统计代写|决策与风险作业代写decision and risk代考|Simulation Output Analysis for Risk

如果你也在 怎样代写决策与风险decision and risk这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

决策与风险分析帮助组织在存在风险和不确定性的情况下做出决策,使其效用最大化。

风险决策。一个组织的领导层决定接受一个具有特定风险功能的选项,而不是另一个,或者是不采取任何行动。我认为,任何有价值的组织的主管领导都可以在适当的级别上做出这样的决定。

这个术语是在备选方案之间做出决定的简称,其中至少有一个方案有损失的概率。(通常在网络风险中,我们关注的是损失,但所有的想法都自然地延伸到上升或机会风险。很少有人和更少的组织会在没有预期利益的情况下承担风险,即使只是避免成本)。

损失大小的概率分布,在某个规定的时间段,如一年。这就是我认为大多数人在谈论某物的 “风险 “时的真正含义。

statistics-lab™ 为您的留学生涯保驾护航 在代写决策与风险decision and risk方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写决策与风险decision and risk方面经验极为丰富,各种代写决策与风险decision and risk相关的作业也就用不着说。

我们提供的决策与风险decision and risk及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
Change-Oriented Risk Management in Civil Aviation Operation: A Case Study  in China Air Navigation Service Provider
统计代写|决策与风险作业代写decision and risk代考|Simulation Output Analysis for Risk

统计代写|决策与风险作业代写decision and risk代考|Assessment and Mitigation

According to Aven (2016), the area of risk assessment and management has evolved considerably since its beginnings in the $1970 \mathrm{~s}$, and there have been developed a wide variety of methods and applications in most societal sectors. As evidence of this evolution, we can observe the variety of research groups of the Society for Risk Analysis, among which we can mention: Dose Response, Ecological Risk Assessment, Emerging Nanoscale Materials, Engineering and Infrastructure, Exposure Assessment, Microbial Risk Analysis, Occupational Health and Safety, Risk Policy and Law, and Security and Defense.

Aven (2016) also mentions that the area of risk assessment and management has two fundamental tasks: (i) to use risk assessments and management to study and treat the risk caused by the execution of specific activities (for example, the operation of an offshore facility or investment), and (ii) conduct research and development (in

general) on risk, developing concepts, theories, frameworks, approaches, principles, methods and models to understand, evaluate, characterize, communicate and (in a broad sense) manage and mitigate risk.

Parallel to the development of the area of risk assessment and mitigation, concepts, techniques and available tools (software) have been developed for systems simulation and, in particular, for stochastic simulation, which is the type of simulation that allows us to include uncertainty and risk components in a model. In practice, a model for risk management can become complex, in the sense that we cannot obtain analytical expressions for the risk measures that are relevant to the problem under study and, in such circumstances, stochastic simulation has particular relevance for the estimation (from the output of simulation experiments) of the risk measures to be mitigated.
The objective of this Chapter is to present a review of the techniques that have been proposed to analyze the output of simulation experiments, in order to estimate performance measures that are important to conduct a risk assessment and mitigation study, when a simulation model is used to imitate the evolution of a system.

The Chapter is organized as follows. After this introduction, we present a brief literature review on the relevant applications of systems simulation for risk assessment and mitigation. In the next section, we present an overview of the necessary concepts and tools available to conduct simulation experiments. The following section discusses the most important techniques for estimating risk measures in transient simulations, including the estimation of expectations, variances and risk measures based on quantiles and M estimators. In this Section, we also present a Bayesian framework to incorporate parameter uncertainty in the process of estimating risk measures. Finally, the last section discusses the techniques available to estimate risk measures in steady-state simulations, considering again the estimation of expectations, variances, and quantile-based risk measures. In the last section we also discuss the initial transient problem and how can it be mitigated.

统计代写|决策与风险作业代写decision and risk代考|Literature Review

In this section we present a brief review on the main literature related to simulation applications that have been successfully applied for risk assessment and mitigation in different areas. The literature on the applications of risk assessment and mitigation is abundant, and this is only a very brief review on the applications of simulation in this area, for a more detailed review on the applications of risk assessment and mitigation, the reader is referred to Aven (2016).

