经济代写|计量经济学作业代写Econometrics代考|Observational Data

如果你也在 怎样代写计量经济学Econometrics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

计量经济学,对经济关系的统计和数学分析,通常作为经济预测的基础。这些信息有时被政府用来制定经济政策,也被私人企业用来帮助价格、库存和生产方面的决策。

statistics-lab™ 为您的留学生涯保驾护航 在代写计量经济学Econometrics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写计量经济学Econometrics代写方面经验极为丰富,各种代写计量经济学Econometrics相关的作业也就用不着说。

我们提供的计量经济学Econometrics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
Forecasting and Econometric Models - Econlib
经济代写|计量经济学作业代写Econometrics代考|Observational Data

经济代写|计量经济学作业代写Econometrics代考|Observational Data

A common econometric question is to quantify the causal impact of one set of variables on another variable. For example, a concern in labor economics is the returns to schooling-the change in earnings induced by increasing a worker’s education, holding other variables constant. Another issue of interest is the earnings gap between men and women.

Ideally, we would use experimental data to answer these questions. To measure the returns to schooling, an experiment might randomly divide children into groups, mandate different levels of education to the different groups, and then follow the children’s wage path after they mature and enter the labor force. The differences between the groups would be direct measurements of the effects of different levels of education. However, experiments such as this would be widely condemned as immoral! Consequently, in economics non-laboratory experimental data sets are typically narrow in scope.

Instead, most economic data is observational. To continue the above example, through data collection we can record the level of a person’s education and their wage. With such data we can measure the joint distribution of these variables, and assess the joint dependence. But from observational data it is difficult to infer causality as we are not able to manipulate one variable to see the direct effect on the other. For example, a person’s level of education is (at least partially) determined by that person’s choices. These factors are likely to be affected by their personal abilities and attitudes towards work. The fact that a person is highly educated suggests a high level of ability, which suggests a high relative wage. This is an alternative explanation for an observed positive correlation between educational levels and wages. High ability individuals do better in school, and therefore choose to attain higher levels of education, and their high ability is the fundamental reason for their high wages. The point is that multiple explanations are consistent with a positive correlation between schooling levels and education. Knowledge of the joint distribution alone may not be able to distinguish between these explanations.
Most economic data sets are observational, not experimental. This means that all variables must be treated as random and possibly jointly determined.
This discussion means that it is difficult to infer causality from observational data alone. Causal inference requires identification, and this is based on strong assumptions. We will discuss these issues on occasion throughout the text.

经济代写|计量经济学作业代写Econometrics代考|Standard Data Structures

There are five major types of economic data sets: cross-sectional, time series, panel, clustered, and spatial. They are distinguished by the dependence structure across observations.

Cross-sectional data sets have one observation per individual. Surveys and administrative records are a typical source for cross-sectional data. In typical applications, the individuals surveyed are persons, households, firms or other economic agents. In many contemporary econometric cross-section studies the sample size $n$ is quite large. It is conventional to assume that cross-sectional observations are mutually independent. Most of this text is devoted to the study of cross-section data.

Time series data are indexed by time. Typical examples include macroeconomic aggregates, prices and interest rates. This type of data is characterized by serial dependence. Most aggregate economic data is only available at a low frequency (annual, quarterly or perhaps monthly) so the sample size is typically much smaller than in cross-section studies. An exception is financial data where data are available at a high frequency (weekly, daily, hourly, or by transaction) so sample sizes can be quite large.

Panel data combines elements of cross-section and time series. These data sets consist of a set of individuals (typically persons, households, or corporations) measured repeatedly over time. The common modeling assumption is that the individuals are mutually independent of one another, but a given individual’s observations are mutually dependent. In some panel data contexts, the number of time series observations $T$ per individual is small while the number of individuals $n$ is large. In other panel data contexts (for example when countries or states are taken as the unit of measurement) the number of individuals $n$ can be small while the number of time series observations $T$ can be moderately large. An important issue in econometric panel data is the treatment of error components.

Clustered samples are increasing popular in applied economics and are related to panel data. In clustered sampling, the observations are grouped into “clusters” which are treated as mutually independent yet allowed to be dependent within the cluster. The major difference with panel data is that clustered sampling typically does not explicitly model error component structures, nor the dependence within clusters, but rather is concerned with inference which is robust to arbitrary forms of within-cluster correlation.

