分类: 图论代考

数学代写|图论作业代写Graph Theory代考|MATH141

如果你也在 怎样代写图论Graph Theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

在数学中,图论是对图的研究,它是用来模拟对象之间成对关系的数学结构。这里,图由顶点(也称为节点或点)组成,这些顶点由边(也称为链接或线)连接。

statistics-lab™ 为您的留学生涯保驾护航 在代写图论Graph Theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写图论Graph Theory代写方面经验极为丰富,各种代写图论Graph Theory相关的作业也就用不着说。

我们提供的图论Graph Theory及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|图论作业代写Graph Theory代考|MATH141

数学代写|图论作业代写Graph Theory代考|Four Color Theorem

In 1852 Augustus De Morgan sent a letter to his colleague Sir William Hamilton (the same mathematician who introduced what we now call hamiltonian cycles) regarding a puzzle presented by one of his students, Frederick Gutherie (though Gutherie later clarified that the question originated from his brother, Francis). This question was known for over a century as the Four Color Conjecture, and can be stated as

Any map split into contiguous regions can be colored using at most four colors so that no two bordering regions are given the same color.

An important aspect of this conjecture is that a region, such as a country or state, cannot be split into two disconnected pieces. For example, the state of Michigan is split into the Lower Peninsula and the Upper Peninsula and so is not a contiguous region; thus the contiguous United States does not satisfy the hypothesis of the Four Color Conjecture. However, it is still possible to color the lower 48 states using 4 colors (try it!).

The Four Color Conjecture started as a map coloring problem, yet migrated into a graph coloring problem. In the late 19th century, Alfred Kempe studied the dual problem where each region on a map was represented by a vertex and an edge exists between two vertices if their corresponding regions share a border. This approach was extensively used in the mid-20th century as the study of graph theory exploded with the advent of the computer. The search for a proper map coloring is now reduced to a proper vertex coloring (more commonly referred to as just a coloring) for a planar graph. A graph is planar if it can be drawn so that no edges cross. We will study planar graphs extensively in Chapter 7.

Above is a graph with two different proper colorings of the vertices. Note that beyond small examples, we rarely use color names (red, blue, green, etc.) but rather refer to color numbers (color 1, 2, 3, etc.) since names of colors get more complicated as we move beyond the standard 6 to 10 colors. The two colorings given above use a different number of colors, but are both proper since no two vertices of the same color are adjacent.

数学代写|图论作业代写Graph Theory代考|Vertex Coloring

For the remainder of this chapter, we will explore graph colorings for graphs that may or may not be planar, mainly since we already know that planar graphs need at most 4 colors and so there is not much room for further exploration. Any graph we consider can be simple or have multi-edges but cannot have loops, since a vertex with a loop could never be assigned a color. In any graph coloring problem, we want to determine the smallest value for $k$ for which a graph has a $k$-coloring. This value for $k$ is called the chromatic number of a graph.

Definition 6.4 The chromatic number $\chi(G)$ of a graph is the smallest value $k$ for which $G$ has a proper $k$-coloring.

In order to determine the chromatic number of a graph, we often need to complete the following two steps:
(1) Find a vertex coloring of $G$ using $k$ colors.
(2) Show why fewer colors will not suffice.
At times it can be quite complex to show a graph cannot be colored with fewer colors. There are a few properties of graphs and the existence of certain subgraphs that can immediately provide a basis for these arguments.

Look back at Example 6.1 about coloring the counties in Vermont and the discussion of alternating colors around a central vertex. In doing so, we were using one of the most basic properties in graph coloring: the number of colors needed to color a cycle. Recall that a cycle on $n$ vertices is denoted $C_n$. The examples below show optimal colorings of $C_3, C_4, C_5$, and $C_6$.

数学代写|图论作业代写Graph Theory代考|MATH141

图论代考

数学代写|图论作业代写Graph Theory代考|Spanning Trees

在第 1 章中,我们介绍了生成子图的概念,在第 2 章中,我们将哈密顿环描述为图中的生成环。这里我们将讨论树版本,我们想要一个本身就是树的生成子图。

定义 3.2 生成树是生成子图,也是树。

回想一下,如果边出现在子图中,则两个端点也必须包含在子图中。但是,如果一个顶点出现在子图中,则可以包括任意数量的入射边。

子图H1下面既不是生成树也不是树,因为一些顶点来自G1缺少并且之间存在多边(因此存在电路)d和这是. 子图H2below 不跨越,因为它不包含顶点A,但它是一棵树,因为不存在电路或循环。如上所述,这些仅仅是示例并且存在其他非跨越子图。

在什么情况下图会有生成树?显然,更困难的标准是树,而不是生成树,因为每个图都包含一个生成子图。诀窍是确保生成的子图既是连通的又是非循环的。如果原图不连通,那么我们就没有希望找到生成树;然而,如果图有循环,我们只需要删除足够多的边以确保结果是连通的,但没有循环保留。因此,每个连通图都包含一个生成树。那我们怎么才能找到最好的呢?我们如何确定什么是最好的?

数学代写|图论作业代写Graph Theory代考|Tree Properties

由于找到最小生成树(在图论方面)既快速又容易,因此我们将注意力集中在树的属性以及生成树可以告诉我们有关其图形的哪些信息上。正如数学中常见的那样,具有最简单定义的事物提供了丰富的深入研究材料。树木尤其提供了充足的机会来加强我们的证明写作技巧,特别是归纳法和矛盾法。我们从通过计数技术产生的一些结果开始。回想一下,度数为 1 的顶点称为叶。
定理 3.4 每棵至少有两个顶点的树都有一片叶子。
证明:假设有一个矛盾存在一棵树吨至少有两个不包含叶子的顶点。自从吨必须连接,我们知道没有顶点的度数为 0 ,因此每个顶点吨度数必须至少为 2。但是根据定理 2.5 我们知道吨必须有一个循环,这与吨是非循环的。因此吨必须包含一片叶子。

习题 3.18 扩展了这个定理,证明每棵树(至少有两个顶点)实际上至少有两个叶子。

除了简单地显示树具有特定属性之外,上面的结果还允许我们做一件非常有用的事情——修剪一棵树!回想起那个G−在表示从中移除顶点G连同所有边缘事件在. 以下引理的证明出现在练习 3.16 中。

引理 3.5 给定一棵树吨用一片叶子在, 图吨−在仍然是一棵树。
从树上移除一片叶子将始终恰好移除一个顶点和一条边,从而创建一棵尺寸更小的树。这种技术自然适用于归纳论证。
定理 3.6 一棵树n顶点有n−1所有人的优势n≥1.

此图片的alt属性为空;文件名为statistics-lab-1024x443.jpg
数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。



广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。



术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。



有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。



回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。



R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

The graphs above are incomplete. These figures only show a vertex with degree four (vertex E), its nearest neighbors (A, B, C, and D), and segments of A-C Kempe chains. The entire graphs would also contain several other vertices (especially, more colored the same as B or D) and enough edges to be MPG’s. The left figure has A connected to $C$ in a single section of an A-C Kempe chain (meaning that the vertices of this chain are colored the same as A and C). The left figure shows that this A-C Kempe chain prevents B from connecting to $\mathrm{D}$ with a single section of a B-D Kempe chain. The middle figure has A and C in separate sections of A-C Kempe chains. In this case, B could connect to D with a single section of a B-D Kempe chain. However, since the A and C of the vertex with degree four lie on separate sections, the color of C’s chain can be reversed so that in the vertex with degree four, C is effectively recolored to match A’s color, as shown in the right figure. Similarly, D’s section could be reversed in the left figure so that D is effectively recolored to match B’s color.

Kempe also attempted to demonstrate that vertices with degree five are fourcolorable in his attempt to prove the four-color theorem [Ref. 2], but his argument for vertices with degree five was shown by Heawood in 1890 to be insufficient [Ref. 3]. Let’s explore what happens if we attempt to apply our reasoning for vertices with degree four to a vertex with degree five.

数学代写|图论作业代写Graph Theory代考|The previous diagrams

The previous diagrams show that when the two color reversals are performed one at a time in the crossed-chain graph, the first color reversal may break the other chain, allowing the second color reversal to affect the colors of one of F’s neighbors. When we performed the $2-4$ reversal to change B from 2 to 4 , this broke the 1-4 chain. When we then performed the 2-3 reversal to change E from 3, this caused C to change from 3 to 2 . As a result, F remains connected to four different colors; this wasn’t reversed to three as expected.
Unfortunately, you can’t perform both reversals “at the same time” for the following reason. Let’s attempt to perform both reversals “at the same time.” In this crossed-chain diagram, when we swap 2 and 4 on B’s side of the 1-3 chain, one of the 4’s in the 1-4 chain may change into a 2, and when we swap 2 and 3 on E’s side of the 1-4 chain, one of the 3’s in the 1-3 chain may change into a 2 . This is shown in the following figure: one 2 in each chain is shaded gray. Recall that these figures are incomplete; they focus on one vertex (F), its neighbors (A thru E), and Kempe chains. Other vertices and edges are not shown.

Note how one of the 3’s changed into 2 on the left. This can happen when we reverse $\mathrm{C}$ and $\mathrm{E}$ (which were originally 3 and 2 ) on E’s side of the 1-4 chain. Note also how one of the 4’s changed into 2 on the right. This can happen when we reverse B and D (which were originally 2 and 4) outside of the 1-3 chain. Now we see where a problem can occur when attempting to swap the colors of two chains at the same time. If these two 2’s happen to be connected by an edge like the dashed edge shown above, if we perform the double reversal at the same time, this causes two vertices of the same color to share an edge, which isn’t allowed. We’ll revisit Kempe’s strategy for coloring a vertex with degree five in Chapter $25 .$

数学代写|图论作业代写Graph Theory代考| The shading of one section of the B-R

图论代考

数学代写|图论作业代写Graph Theory代考|The shading of one section of the B-R

由于 Kempe 链的每个部分都与同一颜色对的其他部分隔离,因此 Kempe 链的任何部分的颜色可以颠倒,但仍满足四色定理。这是一个重要且有用的概念。

上面 BR 链的一个部分的阴影说明了任何 Kempe 链的任何部分的颜色如何可以反转。请注意,我们反转了 BR 链的一个部分的颜色,但没有反转中心部分的颜色。同一条链的每个部分的颜色可以独立于该链的其他部分反转。

为什么 PG 有 Kempe 链?很容易理解为什么 MPG 有 Kempe 链。(由于 PG 是通过从 MPG 中去除边缘而形成的,并且由于适用于 MPG 的着色也适用于 PG,因此 PG 也具有 Kempe 链。)

  • MPG 是三角测量的。它由具有三个边和三个顶点的面组成。
  • 每个面的三个顶点必须是三种不同的颜色。
  • 每条边由两个相邻的三角形共享,形成一个四边形。
  • 每个四边形将有 3 或 4 种不同的颜色。如果与共享边相对的两个顶点恰好是相同的颜色,则它有 3 种颜色。
  • 对于每个四边形,四个顶点中的至少 1 个顶点和最多 3 个顶点具有任何颜色对的颜色。例如,具有 R、G、B 和G有 1 个顶点R−是和3个顶点乙−G,或者您可以将其视为 1 个顶点乙−是和3个顶点G−R,或者您可以将其视为 BR 的 2 个顶点和 GY 的 2 个顶点。在后一种情况下,2G’ 不是同一链的连续颜色。
  • 当您将更多三角形组合在一起(四边形仅组合两个)并考虑可能的颜色时,您将看到 Kempe 的部分

链子出现。我们将在 Chápter 中看到这些 Kémpé chảins 是如何出现的21.
也很容易看出一对颜色(如 RY)将如何与其对应颜色(BG)相邻:

  • 画一张R顶点和一个是由边连接的顶点。
  • 如果一个新顶点连接到这些顶点中的每一个,它必须是乙或者G.
  • 如果一个新顶点连接到 R 而不是是,可能是是,乙, 或者G.
  • 如果一个新的顶点连接到是但不是R,可能是R,乙, 或者G.
  • RY 链要么继续增长,要么被 B 包围,G.
  • 如果你关注 B 和 G,你会为它的链条得出类似的结论。
  • 如果一条链条完全被其对应物包围,则链条的新部分可能会出现在其对应物的另一侧。
    Kempe 证明了所有具有四阶的顶点(那些恰好连接到其他四个顶点的顶点)都是四色的 [Ref. 2]。例如,考虑下面的中心顶点。

数学代写|图论作业代写Graph Theory代考|In the previous figure

在上图中,顶点和是四度,因为它连接到其他四个顶点。Kempe 表明顶点 A、B、C 和 D 不能被强制为四种不同的颜色,这样顶点 E 总是可以被着色而不会违反四色定理,无论 MPG 的其余部分看起来如何上一页显示的部分。

  • A 和 C 或者是 AC Kempe 链的同一部分的一部分,或者它们各自位于 AC Kempe 链的不同部分。(如果一种和C例如,是红色和黄色的,则 AC 链是红黄色链。) – 如果一种和C每个位于 AC Kempe 链的不同部分,其中一个部分的颜色可以反转,这有效地重新着色 C 以匹配 A 的颜色。如果 A 和 C 是 AC Kempe 链的同一部分的一部分,则 B 和 D每个都必须位于 BD Kempe 链的不同部分,因为 AC Kempe 链将阻止任何 BD Kempe 链从 B 到达 D。(如果乙和D是蓝色和绿色,例如,那么一种BD Kempe 链是蓝绿色链。)在这种情况下,由于 B 和 D 分别位于 BD Kempe 链的不同部分,因此 BD Kempe 链的其中一个部分的颜色可以反转,这有效地重新着色 D 以匹配 B颜色。– 因此,可以使 C 与 A 具有相同的颜色或使 D 具有与 A 相同的颜色乙通过反转 Kempe 链的分离部分。

上面的图表是不完整的。这些图只显示了一个四阶顶点(顶点 E)、它的最近邻居(A、B、C 和 D),以及 AC Kempe 链的片段。整个图还将包含几个其他顶点(特别是与 B 或 D 相同的颜色)和足够多的边以成为 MPG。左图有 A 连接到C在 AC Kempe 链的单个部分中(意味着该链的顶点颜色与 A 和 C 相同)。左图显示此 AC Kempe 链阻止 B 连接到DBD Kempe 链条的一个部分。中间的数字在 AC Kempe 链的不同部分有 A 和 C。在这种情况下,B 可以通过 BD Kempe 链的单个部分连接到 D。但是,由于四阶顶点的 A 和 C 位于不同的部分,因此可以反转 C 链的颜色,以便在四阶顶点中,C 有效地重新着色以匹配 A 的颜色,如右图所示. 类似地,可以在左图中反转 D 的部分,以便有效地重新着色 D 以匹配 B 的颜色。

Kempe 还试图证明五阶顶点是可四色的,以证明四色定理 [Ref. 2],但 Heawood 在 1890 年证明他关于五次顶点的论点是不充分的 [Ref. 3]。让我们探讨一下如果我们尝试将我们对度数为四的顶点的推理应用于度数为五的顶点会发生什么。

数学代写|图论作业代写Graph Theory代考|The previous diagrams

前面的图表显示,当在交叉链图中一次执行两种颜色反转时,第一次颜色反转可能会破坏另一个链,从而允许第二次颜色反转影响 F 的一个邻居的颜色。当我们执行2−4反转将 B 从 2 更改为 4 ,这打破了 1-4 链。然后,当我们执行 2-3 反转以将 E 从 3 更改时,这导致 C 从 3 更改为 2 。结果,F 仍然连接到四种不同的颜色;这并没有像预期的那样反转为三个。
不幸的是,由于以下原因,您不能“同时”执行两个冲销。让我们尝试“同时”执行两个反转。在这个交叉链图中,当我们在 1-3 链的 B 侧交换 2 和 4 时,1-4 链中的一个 4 可能会变成 2,当我们在 E 侧交换 2 和 3 时1-4 链,1-3 链中的 3 之一可能会变为 2 。如下图所示:每条链中的一个 2 为灰色阴影。回想一下,这些数字是不完整的;他们专注于一个顶点 (F)、它的邻居 (A 到 E) 和 Kempe 链。其他顶点和边未显示。

请注意左侧的 3 之一如何变为 2。当我们反转时会发生这种情况C和和(最初是 3 和 2 )在 1-4 链的 E 侧。还要注意 4 个中的一个如何在右侧变为 2。当我们在 1-3 链之外反转 B 和 D(最初是 2 和 4)时,就会发生这种情况。现在我们看到了尝试同时交换两条链的颜色时会出现问题的地方。如果这两个 2 恰好通过上图虚线这样的边连接起来,如果我们同时进行双重反转,就会导致两个相同颜色的顶点共享一条边,这是不允许的。我们将在第 1 章重新讨论 Kempe 为五阶顶点着色的策略25.

数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|图论作业代写Graph Theory代考|MATH361

如果你也在 怎样代写图论Graph Theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

在数学中,图论是对图的研究,它是用来模拟对象之间成对关系的数学结构。这里,图由顶点(也称为节点或点)组成,这些顶点由边(也称为链接或线)连接。

statistics-lab™ 为您的留学生涯保驾护航 在代写图论Graph Theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写图论Graph Theory代写方面经验极为丰富,各种代写图论Graph Theory相关的作业也就用不着说。

我们提供的图论Graph Theory及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|图论作业代写Graph Theory代考|MATH361

数学代写|图论作业代写Graph Theory代考|Spanning Trees

In Chapter 1 we introduced the notion of a spanning subgraph and in Chapter 2 we described hamiltonian cycles as spanning cycles in a graph. Here we will discuss the tree version, where we want a spanning subgraph that is itself a tree.