According to Aven (2016), an important step in the process of making informed decisions for risk management corresponds to risk assessment, which consists of the analysis of the knowledge base to have an understanding about the risks and the uncertainties related to the case under study. As explained in Aven (2012), although it is true that the criteria for evaluating risks are usually based on the estimation of expected values (e.g., the cost of a negative event) or probabilities (of a negative event), we can find arguments for the use of other measures for risk assessment.

For example, in the area of finance, risk measures have been proposed based not only on the estimation of expected losses, but also on quantile-based measures, such as the Value at Risk (VaR) or the Conditional Value at Risk (CVar), see e.g., Natarajan et al. (2009). Because of these reasons, in addition to the techniques for estimating expectations and probabilities from the output of simulation experiments, in this Chapter we will also deal with the estimation of other risk measures, such as the variance and risk measures based on quantiles and $\mathrm{M}$ estimators, recognizing that some other measures for risk management and mitigation could be proposed in addition to the ones discussed in this Chapter.

Stochastic simulation has been widely used for risk assessment in various areas, for example, in supply chain management, where risk measures are mainly related to shortages, the occurrence of catastrophes and the costs incurred (see, e.g., Wu and Olson 2008; Wu et al. 2012; Chen et al. 2013; Hamdi et al. 2018; Oliveira et al. 2019 ; and their references). Stochastic simulation has also been used extensively in the areas related to production planning to design products with high reliability, for example, for water distribution (see, e.g., Wagner et al. 1988; Ostfeld et al. 2002), for the design of integrated circuits (see, e.g., Hu 1992; Wang et al. 2007; Li et al. 2008), or for the design of highly reliable products (see, e.g., Heidelberger 1995; Juneja and Shahabuddin 2006; Bucklew 2013). One area of production planning where stochastic simulation is particularly important for risk mitigation is operations scheduling, where the achievement of programs that meet delivery dates is very important (see, e.g., Pegden 2017; Smith et al. 2019).

In areas related to health care, stochastic simulation experiments have also been successfully conducted, for example, to design spaces for medical care with a low risk of experiencing long waiting times (see, e.g., Fone et al. 2003), to improve the understanding and mitigation of epidemics (see, e.g., Salathe et al. 2012), to make economic evaluations of diseases and their treatments (see, e.g., Cooper et al. 2006). A more complete review of the applications of simulation for health care can be found in Mielczarek and Uziałko-Mydlikowska (2012).

Simulation has been successfully applied in the areas of waste treatment and energy recovery (see, e.g., Ren et al. 2010; Ren 2018; Liang et al. 2020; Yang et al. 2020), and to mitigate the risk of the occurrence of landslides (see, e.g., Dai et al. 2002; Fell et al. 2005), or to quantify the resilience of power systems (see, e.g., Pantelli et al. 2017) or urban infrastructure (see e.g., Ouyang and Duenas-Osorio 2012).

统计代写|决策与风险作业代写decision and risk代考|Systems Simulation

The term system is used in various disciplines to identify the elements and dynamics of a phenomenon that is intended to be understood, analyzed and/or designed from the point of view of the corresponding discipline. According to Schmidt and Taylor (1970), a system is a collection of entities that interact to achieve a goal. For example, in Industrial Engineering we study industrial systems (supply chains, service centers, manufacturing plants, etc.) that consist of raw materials, human resources and capital, organized to efficiently produce and distribute manufactures and/or services. In the same way, systems can be studied in Economics from the point of view of the welfare of the agents involved in the economic phenomenon and, similarly, each discipline study systems from its analytical perspective.

Without a doubt, humanity has studied systems from very ancient times. Initially, an attempt was made to understand natural systems through experimentation with the real system. The search for knowledge led to the development, first of physical models of systems (prototypes, scale models, etc.) that allowed them to carry out controlled experiments, and later, theories and mathematical models that could explain and predict the behavior of systems, both existing ones and those that were developed. A physical model is an imitation, generally simpler, of a real system, whose experimentation (under controlled conditions) allows us to study the behavior of the system in a natural way, as it would happen with the real system. A mathematical model, on the other hand, represents the system to be studied by means of mathematical relationships; therefore, by experimenting with it, we can predict the behavior of the relevant variables of the system and imagine the main behavior of the system, even if it is not physically reproduced.