Spatial dependence is another model of interdependence. The observations are treated as mutually dependent according to a spatial measure (for example, geographic proximity). Unlike clustering, spatial models allow all observations to be mutually dependent, and typically rely on explicit modeling of the dependence relationships. Spatial dependence can also be viewed as a generalization of time series dependence.

经济代写|计量经济学作业代写Econometrics代考|Econometric Software

Economists use a variety of econometric, statistical, and programming software.
Stata (www.stata.com) is a powerful statistical program with a broad set of pre-programmed econometric and statistical tools. It is quite popular among economists, and is continuously being updated with new methods. It is an excellent package for most econometric analysis, but is limited when you want to use new or less-common econometric methods which have not yet been programed. At many points in this textbook specific Stata estimation methods and commands are described. These commands are valid for Stata version $15 .$

MATLAB (www.mathworks.com), GAUSS (www.aptech.com), and OxMetrics (www.oxmetrics.net) are high-level matrix programming languages with a wide variety of built-in statistical functions. Many econometric methods have been programed in these languages and are available on the web. The advantage of these packages is that you are in complete control of your analysis, and it is easier to program new methods than in Stata. Some disadvantages are that you have to do much of the programming yourself, programming complicated procedures takes significant time, and programming errors are hard to prevent and difficult to detect and eliminate. Of these languages, GAUSS used to be quite popular among econometricians, but currently MATLAB is more popular.

An intermediate choice is $\mathrm{R}$ (www.r-project.org). R has the capabilities of the above high-level matrix programming languages, but also has many built-in statistical environments which can replicate much of the functionality of Stata. $R$ is the dominate programming language in the statistics field, so methods developed in that arena are most commonly available in $\mathrm{R}$. Uniquely, $\mathrm{R}$ is open-source, user-contributed, and best of all, completely free! A smaller but growing group of econometricians are enthusiastic fans of R.

For highly-intensive computational tasks, some economists write their programs in a standard programming language such as Fortran or C. This can lead to major gains in computational speed, at the cost of increased time in programming and debugging.

There are many other packages which are used by econometricians, include Eviews, Gretl, PcGive, Python, Julia, RATS, and SAS.

As the packages described above have distinct advantages, many empirical economists end up using more than one package. As a student of econometrics, you will learn at least one of these packages, and probably more than one. My advice is that all students of econometrics should develop a basic level of familiarity with Stata, and either Matlab or $\mathrm{R}$ (or all three).

Machine Learning or Econometrics? | by Chris Kuo/Dr. Dataman | Analytics  Vidhya | Medium
经济代写|计量经济学作业代写Econometrics代考|Observational Data

计量经济学代写

经济代写|计量经济学作业代写Econometrics代考|Observational Data

一个常见的计量经济学问题是量化一组变量对另一变量的因果影响。例如,劳动经济学的一个关注点是学校教育的回报——在其他变量保持不变的情况下,增加工人的教育所引起的收入变化。另一个有趣的问题是男女之间的收入差距。

理想情况下,我们会使用实验数据来回答这些问题。为了衡量学校教育的回报,一项实验可能会将儿童随机分组,要求不同的群体接受不同程度的教育,然后在儿童成年并进入劳动力市场后遵循他们的工资路径。各组之间的差异将直接衡量不同教育水平的影响。然而,像这样的实验会被广泛谴责为不道德的!因此,在经济学中,非实验室实验数据集的范围通常很窄。

相反,大多数经济数据都是观察性的。继续上面的例子,通过数据收集我们可以记录一个人的教育水平和工资。有了这些数据,我们可以测量这些变量的联合分布,并评估联合依赖性。但是从观察数据很难推断因果关系,因为我们无法操纵一个变量来查看对另一个变量的直接影响。例如,一个人的教育水平(至少部分地)由该人的选择决定。这些因素很可能会受到个人能力和工作态度的影响。一个人受过高等教育的事实表明能力水平高,这表明相对工资较高。这是对观察到的教育水平和工资之间正相关的另一种解释。能力强的人在学校表现更好,因此选择接受更高层次的教育,能力强是他们获得高工资的根本原因。关键是,多种解释与受教育程度与教育之间的正相关是一致的。仅对联合分布的了解可能无法区分这些解释。
大多数经济数据集是观察性的,而不是实验性的。这意味着必须将所有变量视为随机变量,并可能共同确定。
这种讨论意味着仅从观测数据很难推断出因果关系。因果推理需要识别,这是基于强有力的假设。我们将在整本书中不时讨论这些问题。

