统计代写|贝叶斯网络代写Bayesian network代考|ECSE4850

如果你也在 怎样代写贝叶斯网络Bayesian network这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

贝叶斯网络(BN)是一种表示不确定领域知识的概率图形模型,其中每个节点对应一个随机变量,每条边代表相应随机变量的条件概率。

statistics-lab™ 为您的留学生涯保驾护航 在代写贝叶斯网络Bayesian network方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写贝叶斯网络Bayesian network代写方面经验极为丰富,各种代写贝叶斯网络Bayesian network相关的作业也就用不着说。

我们提供的贝叶斯网络Bayesian network及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|贝叶斯网络代写Bayesian network代考|ECSE4850

统计代写|贝叶斯网络代写Bayesian network代考|Study Area and Dataset

The experimentation is carried out in the watershed and the associated reservoir of the river Mayurakshi in Jharkhand, India. The reservoir is located at the geographical position of $24^{\circ} 6.6^{\prime} \mathrm{N}$ latitude and $87^{\circ} 18.9^{\prime} E$ longitude (refer Tables $4.9$ and $4.10$ ) and the entire watershed covers nearly $1866 \mathrm{sq} . \mathrm{km}$ area (Bottom-Left: $\left[24.09^{\circ} N, 86.84^{\circ} E\right]$, Top-Right: $\left[24.62^{\circ} N, 87.40^{\circ} \mathrm{E}\right]$ ). The region has tropical climate, showing three well defined seasons: (i) summer: (March-June), (ii) rainy: (July-October), and (iii) winter: (November-February).

In order to experiment with SpaBN, the whole watershed region is considered to be distributed over $10 \times 10$ grid with each cell comprising approximately $33 \mathrm{sq} . \mathrm{km}$ area. The details of the datasets are specified below:

  • Rainfall: This is a daily rainfall data, interpolated for each of the gridded locations in the watershed for a span of 11 years (from 1st January, 1991 to 31 st December, 2001) The original daily data is available for four rain gauge stations (Jama $\left(24.35^{\circ} N, 87.15^{\circ} E\right)$, Dumka $\left(24.28^{\circ} N, 87.24^{\circ} E\right)$, Sariyahat $\left(24.58^{\circ} N, 87.01^{\circ} E\right)$,

and Jharmundi $\left(24.40^{\circ} \mathrm{N}, 87.05^{\circ} \mathrm{E}\right)$ ). Additionally, $0.5^{\circ} \times 0.5^{\circ}$ gridded rainfall data (refer Table 4.9) from Indian Meteorological Department (IMD) was also used for interpolation.

  • Temperature: This is a daily data of temperature, interpolated for each of the gridded locations, using original high resolution $1^{\circ} \times 1^{\circ}$ gridded temperature data (refer Table 4.9) from IMD.
  • Reservoir live/storage capacity: This data is collected from the office of Irrigation and Waterways Dept. Govt. of West Bengal, Kolkata, India, for the same duration (from 1st January, 1991 to 31 st December, 2001) [refer Table 4.10].
  • Topographical data: This includes slope map, soil map, and spatial distribution of land use land cover (LULC) (Fig.4.7) over the whole watershed. The original data of soil map and elevation map are available with National Bureau of Soil Survey and Land Use Planning, Govt of India. The LULC data is collected from Bhuvan portal [18]. It is evident from the maps that the watershed contains diverse LULC and soil categories. Almost $66 \%$ of the total area is agricultural crop land, and about $74 \%$ of the region is full of fine loamy soil.

统计代写|贝叶斯网络代写Bayesian network代考|Discussions

On analyzing the tables and the Fig. 4.10, we can infer the following about SpaBNbased prediction model:
(i) It is evident from the Tables $4.13,4.14,4.15$ and $4.16$ that the SpaBNbased approach produces the highest NSE value compared to statistical ARIMA, standard BN, and ANN models. Further, in almost all the cases, the value of NSE is approximately 1 . This indicates a highly accurate prediction made by SpaBN. Contrarily, the NSE values associated with the other prediction models, including standard BN, deviate quite significantly from 1. This demonstrates the preeminence of SpaBN-based prediction over the others, in carrying out spatial time series prediction.
(ii) It can also be noted that the values of NRMSD, computed for all the prediction years, are considerably low $(0.07-0.16)$ in case of SpaBN. This indicates the superiority of SpaBN[6] compared to the other techniques (refer Tables $4.13$, $4.14,4.15$ and 4.16). This also reveals the effectiveness of incorporating spatial information which eventually improves the accuracy for SpaBN-based prediction.
(iii) Besides, from the $\mathrm{D}_{v}$ and SEP values in Tables $4.13,4.14,4.15$ and $4.16$, it can be observed that SpaBN is more than $55 \%$ better than the statistical forecasting models, and almost $25 \%$ better than the ANN-based prediction technique on average. Further, with respect to the standard BNs that handles no spatial information, the performance of SpaBN-based approach is improved about $13 \%$.
(iv) From the Tables $4.13,4.14,4.15$ and $4.16$, we can also find that in most of the cases, the SpaBN provides a high $R^{2}$ value $\sim 1$, whereas the $R^{2}$ value for the ARIMA models, ANN, and standard BN are $\sim 0.0,0.3$, and $0.6$, respectively. In general, the $R^{2}$ values range between 0 and 1 , and these are indicators of fitness of the prediction methods. The higher the value of $R^{2}$, the better the model fits for prediction. Therefore, the high $R^{2}$ value corresponding to SpaBN demonstrates that the model is desirably fit for the hydrological time series prediction.
(v) The comparative study of the model forecasts and the actual/observed daily reservoir live capacities for all the prediction years 1998-2001 are shown in the Fig. 4.10. It is evident from the figure that the predicted time series of SpaBN-based prediction model is matching well with the actual/observed value of live capacity in all the cases, indicating effectiveness of the model. From the Fig. 4.10, it can be also observed that, whenever there is over estimation or under-estimation generated from standard BN, the SpaBN has a notable tendency to improve this by making it as near to the observed value as possible [6]. Consideration of additional predictors like evapotranspiration, evaporation etc. from the reservoir water surface and watershed may further improve the model performance.