One of the purposes of a mathematical model is to predict the behavior of one or more characteristics of the system (known as response variables) based on other variables (called control variables). A mathematical model in which, through a set of equations, the response variables are expressed as a (explicit) function of the control variables is very convenient to predict the behavior of a system, and we say that the model has an analytical solution when this set of equations exists.

However, when we want to study a system in great detail, we must consider variables whose relationships are not easy to solve to find an analytical solution. Nonetheless, the model can still be useful to analyze the system, since for this purpose numerical methods have been developed. Given particular values for the control variables, numerical methods allow us to calculate, by using a computer, the value of the response variables.

Among the numerical methods used to study a system (see Fig. 6.1), simulation has the fundamental characteristic that the model tries to imitate the behavior of the system under study, in order to calculate, with the help of a computer, the value of the system’s response variables. For the purposes of this Chapter, we will recognize by simulation the computer imitation of the behavior of a system, using a (mathematical) model to explain its relevant characteristics, in order to numerically evaluate the performance measures of the system.

统计代写|决策与风险作业代写decision and risk代考|Simulation Output Analysis for Risk

决策与风险代写

统计代写|决策与风险作业代写decision and risk代考|Assessment and Mitigation

根据 Aven (2016) 的说法,风险评估和管理领域自1970 s,并且已经在大多数社会部门中开发了各种各样的方法和应用程序。作为这种演变的证据,我们可以观察到风险分析学会的各种研究小组,其中我们可以提到:剂量反应、生态风险评估、新兴纳米材料、工程和基础设施、暴露评估、微生物风险分析、职业健康与安全、风险政策与法律、安全与国防。

Aven(2016)还提到风险评估和管理领域有两个基本任务:(i)使用风险评估和管理来研究和处理由执行特定活动(例如,离岸设施或投资),以及(ii)进行研究和开发(在

一般)关于风险,开发概念、理论、框架、方法、原则、方法和模型来理解、评估、表征、沟通和(在广义上)管理和减轻风险。

在风险评估和缓解领域的发展的同时,系统模拟的概念、技术和可用工具(软件)也被开发出来,特别是随机模拟,这种模拟类型允许我们将不确定性和模型中的风险成分。在实践中,风险管理模型可能变得复杂,因为我们无法获得与所研究问题相关的风险度量的分析表达式,在这种情况下,随机模拟与估计特别相关(来自模拟实验的输出)要减轻的风险措施。
本章的目的是对已提出的用于分析模拟实验输出的技术进行回顾,以便在使用模拟模型进行风险评估和缓解研究时估计对风险评估和缓解研究很重要的性能指标。模仿系统的进化。

本章组织如下。在此介绍之后,我们简要回顾了系统模拟在风险评估和缓解方面的相关应用。在下一节中,我们将概述可用于进行模拟实验的必要概念和工具。以下部分讨论了在瞬态模拟中估计风险度量的最重要技术,包括基于分位数和 M 估计量的期望、方差和风险度量的估计。在本节中,我们还提出了一个贝叶斯框架,以在估计风险度量的过程中纳入参数不确定性。最后,最后一节讨论了可用于估计稳态模拟中的风险度量的技术,再次考虑对期望、方差、和基于分位数的风险度量。在最后一节中,我们还讨论了初始瞬态问题以及如何缓解它。

统计代写|决策与风险作业代写decision and risk代考|Literature Review

在本节中,我们简要回顾了与模拟应用相关的主要文献,这些应用已成功应用于不同领域的风险评估和缓解。关于风险评估和缓解应用的文献非常丰富,这只是对模拟在该领域的应用的一个非常简要的回顾,对于风险评估和缓解的应用更详细的回顾,读者可以参考 Aven (2016 年)。

根据 Aven (2016) 的说法,风险管理决策过程中的一个重要步骤是风险评估,它包括对知识库的分析,以了解与所研究案例相关的风险和不确定性. 正如 Aven (2012) 所解释的,虽然评估风险的标准通常基于对预期值(例如,负面事件的成本)或概率(负面事件)的估计,但我们可以找到论据用于风险评估的其他措施。

