{s}{i}-\mathbf{s}{0}\right|$ for $i=1, \ldots, n$. The prediction is now given by:
$$
\hat{Y}\left(\mathbf{s}{0}\right)=\frac{1}{\sum{i=1}^{n} \frac{1}{d_{i 0}}} \sum_{i=1}^{n} \frac{y\left(\mathbf{s}{i}\right)}{d{i 0}}
$$
Variations in the basic IDW methods are introduced by replacing $d_{i 0}$ by the $p$ th power, $d_{i 0}^{p}$ for some values of $p>0$. The higher the value of $p$, the quicker the rate of decay of influence of the distant observations in the interpolation. Note that it is not possible to attach any uncertainty measure to the individual predictions $Y\left(\mathbf{s}{0}\right)$ since a joint model has not been specified for the random vector $Y\left(\mathbf{s}{0}\right), Y\left(\mathbf{s}{1}\right), \ldots, Y\left(\mathbf{s}{n}\right)$. However, in practice, an overall error rate such as the root mean square prediction error can be calculated for set aside validation data sets. Such an overall error rate will fail to ascertain uncertainty for prediction at an individual location.

There are many methods for smoothing areal data as well. One such method is inspired by what are known as conditionally auto-regressive (CAR) models which will be discussed more formally later in Section 2.14. In implementing this method we first need to define a neighborhood structure.

Technologies | Free Full-Text | A Space-Time Correlation Model for MRC  Receivers in Rayleigh Fading Channels | HTML
统计代写|贝叶斯统计代写Bayesian statistics代考|Measures of spatial association for areal data

贝叶斯统计代写

统计代写|贝叶斯统计代写beyesian statistics代考|Measures of spatial association for areal data

区域空间数据的探索需要定义数据集中所有构成区域单元之间的空间距离感。这种距离度量与距离平行d在本章前面讨论的任何两点参考空间位置之间。一个空白的等值线图,例如图1.12没有颜色渐变,提供了空间距离的快速视觉测量,例如西海岸的加利福尼亚、内华达和俄勒冈是空间邻居,但它们与东海岸的宾夕法尼亚、纽约和康涅狄格相距很远。更正式地说,区域数据的空间距离概念由所谓的邻域、邻近或邻接矩阵捕获。这本质上是一个矩阵,其中的每个条目都用于提供有关数据集中每个可能的区域单元对之间的空间关系的信息。

邻近矩阵,表示为在, 由权重组成,用于表示不同区域单元之间的空间关联强度。假设有n面积单位,矩阵在是有序的n×n其中每个条目在一世j包含单元之间的空间关联强度一世和j, 为了一世,j=1,…,n. 通常,wii 设置为 0一世=1,…,n. 通常,权重在一世j为了一世≠j被选择为二进制,如果单位被赋值为 1一世和j共享一个公共边界,否则为 0。这个邻近矩阵可以很容易地通过检查一个等值线图来形成,例如图 1.12 中的那个。然而,加权函数可以被设计成包含其他空间信息,例如区域单元之间的距离。如果需要,可以为不同的阶定义额外的邻近矩阵,其中阶决定了区域单元的邻近度。例如,我们可能有一个表示区域单元的直接邻居的一阶邻近矩阵,

表示一阶区域单元的邻居的二阶邻近矩阵,依此类推。这些考虑将呈现一个接近矩阵,它是对称的,即在一世j=在j一世对全部一世和j.

加权函数在一世j可以通过计算一个新的邻近矩阵来标准化在~一世j=在一世j/在一世+在哪里在一世+=∑j=1n在一世j,以便在任何统计分析中都赋予每个区域单位一种“平等”的感觉。然而,在这种情况下,新的邻近矩阵可能不会保持对称,即在~一世j可能相等也可能不相等在~j一世对全部一世和j.

在处理基于网格的区域数据时,其中接近矩阵是基于接触区域单位定义的,在国际象棋游戏中,指定使用基于邻居的“皇后”或“车”是有用的。在里面R包 spdep,基于“queen”的邻居指的是任何接触的区域单元,而基于“rook”的邻居使用更严格的标准,即两个区域单元必须共享一条边(Bivand,2020)。

有两种流行的区域数据空间关联度量,它们共同作用于本章前面定义的协方差函数和等效变异函数的概念。这两项措施中的第一项是 Moran’s一世(Moran, 1950) 作为 Pearson 相关系数的改编版,总结了数据中存在的空间自相关水平。的措施一世通过比较每个观察区域来计算一世使用权重到其相邻区域,在一世j,来自所有的邻近矩阵j=1,…,n. 莫兰公式一世写成:
一世=n∑一世≠j在一世j∑一世=1n∑j=1n在一世j(是一世−是¯)(是j−是¯)∑一世=1n(是一世−是¯)2,
在哪里是一世,一世=1,…,n是来自的随机样本n区域单位和是¯是样本均值。可以证明一世位于区间[−1,1],并且可以找到它的采样方差,请参见例如 Section4.1在 Banerjee 等人。(2015),以便可以通过诉诸中心极限定理来进行渐近检验。对于小值n有比较观察值的置换检验一世到检验统计量的零分布一世通过模拟得到。我们将在 3.4 节中用一个真实的数据示例来说明这些。
莫兰的替代品一世是 Geary 的C(Geary, 1954) 它还测量数据中存在的空间自相关。吉尔里的C是(谁)给的
C=(n−1)2∑一世≠j在一世j∑一世=1n∑j=1n在一世j(是一世−是j)2∑一世=1n(是一世−是¯)2.
的措施C作为两个加权平方和的比率永远不会是负数。可以证明和(C)=1在没有空间关联的假设下。的小值C远离均值 1 表示正空间关联。可以执行渐近测试,但收敛到极限零分布的速度预计会非常慢,因为它是加权平方和的比率。可以执行蒙特卡洛置换测试,这些将在第3.4有一个真实的数据示例。