Definition 3.2 A spanning tree is a spanning subgraph that is also a tree.

Recall that if an edge appears in a subgraph, then both endpoints must also be included in the subgraph. However, if a vertex appears in a subgraph, any number of its incident edges may be included.

The subgraph $H_1$ below is neither spanning nor a tree since some vertices from $G_1$ are missing and there is a multi-edge (and hence a circuit) between $d$ and $e$. The subgraph $\mathrm{H}_2$ below is not spanning since it does not contain vertex $a$, but it is a tree since no circuits or cycles exist. As above, these are merely examples and other non-spanning subgraphs exist.

Under what conditions will a graph have a spanning tree? Clearly the more difficult criteria is the tree, not spanning, since every graph contains a spanning subgraph. The trick then is to ensure the spanning subgraph is both connected and acyclic. If the original graph is not connected, then we have no hope of finding a spanning tree; however, if the graph has cycles, we only need to remove enough edges to ensure the result is connected yet no cycles remain. Thus every connected graph contains a spanning tree. How then can we find a best one? And how to we determine what is best?

数学代写|图论作业代写Graph Theory代考|Tree Properties

As finding a minimum spanning tree is (in graph theoretic terms) quick and easy, we focus our attention on the properties of trees and what a spanning tree can tell us about its graph. As is common in mathematics, the things with the simplest definitions provide an abundance of material to study in depth. Trees in particular provide ample opportunities to strengthen our proof writing skills, specifically induction and contradiction methods. We begin with some results that arise through counting techniques. Recall that a vertex of degree 1 is called a leaf.
Theorem 3.4 Every tree with at least two vertices has a leaf.
Proof: Suppose for a contradiction that there exists a tree $T$ with at least two vertices that does not contain a leaf. Since $T$ must be connected, we know no vertex has degree 0 , and therefore every vertex of $T$ must have degree at least 2. But then by Theorem 2.5 we know $T$ must have a cycle, which contradicts that $T$ is acyclic. Thus $T$ must contain a leaf.

Exercise 3.18 expands on this theorem to show that every tree (with at least two vertices) in fact has at least two leaves.

Beyond simply showing trees have a specific property, the result above allows us to do a remarkably useful thing-prune a tree! Recall that $G-v$ denotes removing the vertex from $G$ along with all edges incident to $v$. The proof of the following lemma appears in Exercise 3.16.

Lemma 3.5 Given a tree $T$ with a leaf $v$, the graph $T-v$ is still a tree.
Removing a leaf from a tree will always remove exactly one vertex and one edge, creating a tree with a smaller size. This technique naturally lends itself to induction arguments.
Theorem 3.6 A tree with $n$ vertices has $n-1$ edges for all $n \geq 1$.

数学代写|图论作业代写Graph Theory代考|MATH361

图论代考

数学代写|图论作业代写Graph Theory代考|Spanning Trees

在第 1 章中,我们介绍了生成子图的概念,在第 2 章中,我们将哈密顿环描述为图中的生成环。这里我们将讨论树版本,我们想要一个本身就是树的生成子图。

定义 3.2 生成树是生成子图,也是树。

回想一下,如果边出现在子图中,则两个端点也必须包含在子图中。但是,如果一个顶点出现在子图中,则可以包括任意数量的入射边。

子图H1下面既不是生成树也不是树,因为一些顶点来自G1缺少并且之间存在多边(因此存在电路)d和这是. 子图H2below 不跨越,因为它不包含顶点A,但它是一棵树,因为不存在电路或循环。如上所述,这些仅仅是示例并且存在其他非跨越子图。

在什么情况下图会有生成树?显然,更困难的标准是树,而不是生成树,因为每个图都包含一个生成子图。诀窍是确保生成的子图既是连通的又是非循环的。如果原图不连通,那么我们就没有希望找到生成树;然而,如果图有循环,我们只需要删除足够多的边以确保结果是连通的,但没有循环保留。因此,每个连通图都包含一个生成树。那我们怎么才能找到最好的呢?我们如何确定什么是最好的?

数学代写|图论作业代写Graph Theory代考|Tree Properties

由于找到最小生成树(在图论方面)既快速又容易,因此我们将注意力集中在树的属性以及生成树可以告诉我们有关其图形的哪些信息上。正如数学中常见的那样,具有最简单定义的事物提供了丰富的深入研究材料。树木尤其提供了充足的机会来加强我们的证明写作技巧,特别是归纳法和矛盾法。我们从通过计数技术产生的一些结果开始。回想一下,度数为 1 的顶点称为叶。
定理 3.4 每棵至少有两个顶点的树都有一片叶子。
证明:假设有一个矛盾存在一棵树吨至少有两个不包含叶子的顶点。自从吨必须连接,我们知道没有顶点的度数为 0 ,因此每个顶点吨度数必须至少为 2。但是根据定理 2.5 我们知道吨必须有一个循环,这与吨是非循环的。因此吨必须包含一片叶子。

习题 3.18 扩展了这个定理,证明每棵树(至少有两个顶点)实际上至少有两个叶子。

除了简单地显示树具有特定属性之外,上面的结果还允许我们做一件非常有用的事情——修剪一棵树!回想起那个G−在表示从中移除顶点G连同所有边缘事件在. 以下引理的证明出现在练习 3.16 中。

引理 3.5 给定一棵树吨用一片叶子在, 图吨−在仍然是一棵树。
从树上移除一片叶子将始终恰好移除一个顶点和一条边,从而创建一棵尺寸更小的树。这种技术自然适用于归纳论证。
定理 3.6 一棵树n顶点有n−1所有人的优势n≥1.

此图片的alt属性为空;文件名为statistics-lab-1024x443.jpg
数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。



广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。



术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。



有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。



回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。



R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

The graphs above are incomplete. These figures only show a vertex with degree four (vertex E), its nearest neighbors (A, B, C, and D), and segments of A-C Kempe chains. The entire graphs would also contain several other vertices (especially, more colored the same as B or D) and enough edges to be MPG’s. The left figure has A connected to $C$ in a single section of an A-C Kempe chain (meaning that the vertices of this chain are colored the same as A and C). The left figure shows that this A-C Kempe chain prevents B from connecting to $\mathrm{D}$ with a single section of a B-D Kempe chain. The middle figure has A and C in separate sections of A-C Kempe chains. In this case, B could connect to D with a single section of a B-D Kempe chain. However, since the A and C of the vertex with degree four lie on separate sections, the color of C’s chain can be reversed so that in the vertex with degree four, C is effectively recolored to match A’s color, as shown in the right figure. Similarly, D’s section could be reversed in the left figure so that D is effectively recolored to match B’s color.

Kempe also attempted to demonstrate that vertices with degree five are fourcolorable in his attempt to prove the four-color theorem [Ref. 2], but his argument for vertices with degree five was shown by Heawood in 1890 to be insufficient [Ref. 3]. Let’s explore what happens if we attempt to apply our reasoning for vertices with degree four to a vertex with degree five.

数学代写|图论作业代写Graph Theory代考|The previous diagrams

The previous diagrams show that when the two color reversals are performed one at a time in the crossed-chain graph, the first color reversal may break the other chain, allowing the second color reversal to affect the colors of one of F’s neighbors. When we performed the $2-4$ reversal to change B from 2 to 4 , this broke the 1-4 chain. When we then performed the 2-3 reversal to change E from 3, this caused C to change from 3 to 2 . As a result, F remains connected to four different colors; this wasn’t reversed to three as expected.
Unfortunately, you can’t perform both reversals “at the same time” for the following reason. Let’s attempt to perform both reversals “at the same time.” In this crossed-chain diagram, when we swap 2 and 4 on B’s side of the 1-3 chain, one of the 4’s in the 1-4 chain may change into a 2, and when we swap 2 and 3 on E’s side of the 1-4 chain, one of the 3’s in the 1-3 chain may change into a 2 . This is shown in the following figure: one 2 in each chain is shaded gray. Recall that these figures are incomplete; they focus on one vertex (F), its neighbors (A thru E), and Kempe chains. Other vertices and edges are not shown.

Note how one of the 3’s changed into 2 on the left. This can happen when we reverse $\mathrm{C}$ and $\mathrm{E}$ (which were originally 3 and 2 ) on E’s side of the 1-4 chain. Note also how one of the 4’s changed into 2 on the right. This can happen when we reverse B and D (which were originally 2 and 4) outside of the 1-3 chain. Now we see where a problem can occur when attempting to swap the colors of two chains at the same time. If these two 2’s happen to be connected by an edge like the dashed edge shown above, if we perform the double reversal at the same time, this causes two vertices of the same color to share an edge, which isn’t allowed. We’ll revisit Kempe’s strategy for coloring a vertex with degree five in Chapter $25 .$

数学代写|图论作业代写Graph Theory代考| The shading of one section of the B-R

图论代考

数学代写|图论作业代写Graph Theory代考|The shading of one section of the B-R

由于 Kempe 链的每个部分都与同一颜色对的其他部分隔离,因此 Kempe 链的任何部分的颜色可以颠倒,但仍满足四色定理。这是一个重要且有用的概念。

上面 BR 链的一个部分的阴影说明了任何 Kempe 链的任何部分的颜色如何可以反转。请注意,我们反转了 BR 链的一个部分的颜色,但没有反转中心部分的颜色。同一条链的每个部分的颜色可以独立于该链的其他部分反转。

为什么 PG 有 Kempe 链?很容易理解为什么 MPG 有 Kempe 链。(由于 PG 是通过从 MPG 中去除边缘而形成的,并且由于适用于 MPG 的着色也适用于 PG,因此 PG 也具有 Kempe 链。)

  • MPG 是三角测量的。它由具有三个边和三个顶点的面组成。
  • 每个面的三个顶点必须是三种不同的颜色。
  • 每条边由两个相邻的三角形共享,形成一个四边形。
  • 每个四边形将有 3 或 4 种不同的颜色。如果与共享边相对的两个顶点恰好是相同的颜色,则它有 3 种颜色。
  • 对于每个四边形,四个顶点中的至少 1 个顶点和最多 3 个顶点具有任何颜色对的颜色。例如,具有 R、G、B 和G有 1 个顶点R−是和3个顶点乙−G,或者您可以将其视为 1 个顶点乙−是和3个顶点G−R,或者您可以将其视为 BR 的 2 个顶点和 GY 的 2 个顶点。在后一种情况下,2G’ 不是同一链的连续颜色。
  • 当您将更多三角形组合在一起(四边形仅组合两个)并考虑可能的颜色时,您将看到 Kempe 的部分

链子出现。我们将在 Chápter 中看到这些 Kémpé chảins 是如何出现的21.
也很容易看出一对颜色(如 RY)将如何与其对应颜色(BG)相邻:

  • 画一张R顶点和一个是由边连接的顶点。
  • 如果一个新顶点连接到这些顶点中的每一个,它必须是乙或者G.
  • 如果一个新顶点连接到 R 而不是是,可能是是,乙, 或者G.
  • 如果一个新的顶点连接到是但不是R,可能是R,乙, 或者G.
  • RY 链要么继续增长,要么被 B 包围,G.
  • 如果你关注 B 和 G,你会为它的链条得出类似的结论。
  • 如果一条链条完全被其对应物包围,则链条的新部分可能会出现在其对应物的另一侧。
    Kempe 证明了所有具有四阶的顶点(那些恰好连接到其他四个顶点的顶点)都是四色的 [Ref. 2]。例如,考虑下面的中心顶点。

数学代写|图论作业代写Graph Theory代考|In the previous figure

在上图中,顶点和是四度,因为它连接到其他四个顶点。Kempe 表明顶点 A、B、C 和 D 不能被强制为四种不同的颜色,这样顶点 E 总是可以被着色而不会违反四色定理,无论 MPG 的其余部分看起来如何上一页显示的部分。

  • A 和 C 或者是 AC Kempe 链的同一部分的一部分,或者它们各自位于 AC Kempe 链的不同部分。(如果一种和C例如,是红色和黄色的,则 AC 链是红黄色链。) – 如果一种和C每个位于 AC Kempe 链的不同部分,其中一个部分的颜色可以反转,这有效地重新着色 C 以匹配 A 的颜色。如果 A 和 C 是 AC Kempe 链的同一部分的一部分,则 B 和 D每个都必须位于 BD Kempe 链的不同部分,因为 AC Kempe 链将阻止任何 BD Kempe 链从 B 到达 D。(如果乙和D是蓝色和绿色,例如,那么一种BD Kempe 链是蓝绿色链。)在这种情况下,由于 B 和 D 分别位于 BD Kempe 链的不同部分,因此 BD Kempe 链的其中一个部分的颜色可以反转,这有效地重新着色 D 以匹配 B颜色。– 因此,可以使 C 与 A 具有相同的颜色或使 D 具有与 A 相同的颜色乙通过反转 Kempe 链的分离部分。

上面的图表是不完整的。这些图只显示了一个四阶顶点(顶点 E)、它的最近邻居(A、B、C 和 D),以及 AC Kempe 链的片段。整个图还将包含几个其他顶点(特别是与 B 或 D 相同的颜色)和足够多的边以成为 MPG。左图有 A 连接到C在 AC Kempe 链的单个部分中(意味着该链的顶点颜色与 A 和 C 相同)。左图显示此 AC Kempe 链阻止 B 连接到DBD Kempe 链条的一个部分。中间的数字在 AC Kempe 链的不同部分有 A 和 C。在这种情况下,B 可以通过 BD Kempe 链的单个部分连接到 D。但是,由于四阶顶点的 A 和 C 位于不同的部分,因此可以反转 C 链的颜色,以便在四阶顶点中,C 有效地重新着色以匹配 A 的颜色,如右图所示. 类似地,可以在左图中反转 D 的部分,以便有效地重新着色 D 以匹配 B 的颜色。

Kempe 还试图证明五阶顶点是可四色的,以证明四色定理 [Ref. 2],但 Heawood 在 1890 年证明他关于五次顶点的论点是不充分的 [Ref. 3]。让我们探讨一下如果我们尝试将我们对度数为四的顶点的推理应用于度数为五的顶点会发生什么。

数学代写|图论作业代写Graph Theory代考|The previous diagrams

前面的图表显示,当在交叉链图中一次执行两种颜色反转时,第一次颜色反转可能会破坏另一个链,从而允许第二次颜色反转影响 F 的一个邻居的颜色。当我们执行2−4反转将 B 从 2 更改为 4 ,这打破了 1-4 链。然后,当我们执行 2-3 反转以将 E 从 3 更改时,这导致 C 从 3 更改为 2 。结果,F 仍然连接到四种不同的颜色;这并没有像预期的那样反转为三个。
不幸的是,由于以下原因,您不能“同时”执行两个冲销。让我们尝试“同时”执行两个反转。在这个交叉链图中,当我们在 1-3 链的 B 侧交换 2 和 4 时,1-4 链中的一个 4 可能会变成 2,当我们在 E 侧交换 2 和 3 时1-4 链,1-3 链中的 3 之一可能会变为 2 。如下图所示:每条链中的一个 2 为灰色阴影。回想一下,这些数字是不完整的;他们专注于一个顶点 (F)、它的邻居 (A 到 E) 和 Kempe 链。其他顶点和边未显示。

请注意左侧的 3 之一如何变为 2。当我们反转时会发生这种情况C和和(最初是 3 和 2 )在 1-4 链的 E 侧。还要注意 4 个中的一个如何在右侧变为 2。当我们在 1-3 链之外反转 B 和 D(最初是 2 和 4)时,就会发生这种情况。现在我们看到了尝试同时交换两条链的颜色时会出现问题的地方。如果这两个 2 恰好通过上图虚线这样的边连接起来,如果我们同时进行双重反转,就会导致两个相同颜色的顶点共享一条边,这是不允许的。我们将在第 1 章重新讨论 Kempe 为五阶顶点着色的策略25.

数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|图论作业代写Graph Theory代考|MSE1603

如果你也在 怎样代写图论Graph Theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

在数学中,图论是对图的研究,它是用来模拟对象之间成对关系的数学结构。这里,图由顶点(也称为节点或点)组成,这些顶点由边(也称为链接或线)连接。

statistics-lab™ 为您的留学生涯保驾护航 在代写图论Graph Theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写图论Graph Theory代写方面经验极为丰富,各种代写图论Graph Theory相关的作业也就用不着说。

我们提供的图论Graph Theory及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|图论作业代写Graph Theory代考|MSE1603

数学代写|图论作业代写Graph Theory代考|Dijkstra’s Algorithm

Numerous versions of Dijkstra’s Algorithm exist, though two basic descriptions adhere to Dijkstra’s original design (see [22]). In one, a shortest path from your chosen starting and ending vertex is found. Though useful in its own right, we will study the more general version that finds the shortest path from a specific vertex to all other vertices in the graph (since if we only cared for the shortest path from $a$ to $b$, we could halt the algorithm once $b$ is reached).
Dijkstra’s Algorithm is a bit more complex than the algorithms we have studied so far. Each vertex is given a two-part label $L(v)=(x,(w(v))$. The first portion of the label is the name of the vertex used to travel to $v$. The second part is the weight of the path that was used to get to $v$ from the designated starting vertex. At each stage of the algorithm, we will consider a set of free vertices, denoted by an $F$ below. Free vertices are the neighbors of previously visited vertices that are themselves not yet visited.