例如,在金融领域,提出的风险度量不仅基于对预期损失的估计,而且基于分位数的度量,例如风险价值 (VaR) 或条件风险价值 (CVar) ,参见例如 Natarajan 等人。(2009 年)。由于这些原因,除了从模拟实验的输出中估计期望和概率的技术外,本章我们还将讨论其他风险度量的估计,例如基于分位数的方差和风险度量以及米估计者,认识到除了本章讨论的措施之外,还可以提出一些其他的风险管理和缓解措施。

随机模拟已广泛用于各个领域的风险评估,例如,在供应链管理中,风险度量主要与短缺、灾难的发生和产生的成本有关(参见 Wu 和 Olson 2008;Wu 等al. 2012;Chen 等人 2013;Hamdi 等人 2018;Oliveira 等人 2019;以及他们的参考文献)。随机模拟也被广泛用于与生产计划相关的领域,以设计具有高可靠性的产品,例如用于配水(参见 Wagner 等人 1988 年;Ostfeld 等人 2002 年),用于设计集成电路(例如,参见 Hu 1992;Wang 等人 2007;Li 等人 2008),或用于设计高可靠性产品(例如,参见 Heidelberger 1995;Juneja 和 Shahabuddin 2006;Bucklew 2013)。

在与医疗保健相关的领域,随机模拟实验也已成功进行,例如,设计医疗保健空间,降低等待时间的风险(参见,例如,Fone et al. 2003),以提高理解和减轻流行病(参见,例如,Salathe 等人,2012 年),以对疾病及其治疗进行经济评估(例如,参见,Cooper 等人,2006 年)。Mielczarek 和 Uziałko-Mydlikowska (2012) 对模拟在医疗保健中的应用进行了更完整的回顾。

模拟已成功应用于废物处理和能源回收领域(例如,参见 Ren et al. 2010; Ren 2018; Liang et al. 2020; Yang et al. 2020),并降低了发生滑坡(例如,Dai 等人,2002;Fell 等人,2005),或量化电力系统的弹性(例如,Pantelli 等人,2017)或城市基础设施(例如,Ouyang 和 Duenas-Osorio 2012)。

统计代写|决策与风险作业代写decision and risk代考|Systems Simulation

系统一词用于各种学科,以识别旨在从相应学科的角度理解、分析和/或设计的现象的要素和动态。根据 Schmidt 和 Taylor (1970),系统是为实现目标而相互作用的实体的集合。例如,在工业工程中,我们研究由原材料、人力资源和资本组成的工业系统(供应链、服务中心、制造工厂等),这些系统被组织起来有效地生产和分销制造品和/或服务。同样,经济学可以从参与经济现象的主体的福利的角度来研究系统,同样,每个学科都可以从分析的角度来研究系统。

毫无疑问,人类从非常古老的时代就开始研究系统。最初,试图通过对真实系统的实验来理解自然系统。对知识的探索首先导致了系统物理模型(原型、比例模型等)的发展,这些模型允许他们进行受控实验,然后是可以解释和预测系统行为的理论和数学模型,现有的和开发的。物理模型是对真实系统的模仿,通常更简单,其实验(在受控条件下)使我们能够以自然的方式研究系统的行为,就像真实系统发生的那样。另一方面,数学模型通过数学关系表示要研究的系统;所以,

数学模型的目的之一是根据其他变量(称为控制变量)预测系统的一个或多个特征(称为响应变量)的行为。通过一组方程,将响应变量表示为控制变量的(显式)函数的数学模型非常便于预测系统的行为,我们称该模型具有解析解方程组存在。

然而,当我们想要非常详细地研究一个系统时,我们必须考虑关系不容易求解的变量来找到解析解。尽管如此,该模型仍然可以用于分析系统,因为为此目的已经开发了数值方法。给定控制变量的特定值,数值方法允许我们使用计算机计算响应变量的值。

在用于研究系统的数值方法中(见图 6.1),模拟的基本特征是模型试图模仿所研究系统的行为,以便在计算机的帮助下计算出系统的响应变量。为了本章的目的,我们将通过模拟识别系统行为的计算机模拟,使用(数学)模型来解释其相关特征,以便对系统的性能度量进行数值评估。

统计代写|决策与风险作业代写decision and risk代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。统计代写|python代写代考

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注