统计代写|贝叶斯网络代写Bayesian network代考|Existing Variants of Semantic Bayesian Network

The idea of incorporating domain semantics in Bayesian network is not very new. Different variants of semantic Bayesian networks $[2,9,12,15,20]$ have shown their effectiveness in several application areas. However, Bayesian networks with embedded semantics from spatial domain is still a little explored topic.
The semantic Bayesian network (SeBN) [9] proposed by Kim et al. is intended for conversational agent to infer the detailed intentions of the user. The SeBN itself maintains probabilistic as well as semantic relationships and the inference generation is followed from a thresholding process that helps in selecting target value appropriate for the user query. The sBN is another variant of semantic Bayesian network proposed by Zhou et al. [20] for constructing web mashup network. sBN is utilized here to process the information from semantic web. In order to describe the information on the graph structure and facilitate processing of semantic graph structure-based attributes, the authors use a semantic subgraph template defined using SPARQL query. There also exist some research works exploiting semantics while generating inference using Bayesian network. The works by Butz et al. $[2,12]$ are worth mentioning in this context. In [2], the authors propose a join tree probability propagation architecture for conducting the semantically enhanced inference generation from BN. The architecture is defined in such a way that each node in the join tree maintains a local BN preserving all conditional independencies of the original Bayesian network. In the work of Madsen and Butz [12], the authors use a lazy Propagation model for capturing semantics of potentials created during belief updating process. The model employs a combination of Shenoy-Shafer propagation [13] and variable elimination scheme to help in computing messages and marginals.

Recently, Das and Ghosh [5] have proposed a new variant of semantic Bayesian network, termed as semBnet, which is also applicable for spatial time series prediction [5]. This can be considered as the first work that uses semantically enhanced BN model for multivariate time series prediction in spatial domain. The overall working principle of semBnet is grounded on semantic hierarchy, a hierarchical representation of domain knowledge from which semBnet is able to extract the semantic similarity between various spatial concepts and can utilize the same in the Bayesian analysis process.

统计代写|贝叶斯网络代写Bayesian network代考|ECSE4850

贝叶斯网络代考

统计代写|贝叶斯网络代写Bayesian network代考|Study Area and Dataset

该实验在印度贾坎德邦的 Mayurakshi 河的分水岭和相关水库中进行。水库位于地理位置24∘6.6′ñ纬度和87∘18.9′和经度(参考表4.9和4.10),整个流域几乎覆盖1866sq.ķ米区域(左下:[24.09∘ñ,86.84∘和], 右上:[24.62∘ñ,87.40∘和])。该地区具有热带气候,表现出三个明确的季节:(i)夏季:(3 月至 6 月),(ii)多雨:(7 月至 10 月)和(iii)冬季:(11 月至 2 月)。

为了试验 SpaBN,整个流域区域被认为分布在10×10每个单元格包含大约33sq.ķ米区域。数据集的详细信息如下:

  • 降雨量:这是一个每日降雨量数据,在 11 年(从 1991 年 1 月 1 日至 2001 年 12 月 31 日)内为流域中的每个网格位置插值(从 1991 年 1 月 1 日到 2001 年 12 月 31 日)原始每日数据可用于四个雨量站(贾马(24.35∘ñ,87.15∘和), 杜姆卡(24.28∘ñ,87.24∘和), 萨里亚哈特(24.58∘ñ,87.01∘和),

和贾尔蒙迪(24.40∘ñ,87.05∘和))。此外,0.5∘×0.5∘印度气象局 (IMD) 的网格化降雨数据(参见表 4.9)也用于插值。

  • 温度:这是每日的温度数据,使用原始高分辨率对每个网格位置进行插值1∘×1∘来自 IMD 的网格温度数据(参见表 4.9)。
  • 水库活/蓄水能力:该数据是从灌溉和水道部政府办公室收集的。印度加尔各答的西孟加拉邦,同样的时间(从 1991 年 1 月 1 日到 2001 年 12 月 31 日)[参见表 4.10]。
  • 地形数据:包括坡度图、土壤图和整个流域土地利用土地覆被(LULC)的空间分布(图 4.7)。土壤图和海拔图的原始数据可从印度政府国家土壤调查和土地利用规划局获得。LULC 数据是从 Bhuvan 门户网站 [18] 收集的。从地图上可以明显看出,流域包含不同的 LULC 和土壤类别。几乎66%总面积的一半是农田,大约74%该地区充满了细壤土。