经济代写|计量经济学作业代写Econometrics代考|Standard Data Structures

经济数据集有五种主要类型:横截面、时间序列、面板、集群和空间。它们的区别在于观察之间的依赖结构。

横截面数据集每个人有一个观察结果。调查和行政记录是横截面数据的典型来源。在典型应用中,被调查的个人是个人、家庭、公司或其他经济主体。在许多当代计量经济学横截面研究中,样本量n相当大。通常假设横截面观察是相互独立的。本书的大部分内容都致力于研究横截面数据。

时间序列数据按时间索引。典型的例子包括宏观经济总量、价格和利率。这种类型的数据的特点是串行依赖。大多数综合经济数据只能以较低的频率(每年、每季度或每月)提供,因此样本量通常比横截面研究小得多。一个例外是财务数据,其中数据的可用频率很高(每周、每天、每小时或按交易),因此样本量可能非常大。

面板数据结合了横截面和时间序列的元素。这些数据集由一组随时间重复测量的个人(通常是个人、家庭或公司)组成。常见的建模假设是个体相互独立,但给定个体的观察是相互依赖的。在某些面板数据上下文中,时间序列观察的数量吨每个人很小,而个人数量n很大。在其他面板数据上下文中(例如,当以国家或州为计量单位时)个人的数量n时间序列观察的数量可以很小吨可以适度大。计量经济学面板数据中的一个重要问题是误差分量的处理。

聚类样本在应用经济学中越来越流行,并且与面板数据相关。在集群抽样中,观察被分组为“集群”,这些集群被视为相互独立,但允许在集群内相互依赖。与面板数据的主要区别在于,聚类抽样通常不会显式地对误差分量结构进行建模,也不会对聚类内的依赖性进行建模,而是关注对任意形式的聚类内相关性具有鲁棒性的推理。

空间依赖是相互依赖的另一种模式。根据空间度量(例如,地理接近度),观测被视为相互依赖。与聚类不同,空间模型允许所有观察结果相互依赖,并且通常依赖于依赖关系的显式建模。空间依赖也可以看作是时间序列依赖的概括。

经济代写|计量经济学作业代写Econometrics代考|Econometric Software

经济学家使用各种计量、统计和编程软件。
Stata (www.stata.com) 是一个功能强大的统计程序,具有广泛的预编程计量经济学和统计工具。它在经济学家中颇受欢迎,并不断更新新方法。对于大多数计量经济学分析来说,它是一个出色的软件包,但是当您想要使用尚未编程的新的或不太常见的计量经济学方法时,它会受到限制。在这本教科书的许多地方都描述了特定的 Stata 估计方法和命令。这些命令对 Stata 版本有效15.

MATLAB (www.mathworks.com)、GAUSS (www.aptech.com) 和 OxMetrics (www.oxmetrics.net) 是具有多种内置统计函数的高级矩阵编程语言。许多计量经济学方法已经用这些语言编写,并且可以在网上获得。这些软件包的优点是您可以完全控制您的分析,并且比在 Stata 中编写新方法更容易。一些缺点是您必须自己进行大量编程,编写复杂的程序需要大量时间,并且编程错误难以预防,难以检测和消除。在这些语言中,GAUSS 曾经在计量经济学家中非常流行,但目前 MATLAB 更流行。

中间选择是R(www.r-project.org)。R 具有上述高级矩阵编程语言的功能,但也有许多内置的统计环境,可以复制 Stata 的大部分功能。R是统计领域的主要编程语言,因此在该领域开发的方法最常见于R. 独一无二,R是开源的,用户贡献的,最重要的是,完全免费!一小部分但不断增长的计量经济学家是 R 的狂热粉丝。

对于高度密集的计算任务,一些经济学家使用标准编程语言(如 Fortran 或 C)编写程序。这可能会大大提高计算速度,但会增加编程和调试的时间。

计量经济学家还使用了许多其他软件包,包括 Eviews、Gretl、PcGive、Python、Julia、RATS 和 SAS。

由于上述软件包具有明显的优势,许多经验经济学家最终使用了不止一个软件包。作为计量经济学的学生,您将至少学习这些软件包中的一个,并且可能不止一个。我的建议是所有计量经济学的学生都应该对 Stata 以及 Matlab 或R(或全部三个)。

经济代写|计量经济学作业代写Econometrics代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注