统计代写|贝叶斯统计代写beyesian statistics代考|Internal and external standardization for areal data

内部标准化和外部标准化是区域数据建模中经常引用的两个关键词,特别是在比较不同地理(区域)单位的疾病发生率的疾病绘图中。这两个现在与其他相关关键词一起定义。为了便于比较,我们通常旨在了解如果所有区域单位具有相同的统一比率会发生什么。这种统一速率的场景是一种“没有空间聚类或关联”的零假设。相对于统一比率的疾病发病率超过或不足称为相对风险。相对风险通常表示为分母对应于上述零假设所规定的标准的比率。因此,相对风险1.2会暗示20%相对于现行标准利率,风险增加。相对风险可能与特定的地理区域单位相关,甚至当标准可能涉及不存在疾病时,甚至与整个研究领域相关。为了便于解释,通常假设统计模型具有相对风险。

回到疾病率相对于统一率的比较问题。通常在实际数据建模情况下,可以使用不同地理和其他类别(例如性别和种族)的个人数量。标准化,内部和外部,是我们在假设统一疾病率的零假设为真的情况下获得患病个体的相应计数的过程。我们现在介绍符号n一世, 为了一世=1,…,ķ是区域内的个体总数一世和是一世是在该地区观察到的患有这种疾病的个体的数量,通常称为病例一世. 在原假设下
r¯=∑一世=1ķ是一世∑一世=1ķn一世
将是对统一疾病率的估计。因此,
和一世=n一世r¯
将是该地区的预期患病人数一世如果统一发病率的原假设为真。注意∑一世=1ķ和一世=∑一世=1ķ是一世使观察到的和预期的病例总数相同。注意要找到和一世我们使用了观察结果是一世,一世=1,…,ķ. 这个寻找的过程和一世被称为内部标准化。内部一词强调了使用数据本身来执行标准化。

内部标准化技术对分析师很有吸引力,因为建模和分析不需要新的外部数据。然而,这种技术经常受到批评,因为在建模过程中和一世被视为固定值,而实际上这些是随机观察的函数是一世的相关随机变量是一世的。的建模是一世的同时治疗和一世s 固定是该策略的不令人满意的方面。为了克服这个缺点,经常使用外部标准化的概念,这就是接下来要讨论的内容。

统计代写|贝叶斯统计代写beyesian statistics代考|Spatial smoothers

由于存在噪声和许多其他因素,例如在

粗略的不规则空间分辨率,其中观察位置不在规则网格上。这种不规则的变化阻碍了对可能存在于数据中的任何主要空间模式进行推断。因此,研究人员经常觉得有必要对数据进行平滑处理,以从数据中发现重要的可辨别空间趋势。本书中提出的统计建模,基于用于拟合和预测的形式一致方法,可能是满足此类平滑需求的最佳形式方法。然而,研究人员经常使用许多非严格的现成方法来进行空间平滑,或者作为展示数据某些关键特征的探索性工具,或者更危险地用于仅通过“眼睛估计”方法进行推断。我们在本书中的观点是,我们欢迎这些技术主要作为探索性数据分析工具,而不是作为推理工具。基于模型的方法将用于平滑和推理,以便可以完全量化任何最终推理产品的相关不确定性。

对于空间点参考数据,我们简要讨论反距离加权 (IDW) 方法作为空间平滑的示例方法。还有许多其他方法基于泰森多边形和克里金法的粗略应用(对未知参数使用临时估计方法)。然而,由于它们在促进基于模型的严格推理方面的局限性,这里将不讨论这些。

为了进行空间平滑,IDW 方法首先准备一个覆盖研究区域的精细位置网格。然后,IDW 方法在每个网格位置分别执行插值。插值公式是观测数据点的加权线性函数,其中每个观测值的权重与观测值和插值位置之间的距离成反比。从而预测是( s0)在位置s0IDW方法首先计算距离d一世0=|s一世−s0|为了一世=1,…,n. 预测现在由下式给出:
是^(s0)=1∑一世=1n1d一世0∑一世=1n是(s一世)d一世0
通过替换引入基本 IDW 方法的变化d一世0由p权力,d一世0p对于一些值p>0. 的价值越高p,插值中远处观测的影响衰减率越快。请注意,不可能将任何不确定性度量附加到单个预测是(s0)因为没有为随机向量指定联合模型是(s0),是(s1),…,是(sn). 然而,在实践中,可以为预留的验证数据集计算整体错误率,例如均方根预测误差。这样的总体错误率将无法确定单个位置的预测不确定性。

也有许多用于平滑面数据的方法。一种这样的方法受到所谓的条件自回归(CAR)模型的启发,稍后将在第 2.14 节中更正式地讨论。在实现这个方法时,我们首先需要定义一个邻域结构。

统计代写|贝叶斯统计代写beyesian statistics代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注