统计代写|贝叶斯网络代写Bayesian network代考|Discussions

通过分析表格和图 4.10,我们可以推断出基于 SpaBN 的预测模型如下:
(i) 从表格中可以看出4.13,4.14,4.15和4.16与统计 ARIMA、标准 BN 和 ANN 模型相比,基于 SpaBN 的方法产生最高的 NSE 值。此外,几乎在所有情况下,NSE 的值都约为 1。这表明 SpaBN 做出了高度准确的预测。相反,与包括标准 BN 在内的其他预测模型相关的 NSE 值与 1 有很大的偏差。这证明了基于 SpaBN 的预测在执行空间时间序列预测时优于其他预测模型。
(ii) 还可以注意到,针对所有预测年份计算的 NRMSD 值相当低(0.07−0.16)在 SpaBN 的情况下。这表明 SpaBN[6] 与其他技术相比具有优势(参见表4.13, 4.14,4.15和 4.16)。这也揭示了结合空间信息的有效性,最终提高了基于 SpaBN 的预测的准确性。
(iii) 此外,从D在和表中的 SEP 值4.13,4.14,4.15和4.16, 可以看出 SpaBN 大于55%比统计预测模型好,而且几乎25%平均而言,优于基于 ANN 的预测技术。此外,对于不处理空间信息的标准 BN,基于 SpaBN 的方法的性能提高了大约13%.
(iv) 从表格4.13,4.14,4.15和4.16,我们还可以发现,在大多数情况下,SpaBN 提供了很高的R2价值∼1,而R2ARIMA 模型、ANN 和标准 BN 的值是∼0.0,0.3, 和0.6, 分别。一般来说,R2值范围在 0 和 1 之间,这些是预测方法的适应度指标。的价值越高R2,模型越适合预测。因此,高R2对应于 SpaBN 的值表明该模型非常适合水文时间序列预测。
(v) 1998-2001 年所有预测年份的模型预测与实际/观测的水库日活容量对比研究见图 4.10。从图中可以明显看出,基于 SpaBN 的预测模型的预测时间序列在所有情况下都与实际/观察到的活量值很好地匹配,表明了模型的有效性。从图 4.10 还可以观察到,每当标准 BN 产生高估或低估时,SpaBN 具有通过使其尽可能接近观察值来改善这一点的显着趋势 [6] . 考虑来自水库水面和流域的其他预测因子,如蒸发量、蒸发量等,可以进一步提高模型性能。

统计代写|贝叶斯网络代写Bayesian network代考|Existing Variants of Semantic Bayesian Network

在贝叶斯网络中加入域语义的想法并不是很新。语义贝叶斯网络的不同变体[2,9,12,15,20]已在多个应用领域显示出其有效性。然而,具有来自空间域的嵌入语义的贝叶斯网络仍然是一个小小的探索主题。
Kim等人提出的语义贝叶斯网络(SeBN)[9]。旨在让会话代理推断用户的详细意图。SeBN 本身维护概率关系和语义关系,并且推理生成是从有助于选择适合用户查询的目标值的阈值处理之后进行的。sBN 是 Zhou 等人提出的语义贝叶斯网络的另一种变体。[20] 用于构建 web mashup 网络。这里使用 sBN 来处理来自语义网络的信息。为了描述关于图结构的信息并促进基于语义图结构的属性的处理,作者使用了使用 SPARQL 查询定义的语义子图模板。也有一些研究工作在利用贝叶斯网络生成推理的同时利用语义。Butz 等人的作品。[2,12]在这方面值得一提。在 [2] 中,作者提出了一种连接树概率传播架构,用于从 BN 进行语义增强的推理生成。该架构以这样一种方式定义,即连接树中的每个节点都维护一个本地 BN,保留原始贝叶斯网络的所有条件独立性。在 Madsen 和 Butz [12] 的工作中,作者使用惰性传播模型来捕获在信念更新过程中创建的势的语义。该模型采用 Shenoy-Shafer 传播 [13] 和变量消除方案的组合来帮助计算消息和边缘。

最近,Das 和 Ghosh [5] 提出了语义贝叶斯网络的一种新变体,称为 semBnet,它也适用于空间时间序列预测 [5]。这可以被认为是第一个使用语义增强的 BN 模型在空间域中进行多变量时间序列预测的工作。semBnet 的总体工作原理是基于语义层次结构,这是一种领域知识的层次表示,semBnet 能够从中提取各种空间概念之间的语义相似性,并可以在贝叶斯分析过程中加以利用。

统计代写|贝叶斯网络代写Bayesian network代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。