Perhaps the most complex portion of this algorithm is the labeling of the vertices and how they are updated with iterations of Step (2) and Step (3). In the initial step of Dijkstra’s Algorithm, all vertices have no entry in the first part of the label and the second part is 0 for the starting vertex and $\infty$ for all others. Note that the set $F$ of free vertices consists of all neighbors of highlighted vertices and all are under consideration for becoming the next highlighted vertex. It is important that we do not only consider the neighbors of the last vertex highlighted, as a path from a previously chosen vertex may in fact lead to the shortest path. The example below provides a detailed explanation in the updating of the vertex labels and how to use them to find a shortest path.

数学代写|图论作业代写Graph Theory代考|Walks Using Matrices

Recall in Section 1.4 we saw how to model a graph using an adjacency matrix. Matrix representations of graphs are useful when using a computer program to investigate certain features or processes on a graph. Another use for the adjacency matrix is to count the number of walks between two vertices within a graph. For review of matrix operations, see Appendix C.

Consider the graph shown below with its adjacency matrix $A$ on the right.

If we want a walk of length 1 , we are in essence asking for an edge between two vertices. So to count the number of walks of length 1 from $v_1$ to $v_3$, we need only to count the number of edges (namely 2) between these vertices. What if we want the walks of length 2 ? By inspection, we can see there is only one, which is
$$
v_1 \underset{e_3}{\rightarrow} v_2 \underset{e_4}{\rightarrow} v_3
$$
Now consider the walks from $v_1$ to $v_2$. There is only one walk of length 1 , and yet three of length 2 :
$$
\begin{aligned}
& v_1 \underset{e_3}{\rightarrow} v_2 \underset{e_5}{\rightarrow} v_2 \
& v_1 \underset{e_1}{\rightarrow} v_3 \underset{e_4}{\rightarrow} v_2 \
& v_1 \underset{e_2}{\rightarrow} v_3 \underset{e_4}{\rightarrow} v_2
\end{aligned}
$$
How could we count this? If we know how many walks there are from $v_1$ to $v_2$ (1) and then the number from $v_2$ to itself (1), we can get one type of walk from $v_1$ to $v_2$. Also, we could count the number of walks from $v_1$ to $v_3(2)$ and then the number of walks from $v_3$ to $v_2(1)$. In total we have $1 * 1+2 * 1=3$ walks from $v_1$ to $v_2$. Note that we did not include any walks of the form $v_1 v_1 v_2$ since there are no edges from $v_1$ to itself.
Viewing this as a multiplication of vectors, we have
$$
\left[\begin{array}{lll}
0 & 1 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
1 \
1 \
1
\end{array}\right]=0 * 1+1 * 1+2 * 1=3
$$
If we do this for the entire adjacency matrix, we have
$$
A^2=\left[\begin{array}{ccc}
5 & 3 & 1 \
3 & 3 & 3 \
1 & 3 & 5
\end{array}\right]
$$
Thus the entry $a_{i j}$ in $A^2$ represents the number of walks between vertex $v_i$ and $v_j$ of length 2 . If we multiplied this new matrix by $A$ again, we would simply be counting the number of ways to get from $v_i$ to $v_j$ using 3 edges. The theorem below summarizes this for walks of any length $n$.

数学代写|图论作业代写Graph Theory代考|MSE1603

图论代考

数学代写|图论作业代写Graph Theory代考|Dijkstra’s Algorithm

存在许多版本的 Dijkstra 算法,但有两个基本描述遵循 Dijkstra 的原始设计(参见 [22])。其中之一是找到从您选择的起点和终点开始的最短路径。虽然它本身很有用,但我们将研究更通用的版本,即找到从特定顶点到图中所有其他顶点的最短路径(因为如果我们只关心从A到b,我们可以暂停算法一次b到达了)。
Dijkstra 算法比我们目前研究的算​​法要复杂一些。每个顶点都有一个两部分标签大号(在)=(X,(在(在)). 标签的第一部分是用于前往的顶点的名称在. 第二部分是用于到达的路径的权重在从指定的起始顶点。在算法的每个阶段,我们都会考虑一组自由顶点,用F以下。自由顶点是先前访问过的顶点的邻居,这些顶点本身还没有被访问过。

也许这个算法最复杂的部分是顶点的标记以及它们如何通过步骤 (2) 和步骤 (3) 的迭代进行更新。在 Dijkstra 算法的初始步骤中,所有顶点在标签的第一部分都没有条目,第二部分对于起始顶点为 0 并且∞对于所有其他人。请注意,集合F自由顶点的数量由高亮顶点的所有邻居组成,并且都在考虑成为下一个高亮顶点。重要的是,我们不仅要考虑突出显示的最后一个顶点的邻居,因为从先前选择的顶点开始的路径实际上可能会导致最短路径。下面的示例详细说明了顶点标签的更新以及如何使用它们来查找最短路径。

数学代写|图论作业代写Graph Theory代考|Walks Using Matrices

回想一下在 1.4 节中我们看到了如何使用邻接矩阵对图建模。当使用计算机程序研究图形上的 某些特征或过程时,图形的矩阵表示很有用。邻接矩阵的另一个用途是计算图中两个顶点之间 的行走次数。有关矩阵运算的回顾,请参阅附录 $C$ 。
考虑下图及其邻接矩阵 $A$ 在右侧。
如果我们想要长度为 1 的游走,我们实际上是在请求两个顶点之间的边。所以要计算长度为 1 的步行次数 $v_1$ 到 $v_3$ ,我们只需要计算这些顶点之间的边数 (即 2) 。如果我们想要长度为 2 的 游走怎么办? 通过检查,我们可以看到只有一个,即
$$
v_1 \underset{e_3}{\rightarrow} v_2 \underset{e_4}{\rightarrow} v_3
$$
现在考虑从 $v_1$ 到 $v_2$. 只有一段长度为 1 的步行,还有三段长度为 2 的步行:
$$
v_1 \underset{e_3}{\rightarrow} v_2 \underset{e_5}{\rightarrow} v_2 \quad v_1 \underset{e_1}{\rightarrow} v_3 \underset{e_4}{\rightarrow} v_2 v_1 \underset{e_2}{\rightarrow} v_3 \underset{e_4}{\rightarrow} v_2
$$
我们怎么能算这个? 如果我们知道有多少步从 $v_1$ 到 $v_2(1)$ 然后是来自的号码 $v_2$ 到它自己 (1),我 们可以从 $v_1$ 到 $v_2$. 此外,我们可以计算从 $v_1$ 到 $v_3(2)$ 然后是步行的次数 $v_3$ 到 $v_2(1)$. 我们总共有 $1 * 1+2 * 1=3$ 从 $v_1$ 到 $v_2$. 请注意,我们没有包括任何形式的行走 $v_1 v_1 v_2$ 因为没有边缘 $v_1$ 对自己。
将其视为向量的乘法,我们有
$$
\left[\begin{array}{lll}
0 & 1 & 2
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]=0 * 1+1 * 1+2 * 1=3
$$
如果我们对整个邻接矩阵这样做,我们有
因此进入 $a_{i j}$ 在 $A^2$ 表示顶点之间的行走次数 $v_i$ 和 $v_j$ 长度为 2 。如果我们将这个新矩阵乘以 $A$ 同 样,我们只需计算从 $v_i$ 到 $v_j$ 使用 3 个边。下面的定理总结了任何长度的步行 $n$.

此图片的alt属性为空;文件名为statistics-lab-1024x443.jpg
数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。



广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。



术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。



有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。



回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。



R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

The graphs above are incomplete. These figures only show a vertex with degree four (vertex E), its nearest neighbors (A, B, C, and D), and segments of A-C Kempe chains. The entire graphs would also contain several other vertices (especially, more colored the same as B or D) and enough edges to be MPG’s. The left figure has A connected to $C$ in a single section of an A-C Kempe chain (meaning that the vertices of this chain are colored the same as A and C). The left figure shows that this A-C Kempe chain prevents B from connecting to $\mathrm{D}$ with a single section of a B-D Kempe chain. The middle figure has A and C in separate sections of A-C Kempe chains. In this case, B could connect to D with a single section of a B-D Kempe chain. However, since the A and C of the vertex with degree four lie on separate sections, the color of C’s chain can be reversed so that in the vertex with degree four, C is effectively recolored to match A’s color, as shown in the right figure. Similarly, D’s section could be reversed in the left figure so that D is effectively recolored to match B’s color.

Kempe also attempted to demonstrate that vertices with degree five are fourcolorable in his attempt to prove the four-color theorem [Ref. 2], but his argument for vertices with degree five was shown by Heawood in 1890 to be insufficient [Ref. 3]. Let’s explore what happens if we attempt to apply our reasoning for vertices with degree four to a vertex with degree five.

数学代写|图论作业代写Graph Theory代考|The previous diagrams

The previous diagrams show that when the two color reversals are performed one at a time in the crossed-chain graph, the first color reversal may break the other chain, allowing the second color reversal to affect the colors of one of F’s neighbors. When we performed the $2-4$ reversal to change B from 2 to 4 , this broke the 1-4 chain. When we then performed the 2-3 reversal to change E from 3, this caused C to change from 3 to 2 . As a result, F remains connected to four different colors; this wasn’t reversed to three as expected.
Unfortunately, you can’t perform both reversals “at the same time” for the following reason. Let’s attempt to perform both reversals “at the same time.” In this crossed-chain diagram, when we swap 2 and 4 on B’s side of the 1-3 chain, one of the 4’s in the 1-4 chain may change into a 2, and when we swap 2 and 3 on E’s side of the 1-4 chain, one of the 3’s in the 1-3 chain may change into a 2 . This is shown in the following figure: one 2 in each chain is shaded gray. Recall that these figures are incomplete; they focus on one vertex (F), its neighbors (A thru E), and Kempe chains. Other vertices and edges are not shown.

Note how one of the 3’s changed into 2 on the left. This can happen when we reverse $\mathrm{C}$ and $\mathrm{E}$ (which were originally 3 and 2 ) on E’s side of the 1-4 chain. Note also how one of the 4’s changed into 2 on the right. This can happen when we reverse B and D (which were originally 2 and 4) outside of the 1-3 chain. Now we see where a problem can occur when attempting to swap the colors of two chains at the same time. If these two 2’s happen to be connected by an edge like the dashed edge shown above, if we perform the double reversal at the same time, this causes two vertices of the same color to share an edge, which isn’t allowed. We’ll revisit Kempe’s strategy for coloring a vertex with degree five in Chapter $25 .$

数学代写|图论作业代写Graph Theory代考| The shading of one section of the B-R

图论代考

数学代写|图论作业代写Graph Theory代考|The shading of one section of the B-R

由于 Kempe 链的每个部分都与同一颜色对的其他部分隔离,因此 Kempe 链的任何部分的颜色可以颠倒,但仍满足四色定理。这是一个重要且有用的概念。

上面 BR 链的一个部分的阴影说明了任何 Kempe 链的任何部分的颜色如何可以反转。请注意,我们反转了 BR 链的一个部分的颜色,但没有反转中心部分的颜色。同一条链的每个部分的颜色可以独立于该链的其他部分反转。

为什么 PG 有 Kempe 链?很容易理解为什么 MPG 有 Kempe 链。(由于 PG 是通过从 MPG 中去除边缘而形成的,并且由于适用于 MPG 的着色也适用于 PG,因此 PG 也具有 Kempe 链。)

  • MPG 是三角测量的。它由具有三个边和三个顶点的面组成。
  • 每个面的三个顶点必须是三种不同的颜色。
  • 每条边由两个相邻的三角形共享,形成一个四边形。
  • 每个四边形将有 3 或 4 种不同的颜色。如果与共享边相对的两个顶点恰好是相同的颜色,则它有 3 种颜色。
  • 对于每个四边形,四个顶点中的至少 1 个顶点和最多 3 个顶点具有任何颜色对的颜色。例如,具有 R、G、B 和G有 1 个顶点R−是和3个顶点乙−G,或者您可以将其视为 1 个顶点乙−是和3个顶点G−R,或者您可以将其视为 BR 的 2 个顶点和 GY 的 2 个顶点。在后一种情况下,2G’ 不是同一链的连续颜色。
  • 当您将更多三角形组合在一起(四边形仅组合两个)并考虑可能的颜色时,您将看到 Kempe 的部分

链子出现。我们将在 Chápter 中看到这些 Kémpé chảins 是如何出现的21.
也很容易看出一对颜色(如 RY)将如何与其对应颜色(BG)相邻:

  • 画一张R顶点和一个是由边连接的顶点。
  • 如果一个新顶点连接到这些顶点中的每一个,它必须是乙或者G.
  • 如果一个新顶点连接到 R 而不是是,可能是是,乙, 或者G.
  • 如果一个新的顶点连接到是但不是R,可能是R,乙, 或者G.
  • RY 链要么继续增长,要么被 B 包围,G.
  • 如果你关注 B 和 G,你会为它的链条得出类似的结论。
  • 如果一条链条完全被其对应物包围,则链条的新部分可能会出现在其对应物的另一侧。
    Kempe 证明了所有具有四阶的顶点(那些恰好连接到其他四个顶点的顶点)都是四色的 [Ref. 2]。例如,考虑下面的中心顶点。

数学代写|图论作业代写Graph Theory代考|In the previous figure

在上图中,顶点和是四度,因为它连接到其他四个顶点。Kempe 表明顶点 A、B、C 和 D 不能被强制为四种不同的颜色,这样顶点 E 总是可以被着色而不会违反四色定理,无论 MPG 的其余部分看起来如何上一页显示的部分。

  • A 和 C 或者是 AC Kempe 链的同一部分的一部分,或者它们各自位于 AC Kempe 链的不同部分。(如果一种和C例如,是红色和黄色的,则 AC 链是红黄色链。) – 如果一种和C每个位于 AC Kempe 链的不同部分,其中一个部分的颜色可以反转,这有效地重新着色 C 以匹配 A 的颜色。如果 A 和 C 是 AC Kempe 链的同一部分的一部分,则 B 和 D每个都必须位于 BD Kempe 链的不同部分,因为 AC Kempe 链将阻止任何 BD Kempe 链从 B 到达 D。(如果乙和D是蓝色和绿色,例如,那么一种BD Kempe 链是蓝绿色链。)在这种情况下,由于 B 和 D 分别位于 BD Kempe 链的不同部分,因此 BD Kempe 链的其中一个部分的颜色可以反转,这有效地重新着色 D 以匹配 B颜色。– 因此,可以使 C 与 A 具有相同的颜色或使 D 具有与 A 相同的颜色乙通过反转 Kempe 链的分离部分。

上面的图表是不完整的。这些图只显示了一个四阶顶点(顶点 E)、它的最近邻居(A、B、C 和 D),以及 AC Kempe 链的片段。整个图还将包含几个其他顶点(特别是与 B 或 D 相同的颜色)和足够多的边以成为 MPG。左图有 A 连接到C在 AC Kempe 链的单个部分中(意味着该链的顶点颜色与 A 和 C 相同)。左图显示此 AC Kempe 链阻止 B 连接到DBD Kempe 链条的一个部分。中间的数字在 AC Kempe 链的不同部分有 A 和 C。在这种情况下,B 可以通过 BD Kempe 链的单个部分连接到 D。但是,由于四阶顶点的 A 和 C 位于不同的部分,因此可以反转 C 链的颜色,以便在四阶顶点中,C 有效地重新着色以匹配 A 的颜色,如右图所示. 类似地,可以在左图中反转 D 的部分,以便有效地重新着色 D 以匹配 B 的颜色。

Kempe 还试图证明五阶顶点是可四色的,以证明四色定理 [Ref. 2],但 Heawood 在 1890 年证明他关于五次顶点的论点是不充分的 [Ref. 3]。让我们探讨一下如果我们尝试将我们对度数为四的顶点的推理应用于度数为五的顶点会发生什么。

数学代写|图论作业代写Graph Theory代考|The previous diagrams

前面的图表显示,当在交叉链图中一次执行两种颜色反转时,第一次颜色反转可能会破坏另一个链,从而允许第二次颜色反转影响 F 的一个邻居的颜色。当我们执行2−4反转将 B 从 2 更改为 4 ,这打破了 1-4 链。然后,当我们执行 2-3 反转以将 E 从 3 更改时,这导致 C 从 3 更改为 2 。结果,F 仍然连接到四种不同的颜色;这并没有像预期的那样反转为三个。
不幸的是,由于以下原因,您不能“同时”执行两个冲销。让我们尝试“同时”执行两个反转。在这个交叉链图中,当我们在 1-3 链的 B 侧交换 2 和 4 时,1-4 链中的一个 4 可能会变成 2,当我们在 E 侧交换 2 和 3 时1-4 链,1-3 链中的 3 之一可能会变为 2 。如下图所示:每条链中的一个 2 为灰色阴影。回想一下,这些数字是不完整的;他们专注于一个顶点 (F)、它的邻居 (A 到 E) 和 Kempe 链。其他顶点和边未显示。

请注意左侧的 3 之一如何变为 2。当我们反转时会发生这种情况C和和(最初是 3 和 2 )在 1-4 链的 E 侧。还要注意 4 个中的一个如何在右侧变为 2。当我们在 1-3 链之外反转 B 和 D(最初是 2 和 4)时,就会发生这种情况。现在我们看到了尝试同时交换两条链的颜色时会出现问题的地方。如果这两个 2 恰好通过上图虚线这样的边连接起来,如果我们同时进行双重反转,就会导致两个相同颜色的顶点共享一条边,这是不允许的。我们将在第 1 章重新讨论 Kempe 为五阶顶点着色的策略25.

数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|图论作业代写Graph Theory代考|MSE1603

如果你也在 怎样代写图论Graph Theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

在数学中,图论是对图的研究,它是用来模拟对象之间成对关系的数学结构。这里,图由顶点(也称为节点或点)组成,这些顶点由边(也称为链接或线)连接。

statistics-lab™ 为您的留学生涯保驾护航 在代写图论Graph Theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写图论Graph Theory代写方面经验极为丰富,各种代写图论Graph Theory相关的作业也就用不着说。

我们提供的图论Graph Theory及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|图论作业代写Graph Theory代考|MSE1603

数学代写|图论作业代写Graph Theory代考|Weighted Graphs

As seen above, digraphs are used to model asymmetric relationships between discrete objects. We now consider a different edge relationship, where instead of direction we are concerned with quantity. These graphs are called weighted graphs.

A solution to his question will be revisited in Section $2.2$ on hamiltonian cycles; for now, we will end our discussion with the formal definition of a weighted graph and another example modeled by a weighted graph.

Definition $1.8$ A weighted graph $G=(V, E, w)$ is a graph where each of the edges has a real number associated with it. This number is referred to as the weight and denoted $w(x y)$ for the edge $x y$.

Note that a weighted graph can also refer to a graph in which each of the vertices is assigned a weight, and denoted $w(v)$ for a vertex $v$. In the next few chapters, we will focus on graphs in which the edges are weighted; the vertex version will be addressed in Chapter 6 . Also, the weight associated with an edge can represent more than just distance. For example, we may be interested in time, cost or some other measure related to the connection between two discrete objects. Choose the appropriate measure based upon the scenario in question.

Example 1.8 Adam comes to you with a new game. He flips a coin and you roll a die. If he gets heads and you roll an even number, you win $\$ 2$; if he gets heads and you roll an odd number, you pay him $\$ 3$. If he gets tails and you roll either 1 or 4 , you win $\$ 5$; if he gets tails and any of $2,3,5$, or 6 is rolled, you pay him $\$ 2$. What is the probability you win $\$ 5$ ? What is the probability you win any amount of money?
Solution: A probability tree is a graph with the vertices representing possible outcomes of each part of the experiment (here a coin and dice game) and the edges are labeled with the probability that the outcome occurred. To find the probability of any final outcome, multiply along the path from the initial vertex to the ending result. The tree below has the edges labeled and the final probabilities calculated for Adam’s game.

数学代写|图论作业代写Graph Theory代考|Complete Graphs

The weighted graph in Example $1.7$ and $G_3$ from page 2 have the same underlying structure. If we remove the weights of edges and the vertex names, we would not be able to distinguish between the two graphs since in both graphs every pair of distinct vertices is joined by an edge. These graphs are called complete graphs.

Definition $1.9$ A simple graph $G$ is complete if every pair of distinct vertices is adjacent. The complete graph on $n$ vertices is denoted $K_n$.
The first six complete graphs are shown on the next page.

Complete graphs are special for a number of reasons. In particular, if you think of an edge as describing a relationship between two objects, then a complete graph represents a scenario where every pair of vertices satisfies this relationship. Other useful properties of complete graphs are given below.
Properties of $K_n$
(1) Each vertex in $K_n$ has degree $n-1$.
(2) $K_n$ has $\frac{n(n-1)}{2}$ edges.
(3) $K_n$ contains the most edges out of all simple graphs on $n$ vertices.
Complete graphs will periodically appear throughout the book. In many cases, we will be looking for the largest complete graph that appears as a subgraph. This is called the clique-size of a graph.

Definition 1.10 The clique-size of a graph, $\omega(G)$, is the largest integer $n$ such that $K_n$ is a subgraph of $G$ but $K_{n+1}$ is not.Knowing the clique-size of a graph is often a tool for determining other useful properties about a graph, such as the chromatic number (see Chapter 6) or if it is planar (see Chapter 7).

数学代写|图论作业代写Graph Theory代考|MSE1603

图论代考

数学代写|图论作业代写Graph Theory代考|Weighted Graphs

如上所示,有向图用于模拟离散对象之间的不对称关系。我们现在考虑一种不同的边缘关系,我们关心 的不是方向,而是数量。这些图称为加权图。
他的问题的解决方案将在第 $2.2$ 在哈密顿循环上;现在,我们将以加权图的正式定义和另一个由加权图建 模的示例结束我们的讨论。
定义 $1.8$ 加权图 $G=(V, E, w)$ 是一个图,其中每条边都有一个与之关联的实数。这个数字被称为权重 并表示为 $w(x y)$ 对于边缘 $x y$.
请注意,加权图也可以指其中每个顶点都分配有权重的图,并表示为 $w(v)$ 对于一个顶点 $v$. 在接下来的几 章中,我们将重点关注边被加权的图;顶点版本将在第 6 章中介绍。此外,与边关联的权重不仅仅代表 距离。例如,我们可能对时间、成本或与两个离散对象之间的连接相关的其他度量感兴趣。根据所讨论 的场景选择适当的措施。
示例 $1.8$ 亚当带着一个新游戏来找你。他抛硬币,你掷骰子。如果他正面朝上,而你掷出偶数,你就赢 了 $\$ 2$; 如果他正面朝上而你掷出奇数,你付钱给他 $\$ 3$. 如果他得到反面而你掷出 1 或 4 ,你就赢了 $\$ 5$; 如 果他得到尾巴和任何 $2,3,5$ ,或者掷出 6 ,你付给他 $\$ 2$. 你赢的概率是多少 $\$ 5$ ? 你赢得任何金额的概率 是多少?
解决方案:概率树是一个图,其顶点代表实验每个部分的可能结果(这里是硬币和骰子游戏),边标有 结果发生的概率。要找到任何最终结果的概率,请沿着从初始顶点到最终结果的路径相乘。下面的树有 标记的边和为亚当的游戏计算的最终概率。

数学代写|图论作业代写Graph Theory代考|Complete Graphs

示例中的加权图 $1.7$ 和 $G_3$ 第 2 页的具有相同的底层结构。如果我们删除边的权重和顶点名称,我们将无 法区分这两个图,因为在两个图中,每对不同的顶点都由一条边连接。这些图称为完全图。
定义 $1.9$ 一个简单的图表 $G$ 如果每对不同的顶点都相邻,则它是完整的。完整的图在 $n$ 顶点表示 $K_n$. 前六个完整的图表显示在下一页。
出于多种原因,完整的图表很特别。特别地,如果你把边看作是描述两个对象之间的关系,那么完全图 就代表了每对顶点都满足这种关系的场景。下面给出了完全图的其他有用属性。 属性 $K_n$
(1) 中的每个顶点 $K_n$ 有学位 $n-1$.
(2) $K_n$ 有 $\frac{n(n-1)}{2}$ 边缘。
(3) $K_n$ 包含所有简单图形中最多的边 $n$ 顶点。
完整的图表将定期出现在整本书中。在许多情况下,我们将寻找以子图形式出现的最大完整图。这称为 图的团大小。
定义 $1.10$ 图的集团规模, $\omega(G)$ , 是最大的整数 $n$ 这样 $K_n$ 是一个子图 $G$ 但 $K_{n+1}$ 不是。知道图的团大小 通常是确定图的其他有用属性的工具,例如色数(参见第 6 章) 或它是否是平面的(参见第 7 章)。

此图片的alt属性为空;文件名为statistics-lab-1024x443.jpg
数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。



广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。



术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。



有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。



回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。



R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

The graphs above are incomplete. These figures only show a vertex with degree four (vertex E), its nearest neighbors (A, B, C, and D), and segments of A-C Kempe chains. The entire graphs would also contain several other vertices (especially, more colored the same as B or D) and enough edges to be MPG’s. The left figure has A connected to $C$ in a single section of an A-C Kempe chain (meaning that the vertices of this chain are colored the same as A and C). The left figure shows that this A-C Kempe chain prevents B from connecting to $\mathrm{D}$ with a single section of a B-D Kempe chain. The middle figure has A and C in separate sections of A-C Kempe chains. In this case, B could connect to D with a single section of a B-D Kempe chain. However, since the A and C of the vertex with degree four lie on separate sections, the color of C’s chain can be reversed so that in the vertex with degree four, C is effectively recolored to match A’s color, as shown in the right figure. Similarly, D’s section could be reversed in the left figure so that D is effectively recolored to match B’s color.

Kempe also attempted to demonstrate that vertices with degree five are fourcolorable in his attempt to prove the four-color theorem [Ref. 2], but his argument for vertices with degree five was shown by Heawood in 1890 to be insufficient [Ref. 3]. Let’s explore what happens if we attempt to apply our reasoning for vertices with degree four to a vertex with degree five.

数学代写|图论作业代写Graph Theory代考|The previous diagrams

The previous diagrams show that when the two color reversals are performed one at a time in the crossed-chain graph, the first color reversal may break the other chain, allowing the second color reversal to affect the colors of one of F’s neighbors. When we performed the $2-4$ reversal to change B from 2 to 4 , this broke the 1-4 chain. When we then performed the 2-3 reversal to change E from 3, this caused C to change from 3 to 2 . As a result, F remains connected to four different colors; this wasn’t reversed to three as expected.
Unfortunately, you can’t perform both reversals “at the same time” for the following reason. Let’s attempt to perform both reversals “at the same time.” In this crossed-chain diagram, when we swap 2 and 4 on B’s side of the 1-3 chain, one of the 4’s in the 1-4 chain may change into a 2, and when we swap 2 and 3 on E’s side of the 1-4 chain, one of the 3’s in the 1-3 chain may change into a 2 . This is shown in the following figure: one 2 in each chain is shaded gray. Recall that these figures are incomplete; they focus on one vertex (F), its neighbors (A thru E), and Kempe chains. Other vertices and edges are not shown.

Note how one of the 3’s changed into 2 on the left. This can happen when we reverse $\mathrm{C}$ and $\mathrm{E}$ (which were originally 3 and 2 ) on E’s side of the 1-4 chain. Note also how one of the 4’s changed into 2 on the right. This can happen when we reverse B and D (which were originally 2 and 4) outside of the 1-3 chain. Now we see where a problem can occur when attempting to swap the colors of two chains at the same time. If these two 2’s happen to be connected by an edge like the dashed edge shown above, if we perform the double reversal at the same time, this causes two vertices of the same color to share an edge, which isn’t allowed. We’ll revisit Kempe’s strategy for coloring a vertex with degree five in Chapter $25 .$

数学代写|图论作业代写Graph Theory代考| The shading of one section of the B-R

图论代考

数学代写|图论作业代写Graph Theory代考|The shading of one section of the B-R

由于 Kempe 链的每个部分都与同一颜色对的其他部分隔离,因此 Kempe 链的任何部分的颜色可以颠倒,但仍满足四色定理。这是一个重要且有用的概念。

上面 BR 链的一个部分的阴影说明了任何 Kempe 链的任何部分的颜色如何可以反转。请注意,我们反转了 BR 链的一个部分的颜色,但没有反转中心部分的颜色。同一条链的每个部分的颜色可以独立于该链的其他部分反转。

为什么 PG 有 Kempe 链?很容易理解为什么 MPG 有 Kempe 链。(由于 PG 是通过从 MPG 中去除边缘而形成的,并且由于适用于 MPG 的着色也适用于 PG,因此 PG 也具有 Kempe 链。)

  • MPG 是三角测量的。它由具有三个边和三个顶点的面组成。
  • 每个面的三个顶点必须是三种不同的颜色。
  • 每条边由两个相邻的三角形共享,形成一个四边形。
  • 每个四边形将有 3 或 4 种不同的颜色。如果与共享边相对的两个顶点恰好是相同的颜色,则它有 3 种颜色。
  • 对于每个四边形,四个顶点中的至少 1 个顶点和最多 3 个顶点具有任何颜色对的颜色。例如,具有 R、G、B 和G有 1 个顶点R−是和3个顶点乙−G,或者您可以将其视为 1 个顶点乙−是和3个顶点G−R,或者您可以将其视为 BR 的 2 个顶点和 GY 的 2 个顶点。在后一种情况下,2G’ 不是同一链的连续颜色。
  • 当您将更多三角形组合在一起(四边形仅组合两个)并考虑可能的颜色时,您将看到 Kempe 的部分

链子出现。我们将在 Chápter 中看到这些 Kémpé chảins 是如何出现的21.
也很容易看出一对颜色(如 RY)将如何与其对应颜色(BG)相邻:

  • 画一张R顶点和一个是由边连接的顶点。
  • 如果一个新顶点连接到这些顶点中的每一个,它必须是乙或者G.
  • 如果一个新顶点连接到 R 而不是是,可能是是,乙, 或者G.
  • 如果一个新的顶点连接到是但不是R,可能是R,乙, 或者G.
  • RY 链要么继续增长,要么被 B 包围,G.
  • 如果你关注 B 和 G,你会为它的链条得出类似的结论。
  • 如果一条链条完全被其对应物包围,则链条的新部分可能会出现在其对应物的另一侧。
    Kempe 证明了所有具有四阶的顶点(那些恰好连接到其他四个顶点的顶点)都是四色的 [Ref. 2]。例如,考虑下面的中心顶点。

数学代写|图论作业代写Graph Theory代考|In the previous figure

在上图中,顶点和是四度,因为它连接到其他四个顶点。Kempe 表明顶点 A、B、C 和 D 不能被强制为四种不同的颜色,这样顶点 E 总是可以被着色而不会违反四色定理,无论 MPG 的其余部分看起来如何上一页显示的部分。

  • A 和 C 或者是 AC Kempe 链的同一部分的一部分,或者它们各自位于 AC Kempe 链的不同部分。(如果一种和C例如,是红色和黄色的,则 AC 链是红黄色链。) – 如果一种和C每个位于 AC Kempe 链的不同部分,其中一个部分的颜色可以反转,这有效地重新着色 C 以匹配 A 的颜色。如果 A 和 C 是 AC Kempe 链的同一部分的一部分,则 B 和 D每个都必须位于 BD Kempe 链的不同部分,因为 AC Kempe 链将阻止任何 BD Kempe 链从 B 到达 D。(如果乙和D是蓝色和绿色,例如,那么一种BD Kempe 链是蓝绿色链。)在这种情况下,由于 B 和 D 分别位于 BD Kempe 链的不同部分,因此 BD Kempe 链的其中一个部分的颜色可以反转,这有效地重新着色 D 以匹配 B颜色。– 因此,可以使 C 与 A 具有相同的颜色或使 D 具有与 A 相同的颜色乙通过反转 Kempe 链的分离部分。

上面的图表是不完整的。这些图只显示了一个四阶顶点(顶点 E)、它的最近邻居(A、B、C 和 D),以及 AC Kempe 链的片段。整个图还将包含几个其他顶点(特别是与 B 或 D 相同的颜色)和足够多的边以成为 MPG。左图有 A 连接到C在 AC Kempe 链的单个部分中(意味着该链的顶点颜色与 A 和 C 相同)。左图显示此 AC Kempe 链阻止 B 连接到DBD Kempe 链条的一个部分。中间的数字在 AC Kempe 链的不同部分有 A 和 C。在这种情况下,B 可以通过 BD Kempe 链的单个部分连接到 D。但是,由于四阶顶点的 A 和 C 位于不同的部分,因此可以反转 C 链的颜色,以便在四阶顶点中,C 有效地重新着色以匹配 A 的颜色,如右图所示. 类似地,可以在左图中反转 D 的部分,以便有效地重新着色 D 以匹配 B 的颜色。

Kempe 还试图证明五阶顶点是可四色的,以证明四色定理 [Ref. 2],但 Heawood 在 1890 年证明他关于五次顶点的论点是不充分的 [Ref. 3]。让我们探讨一下如果我们尝试将我们对度数为四的顶点的推理应用于度数为五的顶点会发生什么。

数学代写|图论作业代写Graph Theory代考|The previous diagrams

前面的图表显示,当在交叉链图中一次执行两种颜色反转时,第一次颜色反转可能会破坏另一个链,从而允许第二次颜色反转影响 F 的一个邻居的颜色。当我们执行2−4反转将 B 从 2 更改为 4 ,这打破了 1-4 链。然后,当我们执行 2-3 反转以将 E 从 3 更改时,这导致 C 从 3 更改为 2 。结果,F 仍然连接到四种不同的颜色;这并没有像预期的那样反转为三个。
不幸的是,由于以下原因,您不能“同时”执行两个冲销。让我们尝试“同时”执行两个反转。在这个交叉链图中,当我们在 1-3 链的 B 侧交换 2 和 4 时,1-4 链中的一个 4 可能会变成 2,当我们在 E 侧交换 2 和 3 时1-4 链,1-3 链中的 3 之一可能会变为 2 。如下图所示:每条链中的一个 2 为灰色阴影。回想一下,这些数字是不完整的;他们专注于一个顶点 (F)、它的邻居 (A 到 E) 和 Kempe 链。其他顶点和边未显示。

请注意左侧的 3 之一如何变为 2。当我们反转时会发生这种情况C和和(最初是 3 和 2 )在 1-4 链的 E 侧。还要注意 4 个中的一个如何在右侧变为 2。当我们在 1-3 链之外反转 B 和 D(最初是 2 和 4)时,就会发生这种情况。现在我们看到了尝试同时交换两条链的颜色时会出现问题的地方。如果这两个 2 恰好通过上图虚线这样的边连接起来,如果我们同时进行双重反转,就会导致两个相同颜色的顶点共享一条边,这是不允许的。我们将在第 1 章重新讨论 Kempe 为五阶顶点着色的策略25.

数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|图论作业代写Graph Theory代考|CS165

如果你也在 怎样代写图论Graph Theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

在数学中,图论是对图的研究,它是用来模拟对象之间成对关系的数学结构。这里,图由顶点(也称为节点或点)组成,这些顶点由边(也称为链接或线)连接。

statistics-lab™ 为您的留学生涯保驾护航 在代写图论Graph Theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写图论Graph Theory代写方面经验极为丰富,各种代写图论Graph Theory相关的作业也就用不着说。

我们提供的图论Graph Theory及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|图论作业代写Graph Theory代考|CS165

数学代写|图论作业代写Graph Theory代考|Graph Models, Terminology, and Proofs

The Roanoke Soccer League is planning their end-of-season tournament. Each of the five teams (Aardvarks, Bears, Cougars, Ducks, and Eagles) plays every other team exactly once and no ties are allowed. The tournament director must determine how many games are needed, how to schedule the games, and how to determine a winner once the tournament is completed.

The soccer tournament described above is often referred to as a roundrobin tournament. While we can describe the tournament in words, or list the game outcomes in a table, it is often useful to provide a visual representation. One method, and the one we will continue to use throughout this book, is to model the information as a graph.

We will formally describe a graph next section, but for now think of a graph as a collection of dots (which we call vertices) on the page with lines (called edges) connecting the dots to indicate some relationship between them. In terms of the Roanoke Soccer League, we could represent each team as a vertex and put an edge between a pair of vertices if they have played each other. The following graphs $G_1$ and $G_2$ depict a possible way to run the first few games of the tournament and $G_3$ is the graph when all games of the tournament have been played (these are called complete graphs and will be discussed later).

Using the graphs above, we can help the tournament director answer at least one of the questions posed. The number of games needed is the same as the number of edges in the graph $G_3$ and without any complicated mathematics, we can easily count these and determine 10 total games are needed.
What about the other questions for the tournament director? We need to understand not just which teams played each other, but also the outcomes of these games. One way to do this is to add an arrow to each edge indicating a direction, what we will call a directed edge or arc. Once directions have been added to each of the edges, we now refer to the graph as a digraph, short for directed graph. The digraph shown below indicates that the Aardvarks won all their games, the Bears beat the Cougars and Ducks, the Cougars beat the Ducks and Eagles, the Ducks lost all their games, and the Eagles won their games against the Bears and Ducks.

数学代写|图论作业代写Graph Theory代考|Introduction to Graph Models and Terminology

An integral component of mathematics is precise (and appropriate) definitions. Throughout this book, we will use an example to motivate and gain intuition about concepts and then provide the precise definitions. To that end, we give the definition of a graph below. Note that many aspects of graph theory rely on basic set theory concepts (mainly the subset relationship); see Appendix A if you need a review of set theory.

Using this notation we see that graph $G_4$ from Example $1.1$ above satisfies $\left|G_4\right|=5$ and $\left|G_4\right|=6$.

It should be noted that the drawing of a graph can take many different forms while still representing the same graph. The only requirement is to faithfully record the information from the vertex set and edge set. We often draw graphs with the vertices in a circular pattern (as shown in Example 1.1), though in some instances other configurations better display the desired information. The best configuration is the one that reduces complexity or best illustrates the relationships arising from the vertex set and edge set.

To discuss and prove properties of graphs, we need the proper terminology. The graph given in the examples above are good references for this initial terminology. Some initial definitions are given below, followed by the appropriate references to the graph in Example 1.1 (or Example 1.2).

When examining graphs, especially if they are particularly large, we may want to discuss a smaller portion of the graph, called a subgraph. For example, graphs $G_1$ and $G_2$ shown on page 2 display when a portion of the total games have been played in the soccer tournament, and these are both subgraphs of graph $G_3$.

The graph shown on the left above is a special type, called an induced subgraph, since all the edges are present between the chosen vertices. Another special type of subgraph, called a spanning subgraph, includes all the vertices of the original graph.

数学代写|图论作业代写Graph Theory代考|CS165

图论代考

数学代写|图论作业代写Graph Theory代考|Graph Models, Terminology, and Proofs

罗阿诺克足球联盟正在计划他们的季末锦标赛。五支球队(Aardvarks、Bears、Cougars、Ducks 和 Eagles)中的每支球队都只与其他球队交手一次,不允许出现平局。锦标赛负责人必须确定需要进行多少场比赛、如何安排比赛以及比赛结束后如何确定获胜者。

上述足球锦标赛通常被称为循环赛。虽然我们可以用文字描述比赛,或在表格中列出比赛结果,但提供视觉表示通常很有用。一种方法,也是我们将在本书中继续使用的一种方法,是将信息建模为图形。

我们将在下一节正式描述图形,但现在将图形视为页面上的点(我们称为顶点)的集合,线(称为边)连接点以指示它们之间的某种关系。就罗阿诺克足球联赛而言,我们可以将每支球队表示为一个顶点,并在一对顶点之间放置一条边(如果它们已经相互比赛过)。以下图表G1和G2描述一种可能的方式来运行锦标赛的前几场比赛,并且G3是锦标赛的所有游戏都玩完后的图(这些被称为完整图,将在后面讨论)。

使用上面的图表,我们可以帮助赛事总监至少回答所提出的一个问题。所需的游戏数量与图中的边数相同G3无需任何复杂的数学运算,我们可以轻松计算出这些并确定总共需要 10 场比赛。
赛事总监还有其他问题吗?我们不仅需要了解哪些球队相互比赛,还需要了解这些比赛的结果。一种方法是在每条边上添加一个指示方向的箭头,我们称之为有向边或弧。一旦方向被添加到每条边,我们现在将图形称为有向图,有向图的缩写。下面显示的有向图表明 Aardvarks 赢得了所有比赛,Bears 击败了 Cougars 和 Ducks,Cougars 击败了 Ducks 和 Eagles,Ducks 输掉了所有比赛,Eagles 赢得了与 Bears 和 Ducks 的比赛。

数学代写|图论作业代写Graph Theory代考|Introduction to Graph Models and Terminology

数学的一个组成部分是精确(和适当的)定义。在本书中,我们将使用一个例子来激发和获得对概念的直觉,然后提供精确的定义。为此,我们在下面给出了图的定义。请注意,图论的许多方面都依赖于基本的集合论概念(主要是子集关系);如果您需要复习集合论,请参阅附录 A。

使用这种表示法,我们可以看到该图G4从例子1.1以上满足|G4|=5和|G4|=6.

应该注意的是,图形的绘制可以采用许多不同的形式,但仍然表示相同的图形。唯一的要求是忠实地记录来自顶点集和边集的信息。我们经常绘制带有圆形顶点的图形(如示例 1.1 所示),但在某些情况下,其他配置可以更好地显示所需信息。最好的配置是降低复杂性或最好地说明由顶点集和边集产生的关系的配置。

为了讨论和证明图的性质,我们需要适当的术语。上面示例中给出的图表是该初始术语的很好参考。下面给出了一些初始定义,随后是对示例 1.1(或示例 1.2)中图表的适当引用。

在检查图时,尤其是当它们特别大时,我们可能想讨论图的较小部分,称为子图。例如,图表G1和G2显示在第 2 页上,当总比赛的一部分在足球锦标赛中进行时显示,这些都是图的子图G3.

左上方显示的图是一种特殊类型,称为诱导子图,因为所有边都存在于所选顶点之间。另一种特殊类型的子图称为生成子图,它包括原始图的所有顶点。

此图片的alt属性为空;文件名为statistics-lab-1024x443.jpg
数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。



广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。



术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。



有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。



回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。



R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

The graphs above are incomplete. These figures only show a vertex with degree four (vertex E), its nearest neighbors (A, B, C, and D), and segments of A-C Kempe chains. The entire graphs would also contain several other vertices (especially, more colored the same as B or D) and enough edges to be MPG’s. The left figure has A connected to $C$ in a single section of an A-C Kempe chain (meaning that the vertices of this chain are colored the same as A and C). The left figure shows that this A-C Kempe chain prevents B from connecting to $\mathrm{D}$ with a single section of a B-D Kempe chain. The middle figure has A and C in separate sections of A-C Kempe chains. In this case, B could connect to D with a single section of a B-D Kempe chain. However, since the A and C of the vertex with degree four lie on separate sections, the color of C’s chain can be reversed so that in the vertex with degree four, C is effectively recolored to match A’s color, as shown in the right figure. Similarly, D’s section could be reversed in the left figure so that D is effectively recolored to match B’s color.

Kempe also attempted to demonstrate that vertices with degree five are fourcolorable in his attempt to prove the four-color theorem [Ref. 2], but his argument for vertices with degree five was shown by Heawood in 1890 to be insufficient [Ref. 3]. Let’s explore what happens if we attempt to apply our reasoning for vertices with degree four to a vertex with degree five.

数学代写|图论作业代写Graph Theory代考|The previous diagrams

The previous diagrams show that when the two color reversals are performed one at a time in the crossed-chain graph, the first color reversal may break the other chain, allowing the second color reversal to affect the colors of one of F’s neighbors. When we performed the $2-4$ reversal to change B from 2 to 4 , this broke the 1-4 chain. When we then performed the 2-3 reversal to change E from 3, this caused C to change from 3 to 2 . As a result, F remains connected to four different colors; this wasn’t reversed to three as expected.
Unfortunately, you can’t perform both reversals “at the same time” for the following reason. Let’s attempt to perform both reversals “at the same time.” In this crossed-chain diagram, when we swap 2 and 4 on B’s side of the 1-3 chain, one of the 4’s in the 1-4 chain may change into a 2, and when we swap 2 and 3 on E’s side of the 1-4 chain, one of the 3’s in the 1-3 chain may change into a 2 . This is shown in the following figure: one 2 in each chain is shaded gray. Recall that these figures are incomplete; they focus on one vertex (F), its neighbors (A thru E), and Kempe chains. Other vertices and edges are not shown.

Note how one of the 3’s changed into 2 on the left. This can happen when we reverse $\mathrm{C}$ and $\mathrm{E}$ (which were originally 3 and 2 ) on E’s side of the 1-4 chain. Note also how one of the 4’s changed into 2 on the right. This can happen when we reverse B and D (which were originally 2 and 4) outside of the 1-3 chain. Now we see where a problem can occur when attempting to swap the colors of two chains at the same time. If these two 2’s happen to be connected by an edge like the dashed edge shown above, if we perform the double reversal at the same time, this causes two vertices of the same color to share an edge, which isn’t allowed. We’ll revisit Kempe’s strategy for coloring a vertex with degree five in Chapter $25 .$

数学代写|图论作业代写Graph Theory代考| The shading of one section of the B-R

图论代考

数学代写|图论作业代写Graph Theory代考|The shading of one section of the B-R

由于 Kempe 链的每个部分都与同一颜色对的其他部分隔离,因此 Kempe 链的任何部分的颜色可以颠倒,但仍满足四色定理。这是一个重要且有用的概念。

上面 BR 链的一个部分的阴影说明了任何 Kempe 链的任何部分的颜色如何可以反转。请注意,我们反转了 BR 链的一个部分的颜色,但没有反转中心部分的颜色。同一条链的每个部分的颜色可以独立于该链的其他部分反转。

为什么 PG 有 Kempe 链?很容易理解为什么 MPG 有 Kempe 链。(由于 PG 是通过从 MPG 中去除边缘而形成的,并且由于适用于 MPG 的着色也适用于 PG,因此 PG 也具有 Kempe 链。)

  • MPG 是三角测量的。它由具有三个边和三个顶点的面组成。
  • 每个面的三个顶点必须是三种不同的颜色。
  • 每条边由两个相邻的三角形共享,形成一个四边形。
  • 每个四边形将有 3 或 4 种不同的颜色。如果与共享边相对的两个顶点恰好是相同的颜色,则它有 3 种颜色。
  • 对于每个四边形,四个顶点中的至少 1 个顶点和最多 3 个顶点具有任何颜色对的颜色。例如,具有 R、G、B 和G有 1 个顶点R−是和3个顶点乙−G,或者您可以将其视为 1 个顶点乙−是和3个顶点G−R,或者您可以将其视为 BR 的 2 个顶点和 GY 的 2 个顶点。在后一种情况下,2G’ 不是同一链的连续颜色。
  • 当您将更多三角形组合在一起(四边形仅组合两个)并考虑可能的颜色时,您将看到 Kempe 的部分

链子出现。我们将在 Chápter 中看到这些 Kémpé chảins 是如何出现的21.
也很容易看出一对颜色(如 RY)将如何与其对应颜色(BG)相邻:

  • 画一张R顶点和一个是由边连接的顶点。
  • 如果一个新顶点连接到这些顶点中的每一个,它必须是乙或者G.
  • 如果一个新顶点连接到 R 而不是是,可能是是,乙, 或者G.
  • 如果一个新的顶点连接到是但不是R,可能是R,乙, 或者G.
  • RY 链要么继续增长,要么被 B 包围,G.
  • 如果你关注 B 和 G,你会为它的链条得出类似的结论。
  • 如果一条链条完全被其对应物包围,则链条的新部分可能会出现在其对应物的另一侧。
    Kempe 证明了所有具有四阶的顶点(那些恰好连接到其他四个顶点的顶点)都是四色的 [Ref. 2]。例如,考虑下面的中心顶点。

数学代写|图论作业代写Graph Theory代考|In the previous figure

在上图中,顶点和是四度,因为它连接到其他四个顶点。Kempe 表明顶点 A、B、C 和 D 不能被强制为四种不同的颜色,这样顶点 E 总是可以被着色而不会违反四色定理,无论 MPG 的其余部分看起来如何上一页显示的部分。

  • A 和 C 或者是 AC Kempe 链的同一部分的一部分,或者它们各自位于 AC Kempe 链的不同部分。(如果一种和C例如,是红色和黄色的,则 AC 链是红黄色链。) – 如果一种和C每个位于 AC Kempe 链的不同部分,其中一个部分的颜色可以反转,这有效地重新着色 C 以匹配 A 的颜色。如果 A 和 C 是 AC Kempe 链的同一部分的一部分,则 B 和 D每个都必须位于 BD Kempe 链的不同部分,因为 AC Kempe 链将阻止任何 BD Kempe 链从 B 到达 D。(如果乙和D是蓝色和绿色,例如,那么一种BD Kempe 链是蓝绿色链。)在这种情况下,由于 B 和 D 分别位于 BD Kempe 链的不同部分,因此 BD Kempe 链的其中一个部分的颜色可以反转,这有效地重新着色 D 以匹配 B颜色。– 因此,可以使 C 与 A 具有相同的颜色或使 D 具有与 A 相同的颜色乙通过反转 Kempe 链的分离部分。

上面的图表是不完整的。这些图只显示了一个四阶顶点(顶点 E)、它的最近邻居(A、B、C 和 D),以及 AC Kempe 链的片段。整个图还将包含几个其他顶点(特别是与 B 或 D 相同的颜色)和足够多的边以成为 MPG。左图有 A 连接到C在 AC Kempe 链的单个部分中(意味着该链的顶点颜色与 A 和 C 相同)。左图显示此 AC Kempe 链阻止 B 连接到DBD Kempe 链条的一个部分。中间的数字在 AC Kempe 链的不同部分有 A 和 C。在这种情况下,B 可以通过 BD Kempe 链的单个部分连接到 D。但是,由于四阶顶点的 A 和 C 位于不同的部分,因此可以反转 C 链的颜色,以便在四阶顶点中,C 有效地重新着色以匹配 A 的颜色,如右图所示. 类似地,可以在左图中反转 D 的部分,以便有效地重新着色 D 以匹配 B 的颜色。

Kempe 还试图证明五阶顶点是可四色的,以证明四色定理 [Ref. 2],但 Heawood 在 1890 年证明他关于五次顶点的论点是不充分的 [Ref. 3]。让我们探讨一下如果我们尝试将我们对度数为四的顶点的推理应用于度数为五的顶点会发生什么。

数学代写|图论作业代写Graph Theory代考|The previous diagrams

前面的图表显示,当在交叉链图中一次执行两种颜色反转时,第一次颜色反转可能会破坏另一个链,从而允许第二次颜色反转影响 F 的一个邻居的颜色。当我们执行2−4反转将 B 从 2 更改为 4 ,这打破了 1-4 链。然后,当我们执行 2-3 反转以将 E 从 3 更改时,这导致 C 从 3 更改为 2 。结果,F 仍然连接到四种不同的颜色;这并没有像预期的那样反转为三个。
不幸的是,由于以下原因,您不能“同时”执行两个冲销。让我们尝试“同时”执行两个反转。在这个交叉链图中,当我们在 1-3 链的 B 侧交换 2 和 4 时,1-4 链中的一个 4 可能会变成 2,当我们在 E 侧交换 2 和 3 时1-4 链,1-3 链中的 3 之一可能会变为 2 。如下图所示:每条链中的一个 2 为灰色阴影。回想一下,这些数字是不完整的;他们专注于一个顶点 (F)、它的邻居 (A 到 E) 和 Kempe 链。其他顶点和边未显示。

请注意左侧的 3 之一如何变为 2。当我们反转时会发生这种情况C和和(最初是 3 和 2 )在 1-4 链的 E 侧。还要注意 4 个中的一个如何在右侧变为 2。当我们在 1-3 链之外反转 B 和 D(最初是 2 和 4)时,就会发生这种情况。现在我们看到了尝试同时交换两条链的颜色时会出现问题的地方。如果这两个 2 恰好通过上图虚线这样的边连接起来,如果我们同时进行双重反转,就会导致两个相同颜色的顶点共享一条边,这是不允许的。我们将在第 1 章重新讨论 Kempe 为五阶顶点着色的策略25.

数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|数据科学、大数据和数据多样性代写Data Science, Big Data and Data Variety代考|IS471

如果你也在 怎样代写数据科学、大数据和数据多样性Data Science, Big Data and Data Variety这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数据科学是一个领域。大数据是一种收集、维护和处理巨大信息的技术。它是关于在各种操作中收集、处理、分析和利用数据。它更具有概念性。

statistics-lab™ 为您的留学生涯保驾护航 在代写数据科学、大数据和数据多样性Data Science, Big Data and Data Variety方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数据科学、大数据和数据多样性Data Science, Big Data and Data Variety代写方面经验极为丰富,各种代写数据科学、大数据和数据多样性Data Science, Big Data and Data Variety相关的作业也就用不着说。

我们提供的数据科学、大数据和数据多样性Data Science, Big Data and Data Variety及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|数据科学、大数据和数据多样性代写Data Science, Big Data and Data Variety代考|IS471

统计代写|数据科学、大数据和数据多样性代写Data Science, Big Data and Data Variety代考|Implications About Machine Learning Model Error

Although using MLMs has notable advantages for creating sampling designs, these methods are not without error. Misclassification errors result when MLMs fail to correctly classify units. In sample frame development, machine learning algorithms are applied to classify an image, land plot, or some other related unit as eligible for inclusion in the frame or ineligible. A false positive misclassification error results in a frame that might result in overcoverage of the actual population and lead to inefficiencies in survey data collection. A false negative misclassification error results in undercoverage and may lead to biased estimates if there is a systematic difference between population units correctly included on the frame and those excluded. To our knowledge, there is little work on the impact of this type of machine learning error on final survey estimates although Eck et al. (2019) discuss this as a future area of research. Moreover, there is even less understanding of how tuning parameter selection in these machine learning algorithms might be related to these potential survey errors and how one might incorporate this aspect of survey estimation into the classification algorithm.
By default, most machine learning algorithms optimize classifications to balance false positives with false negatives: however, one can use additional cost functions within these algorithms to penalize false positives at a higher rate than false negatives or vice versa. In frame development, one might argue that false negatives (leading to undercoverage) may be the more critical error. However, if there are no systematic differences on the survey outcome between correctly included and incorrectly excluded cases, then there might be more tolerance for this type of error. On the other hand, one could argue that if data collection costs are expensive (as in in-person or on-the-ground data collection or collection via expensive sensor equipment), then false positives might be the more critical error. If the false positive rate is high, for example then an eligibility screener may be necessary as an additional survey process step to ensure that only eligible population units be included in final analyses. In any case, it seems important to be able to quantify the impact of these errors before using MLMs for sampling frame development so that either the final results or choices of which of many MLMs lead to the best possible sample frame for use in the final sampling design can be assessed accordingly.

统计代写|数据科学、大数据和数据多样性代写Data Science, Big Data and Data Variety代考|Data Type Considerations and Implications About Data Errors

Most of the unsupervised MLMs create population groupings using a collection of continuous covariates. Cluster solutions are often sensitive to variable scaling so if the continuous variables have different scales, transforming the variables so they are all on the same scale is often recommended (Hastie, Tibshirani, and Friedman 2001). However, not all frame or auxiliary variables that are available for use in such segmentation are continuous. Scaling binary or nominal variables and treating them as continuous variables does not make much sense and could impact interpretability of results. Sampling designs seeking to leverage auxiliary information that is a mix of continuous, ordinal, and nominal variables may need to be modified by selecting a different proximity measure or using a method that allows for a mix of variable types such as hierarchical clustering with an appropriate distance measure. Boriah et al. (2008) compared 14 different similarity measures for categorical data for use with a $k$-nearest neighbors algorithm for outlier detection. Their experimental results suggest that there is no one best performing similarity measure, and the authors urge researchers to carefully consider how a particular similarity measure handles the different characteristics of the categorical variables in a given dataset prior to selecting the measure. Rather than focusing on different proximity measures for clustering data based on categorical variables, researchers have also explored using different statistics for creating the clusters including $k$-modes (Huang 1998) or fuzzy $k$-modes (Huang and Ng 1999; Kim, Lee, and Lee 2004). These methods use a single distance function appropriate for categorical variables. For datasets with categorical and continuous variables, Huang (1998) proposes a $k$-prototypes clustering algorithm based on a combination of two distance functions applied to categorical and continuous variables, respectively. When cases are to be clustered using only categorical variables or a mix of categorical and continuous variables, as often occurs in survey research applications, the results of the clustering will likely be more reproducible and interpretable and more likely to represent the underlying constructs, if any. within the collection of variables. Sampling designs seeking to give variables unequal influence on the creation of population segments may also benefit from using an additional weighting variable in the unsupervised MLM where the weights specify each variable’s relative influence on the overall segmentation.

Regardless of the type of data used in the machine learning algorithms, the impact of error within the variables themselves on the overall segmentation results is not well understood. Errors in the measurement of auxiliary, frame, or survey variables that are used in unsupervised machine learning algorithms to create population segments are of particular interest since we readily experience and quantify this type of error within the total survey error framework. Pankowska et al. (2018) explored the impact of survey measurement error on the correct classification of respondents into known groups using both GMMs as well as density-based spatial clustering of applications with noise (DBSCAN). Their simulation experiment varied the type of measurement error, the number of variables considered in the clustering that had error, the error rate, and the magnitude of the error. Pankowska and colleagues found that GMM is less sensitive to measurement errors compared to DBSCAN. Measurement error, regardless of method, has a very strong biasing effect for correctly recovering the true underlying grouping structure if the measurement error is systematic, rather than random, and all variables have high levels of measurement error.

统计代写|数据科学、大数据和数据多样性代写Data Science, Big Data and Data Variety代考|IS471

数据科学、大数据和数据多样性代考

统计代写|数据科学、大数据和数据多样性代写Data Science, Big Data and Data Variety代考|Implications About Machine Learning Model Error

尽管使用 MLM 在创建抽样设计方面具有显着优势,但这些方法并非没有错误。当 MLM 未能正确分类单位时,会导致错误分类错误。在样本框架开发中,机器学习算法用于将图像、地块或其他一些相关单元分类为有资格包含在框架中或不符合条件。误报错误分类错误会导致可能导致对实际人口的过度覆盖并导致调查数据收集效率低下的框架。如果框架中正确包含的人口单位与排除的人口单位之间存在系统差异,则假阴性错误分类错误会导致覆盖不足,并可能导致估计有偏差。据我们所知,尽管 Eck 等人,关于这种类型的机器学习错误对最终调查估计的影响的研究很少。(2019)将此作为未来的研究领域进行讨论。此外,对于这些机器学习算法中的调整参数选择如何与这些潜在的调查错误相关,以及如何将调查估计的这一方面纳入分类算法的理解甚至更少。
默认情况下,大多数机器学习算法会优化分类以平衡假阳性和假阴性:但是,可以在这些算法中使用额外的成本函数来以比假阴性更高的速率惩罚假阳性,反之亦然。在框架开发中,有人可能会争辩说假阴性(导致覆盖不足)可能是更严重的错误。但是,如果正确包含和错误排除的案例之间的调查结果没有系统差异,那么对此类错误的容忍度可能会更高。另一方面,有人可能会争辩说,如果数据收集成本很高(例如在现场或现场数据收集或通过昂贵的传感器设备收集),那么误报可能是更严重的错误。如果误报率高,例如,作为额外的调查过程步骤,可能需要资格筛选器,以确保只有符合条件的人口单位被包括在最终分析中。在任何情况下,在使用 MLM 进行抽样框架开发之前,能够量化这些错误的影响似乎很重要,以便最终结果或许多 MLM 的选择导致用于最终抽样的最佳样本框架可以相应地评估设计。

统计代写|数据科学、大数据和数据多样性代写Data Science, Big Data and Data Variety代考|Data Type Considerations and Implications About Data Errors

大多数无监督 MLM 使用一组连续协变量来创建群体分组。聚类解决方案通常对变量尺度敏感,因此如果连续变量具有不同尺度,则通常建议转换变量以使它们都处于相同尺度(Hastie、Tibshirani 和 Friedman 2001)。然而,并非所有可用于此类分割的帧或辅助变量都是连续的。缩放二元或名义变量并将它们视为连续变量没有多大意义,并且可能会影响结果的可解释性。采样设计试图利用连续的、有序的、混合的辅助信息,可能需要通过选择不同的邻近度度量或使用允许混合变量类型的方法(例如具有适当距离度量的层次聚类)来修改名义变量。博里亚等人。(2008) 比较了分类数据的 14 种不同的相似性度量,以用于ķ- 用于异常值检测的最近邻算法。他们的实验结果表明,没有一种表现最好的相似性度量,作者敦促研究人员在选择度量之前仔细考虑特定的相似性度量如何处理给定数据集中分类变量的不同特征。研究人员并没有关注基于分类变量对数据进行聚类的不同邻近度度量,而是探索了使用不同的统计数据来创建聚类,包括ķ-modes (Huang 1998) or fuzzy ķ模式(Huang 和 Ng 1999;Kim、Lee 和 Lee 2004)。这些方法使用适用于分类变量的单个距离函数。对于具有分类变量和连续变量的数据集,Huang (1998) 提出了一个ķ-原型聚类算法基于分别应用于分类变量和连续变量的两个距离函数的组合。当仅使用分类变量或分类变量和连续变量的组合对案例进行聚类时(这在调查研究应用程序中经常发生),聚类结果可能更具有可重复性和可解释性,并且更有可能代表潜在的结构(如果有的话) . 在变量集合中。试图对创建人口细分的变量产生不同影响的抽样设计也可能受益于在无监督 MLM 中使用额外的加权变量,其中权重指定每个变量对整体细分的相对影响。

无论机器学习算法中使用的数据类型如何,变量本身的误差对整体分割结果的影响都不是很清楚。在无监督机器学习算法中用于创建人口细分的辅助、框架或调查变量的测量误差特别令人感兴趣,因为我们很容易在总调查误差框架内体验和量化这种类型的误差。Pankowska 等人。(2018 年)使用 GMM 和基于密度的噪声应用空间聚类(DBSCAN)探讨了调查测量误差对将受访者正确分类为已知组的影响。他们的模拟实验改变了测量误差的类型、聚类中考虑的有误差的变量数量、错误率、以及误差的大小。Pankowska 及其同事发现,与 DBSCAN 相比,GMM 对测量误差的敏感性较低。如果测量误差是系统的而不是随机的,并且所有变量都具有高水平的测量误差,那么无论采用何种方法,测量误差对于正确恢复真实的潜在分组结构具有非常强的偏差效应。

此图片的alt属性为空;文件名为statistics-lab-1024x443.jpg
统计代写|数据科学、大数据和数据多样性代写 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。



广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。



术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。



有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。



回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。



R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

The graphs above are incomplete. These figures only show a vertex with degree four (vertex E), its nearest neighbors (A, B, C, and D), and segments of A-C Kempe chains. The entire graphs would also contain several other vertices (especially, more colored the same as B or D) and enough edges to be MPG’s. The left figure has A connected to $C$ in a single section of an A-C Kempe chain (meaning that the vertices of this chain are colored the same as A and C). The left figure shows that this A-C Kempe chain prevents B from connecting to $\mathrm{D}$ with a single section of a B-D Kempe chain. The middle figure has A and C in separate sections of A-C Kempe chains. In this case, B could connect to D with a single section of a B-D Kempe chain. However, since the A and C of the vertex with degree four lie on separate sections, the color of C’s chain can be reversed so that in the vertex with degree four, C is effectively recolored to match A’s color, as shown in the right figure. Similarly, D’s section could be reversed in the left figure so that D is effectively recolored to match B’s color.

Kempe also attempted to demonstrate that vertices with degree five are fourcolorable in his attempt to prove the four-color theorem [Ref. 2], but his argument for vertices with degree five was shown by Heawood in 1890 to be insufficient [Ref. 3]. Let’s explore what happens if we attempt to apply our reasoning for vertices with degree four to a vertex with degree five.

数学代写|图论作业代写Graph Theory代考|The previous diagrams

The previous diagrams show that when the two color reversals are performed one at a time in the crossed-chain graph, the first color reversal may break the other chain, allowing the second color reversal to affect the colors of one of F’s neighbors. When we performed the $2-4$ reversal to change B from 2 to 4 , this broke the 1-4 chain. When we then performed the 2-3 reversal to change E from 3, this caused C to change from 3 to 2 . As a result, F remains connected to four different colors; this wasn’t reversed to three as expected.
Unfortunately, you can’t perform both reversals “at the same time” for the following reason. Let’s attempt to perform both reversals “at the same time.” In this crossed-chain diagram, when we swap 2 and 4 on B’s side of the 1-3 chain, one of the 4’s in the 1-4 chain may change into a 2, and when we swap 2 and 3 on E’s side of the 1-4 chain, one of the 3’s in the 1-3 chain may change into a 2 . This is shown in the following figure: one 2 in each chain is shaded gray. Recall that these figures are incomplete; they focus on one vertex (F), its neighbors (A thru E), and Kempe chains. Other vertices and edges are not shown.

Note how one of the 3’s changed into 2 on the left. This can happen when we reverse $\mathrm{C}$ and $\mathrm{E}$ (which were originally 3 and 2 ) on E’s side of the 1-4 chain. Note also how one of the 4’s changed into 2 on the right. This can happen when we reverse B and D (which were originally 2 and 4) outside of the 1-3 chain. Now we see where a problem can occur when attempting to swap the colors of two chains at the same time. If these two 2’s happen to be connected by an edge like the dashed edge shown above, if we perform the double reversal at the same time, this causes two vertices of the same color to share an edge, which isn’t allowed. We’ll revisit Kempe’s strategy for coloring a vertex with degree five in Chapter $25 .$

数学代写|图论作业代写Graph Theory代考| The shading of one section of the B-R

图论代考

数学代写|图论作业代写Graph Theory代考|The shading of one section of the B-R

由于 Kempe 链的每个部分都与同一颜色对的其他部分隔离,因此 Kempe 链的任何部分的颜色可以颠倒,但仍满足四色定理。这是一个重要且有用的概念。

上面 BR 链的一个部分的阴影说明了任何 Kempe 链的任何部分的颜色如何可以反转。请注意,我们反转了 BR 链的一个部分的颜色,但没有反转中心部分的颜色。同一条链的每个部分的颜色可以独立于该链的其他部分反转。

为什么 PG 有 Kempe 链?很容易理解为什么 MPG 有 Kempe 链。(由于 PG 是通过从 MPG 中去除边缘而形成的,并且由于适用于 MPG 的着色也适用于 PG,因此 PG 也具有 Kempe 链。)

  • MPG 是三角测量的。它由具有三个边和三个顶点的面组成。
  • 每个面的三个顶点必须是三种不同的颜色。
  • 每条边由两个相邻的三角形共享,形成一个四边形。
  • 每个四边形将有 3 或 4 种不同的颜色。如果与共享边相对的两个顶点恰好是相同的颜色,则它有 3 种颜色。
  • 对于每个四边形,四个顶点中的至少 1 个顶点和最多 3 个顶点具有任何颜色对的颜色。例如,具有 R、G、B 和G有 1 个顶点R−是和3个顶点乙−G,或者您可以将其视为 1 个顶点乙−是和3个顶点G−R,或者您可以将其视为 BR 的 2 个顶点和 GY 的 2 个顶点。在后一种情况下,2G’ 不是同一链的连续颜色。
  • 当您将更多三角形组合在一起(四边形仅组合两个)并考虑可能的颜色时,您将看到 Kempe 的部分

链子出现。我们将在 Chápter 中看到这些 Kémpé chảins 是如何出现的21.
也很容易看出一对颜色(如 RY)将如何与其对应颜色(BG)相邻:

  • 画一张R顶点和一个是由边连接的顶点。
  • 如果一个新顶点连接到这些顶点中的每一个,它必须是乙或者G.
  • 如果一个新顶点连接到 R 而不是是,可能是是,乙, 或者G.
  • 如果一个新的顶点连接到是但不是R,可能是R,乙, 或者G.
  • RY 链要么继续增长,要么被 B 包围,G.
  • 如果你关注 B 和 G,你会为它的链条得出类似的结论。
  • 如果一条链条完全被其对应物包围,则链条的新部分可能会出现在其对应物的另一侧。
    Kempe 证明了所有具有四阶的顶点(那些恰好连接到其他四个顶点的顶点)都是四色的 [Ref. 2]。例如,考虑下面的中心顶点。

数学代写|图论作业代写Graph Theory代考|In the previous figure

在上图中,顶点和是四度,因为它连接到其他四个顶点。Kempe 表明顶点 A、B、C 和 D 不能被强制为四种不同的颜色,这样顶点 E 总是可以被着色而不会违反四色定理,无论 MPG 的其余部分看起来如何上一页显示的部分。

  • A 和 C 或者是 AC Kempe 链的同一部分的一部分,或者它们各自位于 AC Kempe 链的不同部分。(如果一种和C例如,是红色和黄色的,则 AC 链是红黄色链。) – 如果一种和C每个位于 AC Kempe 链的不同部分,其中一个部分的颜色可以反转,这有效地重新着色 C 以匹配 A 的颜色。如果 A 和 C 是 AC Kempe 链的同一部分的一部分,则 B 和 D每个都必须位于 BD Kempe 链的不同部分,因为 AC Kempe 链将阻止任何 BD Kempe 链从 B 到达 D。(如果乙和D是蓝色和绿色,例如,那么一种BD Kempe 链是蓝绿色链。)在这种情况下,由于 B 和 D 分别位于 BD Kempe 链的不同部分,因此 BD Kempe 链的其中一个部分的颜色可以反转,这有效地重新着色 D 以匹配 B颜色。– 因此,可以使 C 与 A 具有相同的颜色或使 D 具有与 A 相同的颜色乙通过反转 Kempe 链的分离部分。

上面的图表是不完整的。这些图只显示了一个四阶顶点(顶点 E)、它的最近邻居(A、B、C 和 D),以及 AC Kempe 链的片段。整个图还将包含几个其他顶点(特别是与 B 或 D 相同的颜色)和足够多的边以成为 MPG。左图有 A 连接到C在 AC Kempe 链的单个部分中(意味着该链的顶点颜色与 A 和 C 相同)。左图显示此 AC Kempe 链阻止 B 连接到DBD Kempe 链条的一个部分。中间的数字在 AC Kempe 链的不同部分有 A 和 C。在这种情况下,B 可以通过 BD Kempe 链的单个部分连接到 D。但是,由于四阶顶点的 A 和 C 位于不同的部分,因此可以反转 C 链的颜色,以便在四阶顶点中,C 有效地重新着色以匹配 A 的颜色,如右图所示. 类似地,可以在左图中反转 D 的部分,以便有效地重新着色 D 以匹配 B 的颜色。

Kempe 还试图证明五阶顶点是可四色的,以证明四色定理 [Ref. 2],但 Heawood 在 1890 年证明他关于五次顶点的论点是不充分的 [Ref. 3]。让我们探讨一下如果我们尝试将我们对度数为四的顶点的推理应用于度数为五的顶点会发生什么。

数学代写|图论作业代写Graph Theory代考|The previous diagrams

前面的图表显示,当在交叉链图中一次执行两种颜色反转时,第一次颜色反转可能会破坏另一个链,从而允许第二次颜色反转影响 F 的一个邻居的颜色。当我们执行2−4反转将 B 从 2 更改为 4 ,这打破了 1-4 链。然后,当我们执行 2-3 反转以将 E 从 3 更改时,这导致 C 从 3 更改为 2 。结果,F 仍然连接到四种不同的颜色;这并没有像预期的那样反转为三个。
不幸的是,由于以下原因,您不能“同时”执行两个冲销。让我们尝试“同时”执行两个反转。在这个交叉链图中,当我们在 1-3 链的 B 侧交换 2 和 4 时,1-4 链中的一个 4 可能会变成 2,当我们在 E 侧交换 2 和 3 时1-4 链,1-3 链中的 3 之一可能会变为 2 。如下图所示:每条链中的一个 2 为灰色阴影。回想一下,这些数字是不完整的;他们专注于一个顶点 (F)、它的邻居 (A 到 E) 和 Kempe 链。其他顶点和边未显示。

请注意左侧的 3 之一如何变为 2。当我们反转时会发生这种情况C和和(最初是 3 和 2 )在 1-4 链的 E 侧。还要注意 4 个中的一个如何在右侧变为 2。当我们在 1-3 链之外反转 B 和 D(最初是 2 和 4)时,就会发生这种情况。现在我们看到了尝试同时交换两条链的颜色时会出现问题的地方。如果这两个 2 恰好通过上图虚线这样的边连接起来,如果我们同时进行双重反转,就会导致两个相同颜色的顶点共享一条边,这是不允许的。我们将在第 1 章重新讨论 Kempe 为五阶顶点着色的策略25.

数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|数据科学、大数据和数据多样性代写Data Science, Big Data and Data Variety代考|ITS836

如果你也在 怎样代写数据科学、大数据和数据多样性Data Science, Big Data and Data Variety这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数据科学是一个领域。大数据是一种收集、维护和处理巨大信息的技术。它是关于在各种操作中收集、处理、分析和利用数据。它更具有概念性。

statistics-lab™ 为您的留学生涯保驾护航 在代写数据科学、大数据和数据多样性Data Science, Big Data and Data Variety方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数据科学、大数据和数据多样性Data Science, Big Data and Data Variety代写方面经验极为丰富,各种代写数据科学、大数据和数据多样性Data Science, Big Data and Data Variety相关的作业也就用不着说。

我们提供的数据科学、大数据和数据多样性Data Science, Big Data and Data Variety及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|数据科学、大数据和数据多样性代写Data Science, Big Data and Data Variety代考|ITS836

统计代写|数据科学、大数据和数据多样性代写Data Science, Big Data and Data Variety代考|Sample Frame Construction

The applications discussed in Section $1.3 .1$ have assumed that a population or frame already exists and have focused on leveraging known information about these units to create sample partitions or subsets using unsupervised MLMs. In some situations, however, the frames may overcover the target population and may require modification prior to segmentation to create sampling units that have a higher incidence for the target population. In yet other situations, no known frames or systematic collection of population units are available. To this end, a growing body of literature is focused on applying MLMs to create sampling frames or revise existing frames to improve coverage for the intended target population. Some of these applications use existing frame data, auxiliary data, and survey data to create models predicting whether or not population units in an existing frame belong to the target population while other applications use Big Data sources, such as satellite images, to create models that will identify locations of sampling units.
Garber (2009) used classification trees to predict eligibility of units included in a master mailing list for a survey targeting farms. Reductions in data collection inefficiencies due to overcoverage resulted from removing those units with low likelihood of eligibility. Bosch et al. (2018) discuss how they added web address information to a business register composed of a list of enterprises using a focused web scraping approach. Because the crawler might have misidentified the uniform record locator (URL), the team used MLMs to predict whether the URL was appropriate for each enterprise in the database. In this application, MLMs were not applied directly to identify population units or to segment them, but rather as part of the process for editing information on the frame obtained via web scraping methods. Chew et al. (2018) combine the approaches of frame refinement with frame creation by applying a two-category classification task to predict whether a satellite image scene is residential or nonresidential within a gridded population sampling framework.

Gridded samples use a geographic information system to partition areas of interest into logistically manageable grid cells for sampling (Thomson et al. 2017; Amer 2015). These designs typically involve several stages with one of the key stages selecting a series of primary grid units (PGUs) followed by a subselection of many secondary grid units (SGUs) within the PGUs. In many applications of this approach in developing countries, these SGUs are sparsely populated and consequently may have no eligible household units within them. To improve sampling efficiency, a layer of coding is often deployed within the selected PGUs to eliminate SGUs that contain no eligible population units prior to the phase of sampling that selects a subset of the SGUs.

统计代写|数据科学、大数据和数据多样性代写Data Science, Big Data and Data Variety代考|Considerations About Algorithmic Optimization

The results deemed optimal for grouping population units into groups based on an MLM may not be optimal for sampling or data collection. For example, some results from unsupervised learning models may produce groups with a single or too few population units to support the sampling design or estimation of sampling variance. Generally, for stratification, one wants a sample of at least two population units selected per group and in some cases, larger samples may be needed for other analytic objectives including comparisons across groups. In these cases, we need to ensure that the final segmentation has sufficient numbers of population units per unit. As Burgette et al. (2019, p. 6) point out “we are less concerned with model fit and more concerned with the sample characteristics that result from using the clusters [segments] as sample strata.”
The MLMs are using an objective for optimization that is related to what researchers desire – a natural grouping of population units into segments. However, to be useful for sampling, these segments may need to have a minimum size or the number of such segments may need to be constrained to meet sampling field operations requirements or data collection cost constraints, none of which are considered in the algorithms. That is, the requirements of sample designs and survey operations are not seen by current clustering algorithms during their processing of available data to create potential sampling strata or primary sampling unit groupings. As a result, the results from the MLM serve as the basis or first step that is then refined to meet additional sampling requirements or data collection constraints.

统计代写|数据科学、大数据和数据多样性代写Data Science, Big Data and Data Variety代考|ITS836

数据科学、大数据和数据多样性代考

统计代写|数据科学、大数据和数据多样性代写Data Science, Big Data and Data Variety代考|Sample Frame Construction

部分讨论的应用1.3.1假设人口或框架已经存在,并专注于利用有关这些单位的已知信息来使用无监督 MLM 创建样本分区或子集。然而,在某些情况下,框架可能会覆盖目标人群,并且可能需要在分割之前进行修改以创建对目标人群具有更高发生率的采样单元。在其他情况下,没有已知的框架或人口单位的系统集合可用。为此,越来越多的文献集中在应用 MLM 来创建抽样框架或修改现有框架以提高对预期目标人群的覆盖率。其中一些应用程序使用现有的帧数据、辅助数据、
Garber (2009) 使用分类树来预测包含在主邮件列表中的单位的资格,以进行针对农场的调查。由于过度覆盖导致数据收集效率低下的减少是由于移除了那些合格可能性较低的单位。博世等人。(2018 年)讨论他们如何使用集中的网络抓取方法将网址信息添加到由企业列表组成的企业注册中。由于爬虫可能错误地识别了统一记录定位器 (URL),因此团队使用 MLM 来预测 URL 是否适合数据库中的每个企业。在此应用中,MLM 并未直接应用于识别人口单位或对其进行分割,而是作为编辑通过网络抓取方法获得的框架信息的过程的一部分。周等人。

网格化样本使用地理信息系统将感兴趣的区域划分为逻辑上可管理的网格单元以进行采样(Thomson 等人 2017;Amer 2015)。这些设计通常涉及多个阶段,其中一个关键阶段选择一系列主要电网单元 (PGU),然后是 PGU 内的许多次要电网单元 (SGU) 的子选择。这种方法在发展中国家的许多应用中,这些 SGU 人口稀少,因此可能没有符合条件的住户单元。为了提高抽样效率,通常在选定的 PGU 中部署一层编码,以在选择 SGU 子集的抽样阶段之前消除不包含符合条件的人口单位的 SGU。

统计代写|数据科学、大数据和数据多样性代写Data Science, Big Data and Data Variety代考|Considerations About Algorithmic Optimization

基于 MLM 将人口单位分组为最佳的结果可能不是采样或数据收集的最佳结果。例如,来自无监督学习模型的一些结果可能会产生具有单个或太少人口单位的群体,以支持抽样设计或抽样方差的估计。一般来说,对于分层,人们希望每组至少选择两个人口单位的样本,在某些情况下,可能需要更大的样本用于其他分析目标,包括跨组比较。在这些情况下,我们需要确保最终的分割具有足够数量的每个单位的人口单位。作为 Burgette 等人。(2019 年,第 6 页)指出“我们不太关心模型拟合,而更关心使用集群 [segments] 作为样本层所产生的样本特征。”
传销使用与研究人员期望相关的优化目标 – 将人口单位自然分组为段。然而,为了对抽样有用,这些段可能需要具有最小大小,或者可能需要限制这些段的数量以满足抽样现场操作要求或数据收集成本限制,算法中没有考虑到这些。也就是说,当前的聚类算法在处理可用数据以创建潜在的抽样层或初级抽样单位分组时,没有看到样本设计和调查操作的要求。因此,来自 MLM 的结果可作为基础或第一步,然后对其进行细化以满足额外的抽样要求或数据收集限制。

此图片的alt属性为空;文件名为statistics-lab-1024x443.jpg
统计代写|数据科学、大数据和数据多样性代写 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。



广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。



术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。



有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。



回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。



R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

The graphs above are incomplete. These figures only show a vertex with degree four (vertex E), its nearest neighbors (A, B, C, and D), and segments of A-C Kempe chains. The entire graphs would also contain several other vertices (especially, more colored the same as B or D) and enough edges to be MPG’s. The left figure has A connected to $C$ in a single section of an A-C Kempe chain (meaning that the vertices of this chain are colored the same as A and C). The left figure shows that this A-C Kempe chain prevents B from connecting to $\mathrm{D}$ with a single section of a B-D Kempe chain. The middle figure has A and C in separate sections of A-C Kempe chains. In this case, B could connect to D with a single section of a B-D Kempe chain. However, since the A and C of the vertex with degree four lie on separate sections, the color of C’s chain can be reversed so that in the vertex with degree four, C is effectively recolored to match A’s color, as shown in the right figure. Similarly, D’s section could be reversed in the left figure so that D is effectively recolored to match B’s color.

Kempe also attempted to demonstrate that vertices with degree five are fourcolorable in his attempt to prove the four-color theorem [Ref. 2], but his argument for vertices with degree five was shown by Heawood in 1890 to be insufficient [Ref. 3]. Let’s explore what happens if we attempt to apply our reasoning for vertices with degree four to a vertex with degree five.

数学代写|图论作业代写Graph Theory代考|The previous diagrams

The previous diagrams show that when the two color reversals are performed one at a time in the crossed-chain graph, the first color reversal may break the other chain, allowing the second color reversal to affect the colors of one of F’s neighbors. When we performed the $2-4$ reversal to change B from 2 to 4 , this broke the 1-4 chain. When we then performed the 2-3 reversal to change E from 3, this caused C to change from 3 to 2 . As a result, F remains connected to four different colors; this wasn’t reversed to three as expected.
Unfortunately, you can’t perform both reversals “at the same time” for the following reason. Let’s attempt to perform both reversals “at the same time.” In this crossed-chain diagram, when we swap 2 and 4 on B’s side of the 1-3 chain, one of the 4’s in the 1-4 chain may change into a 2, and when we swap 2 and 3 on E’s side of the 1-4 chain, one of the 3’s in the 1-3 chain may change into a 2 . This is shown in the following figure: one 2 in each chain is shaded gray. Recall that these figures are incomplete; they focus on one vertex (F), its neighbors (A thru E), and Kempe chains. Other vertices and edges are not shown.

Note how one of the 3’s changed into 2 on the left. This can happen when we reverse $\mathrm{C}$ and $\mathrm{E}$ (which were originally 3 and 2 ) on E’s side of the 1-4 chain. Note also how one of the 4’s changed into 2 on the right. This can happen when we reverse B and D (which were originally 2 and 4) outside of the 1-3 chain. Now we see where a problem can occur when attempting to swap the colors of two chains at the same time. If these two 2’s happen to be connected by an edge like the dashed edge shown above, if we perform the double reversal at the same time, this causes two vertices of the same color to share an edge, which isn’t allowed. We’ll revisit Kempe’s strategy for coloring a vertex with degree five in Chapter $25 .$

数学代写|图论作业代写Graph Theory代考| The shading of one section of the B-R

图论代考

数学代写|图论作业代写Graph Theory代考|The shading of one section of the B-R

由于 Kempe 链的每个部分都与同一颜色对的其他部分隔离,因此 Kempe 链的任何部分的颜色可以颠倒,但仍满足四色定理。这是一个重要且有用的概念。

上面 BR 链的一个部分的阴影说明了任何 Kempe 链的任何部分的颜色如何可以反转。请注意,我们反转了 BR 链的一个部分的颜色,但没有反转中心部分的颜色。同一条链的每个部分的颜色可以独立于该链的其他部分反转。

为什么 PG 有 Kempe 链?很容易理解为什么 MPG 有 Kempe 链。(由于 PG 是通过从 MPG 中去除边缘而形成的,并且由于适用于 MPG 的着色也适用于 PG,因此 PG 也具有 Kempe 链。)

  • MPG 是三角测量的。它由具有三个边和三个顶点的面组成。
  • 每个面的三个顶点必须是三种不同的颜色。
  • 每条边由两个相邻的三角形共享,形成一个四边形。
  • 每个四边形将有 3 或 4 种不同的颜色。如果与共享边相对的两个顶点恰好是相同的颜色,则它有 3 种颜色。
  • 对于每个四边形,四个顶点中的至少 1 个顶点和最多 3 个顶点具有任何颜色对的颜色。例如,具有 R、G、B 和G有 1 个顶点R−是和3个顶点乙−G,或者您可以将其视为 1 个顶点乙−是和3个顶点G−R,或者您可以将其视为 BR 的 2 个顶点和 GY 的 2 个顶点。在后一种情况下,2G’ 不是同一链的连续颜色。
  • 当您将更多三角形组合在一起(四边形仅组合两个)并考虑可能的颜色时,您将看到 Kempe 的部分

链子出现。我们将在 Chápter 中看到这些 Kémpé chảins 是如何出现的21.
也很容易看出一对颜色(如 RY)将如何与其对应颜色(BG)相邻:

  • 画一张R顶点和一个是由边连接的顶点。
  • 如果一个新顶点连接到这些顶点中的每一个,它必须是乙或者G.
  • 如果一个新顶点连接到 R 而不是是,可能是是,乙, 或者G.
  • 如果一个新的顶点连接到是但不是R,可能是R,乙, 或者G.
  • RY 链要么继续增长,要么被 B 包围,G.
  • 如果你关注 B 和 G,你会为它的链条得出类似的结论。
  • 如果一条链条完全被其对应物包围,则链条的新部分可能会出现在其对应物的另一侧。
    Kempe 证明了所有具有四阶的顶点(那些恰好连接到其他四个顶点的顶点)都是四色的 [Ref. 2]。例如,考虑下面的中心顶点。

数学代写|图论作业代写Graph Theory代考|In the previous figure

在上图中,顶点和是四度,因为它连接到其他四个顶点。Kempe 表明顶点 A、B、C 和 D 不能被强制为四种不同的颜色,这样顶点 E 总是可以被着色而不会违反四色定理,无论 MPG 的其余部分看起来如何上一页显示的部分。

  • A 和 C 或者是 AC Kempe 链的同一部分的一部分,或者它们各自位于 AC Kempe 链的不同部分。(如果一种和C例如,是红色和黄色的,则 AC 链是红黄色链。) – 如果一种和C每个位于 AC Kempe 链的不同部分,其中一个部分的颜色可以反转,这有效地重新着色 C 以匹配 A 的颜色。如果 A 和 C 是 AC Kempe 链的同一部分的一部分,则 B 和 D每个都必须位于 BD Kempe 链的不同部分,因为 AC Kempe 链将阻止任何 BD Kempe 链从 B 到达 D。(如果乙和D是蓝色和绿色,例如,那么一种BD Kempe 链是蓝绿色链。)在这种情况下,由于 B 和 D 分别位于 BD Kempe 链的不同部分,因此 BD Kempe 链的其中一个部分的颜色可以反转,这有效地重新着色 D 以匹配 B颜色。– 因此,可以使 C 与 A 具有相同的颜色或使 D 具有与 A 相同的颜色乙通过反转 Kempe 链的分离部分。

上面的图表是不完整的。这些图只显示了一个四阶顶点(顶点 E)、它的最近邻居(A、B、C 和 D),以及 AC Kempe 链的片段。整个图还将包含几个其他顶点(特别是与 B 或 D 相同的颜色)和足够多的边以成为 MPG。左图有 A 连接到C在 AC Kempe 链的单个部分中(意味着该链的顶点颜色与 A 和 C 相同)。左图显示此 AC Kempe 链阻止 B 连接到DBD Kempe 链条的一个部分。中间的数字在 AC Kempe 链的不同部分有 A 和 C。在这种情况下,B 可以通过 BD Kempe 链的单个部分连接到 D。但是,由于四阶顶点的 A 和 C 位于不同的部分,因此可以反转 C 链的颜色,以便在四阶顶点中,C 有效地重新着色以匹配 A 的颜色,如右图所示. 类似地,可以在左图中反转 D 的部分,以便有效地重新着色 D 以匹配 B 的颜色。

Kempe 还试图证明五阶顶点是可四色的,以证明四色定理 [Ref. 2],但 Heawood 在 1890 年证明他关于五次顶点的论点是不充分的 [Ref. 3]。让我们探讨一下如果我们尝试将我们对度数为四的顶点的推理应用于度数为五的顶点会发生什么。

数学代写|图论作业代写Graph Theory代考|The previous diagrams

前面的图表显示,当在交叉链图中一次执行两种颜色反转时,第一次颜色反转可能会破坏另一个链,从而允许第二次颜色反转影响 F 的一个邻居的颜色。当我们执行2−4反转将 B 从 2 更改为 4 ,这打破了 1-4 链。然后,当我们执行 2-3 反转以将 E 从 3 更改时,这导致 C 从 3 更改为 2 。结果,F 仍然连接到四种不同的颜色;这并没有像预期的那样反转为三个。
不幸的是,由于以下原因,您不能“同时”执行两个冲销。让我们尝试“同时”执行两个反转。在这个交叉链图中,当我们在 1-3 链的 B 侧交换 2 和 4 时,1-4 链中的一个 4 可能会变成 2,当我们在 E 侧交换 2 和 3 时1-4 链,1-3 链中的 3 之一可能会变为 2 。如下图所示:每条链中的一个 2 为灰色阴影。回想一下,这些数字是不完整的;他们专注于一个顶点 (F)、它的邻居 (A 到 E) 和 Kempe 链。其他顶点和边未显示。

请注意左侧的 3 之一如何变为 2。当我们反转时会发生这种情况C和和(最初是 3 和 2 )在 1-4 链的 E 侧。还要注意 4 个中的一个如何在右侧变为 2。当我们在 1-3 链之外反转 B 和 D(最初是 2 和 4)时,就会发生这种情况。现在我们看到了尝试同时交换两条链的颜色时会出现问题的地方。如果这两个 2 恰好通过上图虚线这样的边连接起来,如果我们同时进行双重反转,就会导致两个相同颜色的顶点共享一条边,这是不允许的。我们将在第 1 章重新讨论 Kempe 为五阶顶点着色的策略25.

数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|数据科学、大数据和数据多样性代写Data Science, Big Data and Data Variety代考|DATA2001

如果你也在 怎样代写数据科学、大数据和数据多样性Data Science, Big Data and Data Variety这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数据科学是一个领域。大数据是一种收集、维护和处理巨大信息的技术。它是关于在各种操作中收集、处理、分析和利用数据。它更具有概念性。

statistics-lab™ 为您的留学生涯保驾护航 在代写数据科学、大数据和数据多样性Data Science, Big Data and Data Variety方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数据科学、大数据和数据多样性Data Science, Big Data and Data Variety代写方面经验极为丰富,各种代写数据科学、大数据和数据多样性Data Science, Big Data and Data Variety相关的作业也就用不着说。

我们提供的数据科学、大数据和数据多样性Data Science, Big Data and Data Variety及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|数据科学、大数据和数据多样性代写Data Science, Big Data and Data Variety代考|DATA2001

统计代写|数据科学、大数据和数据多样性代写Data Science, Big Data and Data Variety代考|Overview of Machine Learning Methods

MLMs are generally flexible, nonparametric methods for making predictions or classifications from data. These methods are typically described by the algorithm that details how the predictions are made using the raw data and can allow for a larger number of predictors, referred to as high-dimensional data. These methods can often automatically detect nonlinearities in the relationships between independent and dependent variables and can identify interactions automatically. Generally, MLMs can be divided into two broad categories: supervised and unsupervised machine learning techniques. The goal of supervised learning is to optimally predict a dependent variable (also referred to as output, target, class, or label), based on a range of independent variables (also referred to as inputs, features, or attributes). When a supervised method is applied to predict continuous outcomes, it is generally referred to as a regression problem and a classification problem when used to predict levels of a categorical variable. Ordinary least squares regression is a classic example of supervised machine learning. Such a technique relies on a single (continuous) dependent variable and seeks to determine the best linear fit between this outcome and multiple independent variables. MLMs can also be used to group cases based on a collection of variables known for all the cases. In these situations, there is no single outcome of interest and MLMs that are used in this context are referred to as unsupervised learners. One of the most common unsupervised methods with which social scientists and market researchers might have some familiarity is hierarchical cluster analysis (HCA) – also known as segmentation. In this case, the main interest is not on modeling an outcome based on multiple independent variables, as in regression, but rather on understanding if there are combinations of variables (e.g. demographics) that can segment or group sets of customers, respondents, or members of a group, class, or city. The final output of this approach is the actual grouping of the cases within a dataset – where the grouping is determined by the collection of variables available for the analysis.
Unlike many traditional modeling techniques such as ordinary least squares regression, MLMs require a specification of hyperparameters or tuning parameters before a final model and predictions can be obtained. These parameters are often estimated from the data prior to estimating the final model. It could be useful to think of these as settings or “knobs” on the “machine” prior to hitting the start button to generate the predictions. One of the simplest examples of a tuning parameter comes from $k$-means clustering. Prior to running a $k$-means clustering algorithm, the method needs to know how many clusters it should produce in the end (i.e. $K$ ). The main point is that these tuning parameters are needed before computing final models and predictions.

统计代写|数据科学、大数据和数据多样性代写Data Science, Big Data and Data Variety代考|Sample Design Creation

Many early applications of MLMs for sample design development focused on using these algorithms to create partitions of known population units into optimal groupings to facilitate stratified sampling or some other type of sampling designs. In particular, these approaches apply various types of unsupervised machine learning algorithms such as $k$-means clustering or Gaussian mixture models (GMMs) to an array of frame data and other auxiliary information to segment population units into groups for use as primary sampling units or strata for sampling designs. The population might also refer to a survey panel and auxiliary information might refer to typical frame-related variables as well as survey variables collected during prior phases. In either case, the goal of these approaches is to optimize segmentation of population units into groups that are efficient for sampling rather than on optimizing model fit. Evaluation of the final groupings obtained from the MLMs considers implications for both sampling errors and operational issues.

Although the literature illustrating applications of these types of unsupervised machine learning algorithms for developing sampling designs is small, it is growing. Burgette et al. (2019) compared three different unsupervised learning methods to create sampling strata to understand the range of care delivery structures and processes being deployed to influence the total costs of caring for patients over time. More specifically, their team compared $k$-means clustering to a mixture of normals (also referred to as GMMs) and mixture of regression models for clustering annual total cost of care statistics over a three-year period for some 40 physician organizations participating in the Integrated Healthcare Association’s value-based pay-for-performance program. Of primary interest was the total cost of care and its pattern over this period, so developing a design that groups physician organizations by total cost trajectories and magnitude was crucial. The cluster groupings from each of the three methods considered formed the basis of sampling strata. Burgette et al. (2019) evaluated the results from each method and decided on the results produced using the mixture of normals for their final sampling strata.
The work of Burgette and colleagues highlighted some key, important differences in the assumptions and mechanics of the three clustering methods. Most notably, the $k$-means clustering algorithm is concerned with differences about the cluster means and assumes that the within-cluster variances are equal, and the algorithm seeks to group units so as to minimize this within-cluster variance across the $k$-clusters. A common assumption in many models such as ANOVA is that the assumption of equal stratum variances may be too restrictive and not reasonable. The optimal number of clusters generated from the $k$-means algorithm taken as strata will be too heterogeneous relative to other stratifications that focus on grouping sampling units to reduce variation within each stratum without the restriction or assumption that this reduced variance is the same for every stratum. Burgette et al. (2019) note that the mixture of normal models does not have the assumption of equal variance within each of the clusters and allows this variance to vary within the resulting clusters. The mixture of normal models also allows researchers to incorporate a unit of size as an additional input into the modeling process separate from the variables upon which clustering is based.

统计代写|数据科学、大数据和数据多样性代写Data Science, Big Data and Data Variety代考|DATA2001

数据科学、大数据和数据多样性代考

统计代写|数据科学、大数据和数据多样性代写Data Science, Big Data and Data Variety代考|Overview of Machine Learning Methods

传销通常是灵活的、非参数的方法,用于根据数据进行预测或分类。这些方法通常由算法描述,该算法详细说明了如何使用原始数据进行预测,并且可以允许更多的预测变量,称为高维数据。这些方法通常可以自动检测自变量和因变量之间关系中的非线性,并可以自动识别相互作用。一般来说,传销可以分为两大类:监督和非监督机器学习技术。监督学习的目标是根据一系列自变量(也称为输入、特征或属性)对因变量(也称为输出、目标、类别或标签)进行最佳预测。当使用监督方法来预测连续结果时,当用于预测分类变量的水平时,它通常被称为回归问题和分类问题。普通最小二乘回归是监督机器学习的一个经典例子。这种技术依赖于单个(连续)因变量,并试图确定该结果与多个自变量之间的最佳线性拟合。MLM 还可用于根据所有案例已知的变量集合对案例进行分组。在这些情况下,没有一个感兴趣的结果,在这种情况下使用的 MLM 被称为无监督学习器。社会科学家和市场研究人员可能熟悉的最常见的无监督方法之一是层次聚类分析 (HCA),也称为分割。在这种情况下,主要兴趣不是基于多个自变量对结果进行建模,如回归,而是了解是否存在可以对客户、受访者或成员集进行细分或分组的变量组合(例如人口统计)一个群体、阶级或城市。这种方法的最终输出是数据集中案例的实际分组——其中分组由可用于分析的变量的集合确定。而是了解是否有变量组合(例如人口统计)可以细分或分组客户、受访者或组、类或城市的成员。这种方法的最终输出是数据集中案例的实际分组——其中分组由可用于分析的变量的集合确定。而是了解是否有变量组合(例如人口统计)可以细分或分组客户、受访者或组、类或城市的成员。这种方法的最终输出是数据集中案例的实际分组——其中分组由可用于分析的变量的集合确定。
与许多传统建模技术(例如普通最小二乘回归)不同,MLM 在获得最终模型和预测之前需要指定超参数或调整参数。这些参数通常是在估计最终模型之前从数据中估计的。在点击开始按钮生成预测之前,将这些视为“机器”上的设置或“旋钮”可能会很有用。调整参数的最简单示例之一来自ķ- 表示聚类。在运行之前ķ-means 聚类算法,该方法需要知道它最终应该产生多少个聚类(即ķ)。要点是在计算最终模型和预测之前需要这些调整参数。

统计代写|数据科学、大数据和数据多样性代写Data Science, Big Data and Data Variety代考|Sample Design Creation

MLM 在样本设计开发中的许多早期应用都集中在使用这些算法将已知人口单位划分为最佳分组,以促进分层抽样或其他一些类型的抽样设计。特别是,这些方法应用了各种类型的无监督机器学习算法,例如ķ- 将聚类或高斯混合模型 (GMM) 用于帧数据数组和其他辅助信息,以将人口单位划分为组,用作抽样设计的初级抽样单位或分层。人口也可能指调查小组,辅助信息可能指典型的框架相关变量以及在先前阶段收集的调查变量。在任何一种情况下,这些方法的目标都是优化将人口单位分割成对抽样有效的组,而不是优化模型拟合。对从 MLM 获得的最终分组的评估考虑了对抽样误差和操作问题的影响。

尽管说明这些类型的无监督机器学习算法在开发抽样设计中的应用的文献很少,但它正在增长。Burgette 等人。(2019 年)比较了三种不同的无监督学习方法来创建抽样层,以了解正在部署的护理提供结构和流程的范围,以影响随着时间的推移护理患者的总成本。更具体地说,他们的团队比较了ķ-意味着对参与综合医疗保健协会基于价值的薪酬的大约 40 家医生组织在三年期间对年度总护理成本统计数据进行聚类,以混合正常值(也称为 GMM)和回归模型的混合-绩效计划。主要关注的是这一时期的总护理成本及其模式,因此开发一种按总成本轨迹和规模对医生组织进行分组的设计至关重要。所考虑的三种方法中的每一种方法的聚类分组构成了抽样层的基础。Burgette 等人。(2019 年)评估了每种方法的结果,并决定使用混合法线作为最终抽样层产生的结果。
Burgette 及其同事的工作强调了三种聚类方法的假设和机制中的一些关键的重要差异。最值得注意的是,ķ-means 聚类算法关注关于聚类均值的差异,并假设聚类内方差相等,并且该算法寻求对单元进行分组以最小化整个聚类中的聚类内方差ķ-集群。许多模型(如 ANOVA)中的一个常见假设是等层方差的假设可能过于严格且不合理。生成的最佳聚类数ķ-均值算法相对于其他分层而言,作为分层将过于异质,这些分层侧重于对抽样单元进行分组以减少每个分层内的变化,而没有限制或假设这种减少的方差对于每个分层都是相同的。Burgette 等人。(2019)注意到,正常模型的混合没有假设每个集群内的方差相等,并允许这种方差在结果集群内变化。正常模型的混合还允许研究人员将一个大小单位作为附加输入纳入建模过程,与聚类所基于的变量分开。

此图片的alt属性为空;文件名为statistics-lab-1024x443.jpg
统计代写|数据科学、大数据和数据多样性代写 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。



广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。



术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。



有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。



回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。



R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

The graphs above are incomplete. These figures only show a vertex with degree four (vertex E), its nearest neighbors (A, B, C, and D), and segments of A-C Kempe chains. The entire graphs would also contain several other vertices (especially, more colored the same as B or D) and enough edges to be MPG’s. The left figure has A connected to $C$ in a single section of an A-C Kempe chain (meaning that the vertices of this chain are colored the same as A and C). The left figure shows that this A-C Kempe chain prevents B from connecting to $\mathrm{D}$ with a single section of a B-D Kempe chain. The middle figure has A and C in separate sections of A-C Kempe chains. In this case, B could connect to D with a single section of a B-D Kempe chain. However, since the A and C of the vertex with degree four lie on separate sections, the color of C’s chain can be reversed so that in the vertex with degree four, C is effectively recolored to match A’s color, as shown in the right figure. Similarly, D’s section could be reversed in the left figure so that D is effectively recolored to match B’s color.

Kempe also attempted to demonstrate that vertices with degree five are fourcolorable in his attempt to prove the four-color theorem [Ref. 2], but his argument for vertices with degree five was shown by Heawood in 1890 to be insufficient [Ref. 3]. Let’s explore what happens if we attempt to apply our reasoning for vertices with degree four to a vertex with degree five.

数学代写|图论作业代写Graph Theory代考|The previous diagrams

The previous diagrams show that when the two color reversals are performed one at a time in the crossed-chain graph, the first color reversal may break the other chain, allowing the second color reversal to affect the colors of one of F’s neighbors. When we performed the $2-4$ reversal to change B from 2 to 4 , this broke the 1-4 chain. When we then performed the 2-3 reversal to change E from 3, this caused C to change from 3 to 2 . As a result, F remains connected to four different colors; this wasn’t reversed to three as expected.
Unfortunately, you can’t perform both reversals “at the same time” for the following reason. Let’s attempt to perform both reversals “at the same time.” In this crossed-chain diagram, when we swap 2 and 4 on B’s side of the 1-3 chain, one of the 4’s in the 1-4 chain may change into a 2, and when we swap 2 and 3 on E’s side of the 1-4 chain, one of the 3’s in the 1-3 chain may change into a 2 . This is shown in the following figure: one 2 in each chain is shaded gray. Recall that these figures are incomplete; they focus on one vertex (F), its neighbors (A thru E), and Kempe chains. Other vertices and edges are not shown.

Note how one of the 3’s changed into 2 on the left. This can happen when we reverse $\mathrm{C}$ and $\mathrm{E}$ (which were originally 3 and 2 ) on E’s side of the 1-4 chain. Note also how one of the 4’s changed into 2 on the right. This can happen when we reverse B and D (which were originally 2 and 4) outside of the 1-3 chain. Now we see where a problem can occur when attempting to swap the colors of two chains at the same time. If these two 2’s happen to be connected by an edge like the dashed edge shown above, if we perform the double reversal at the same time, this causes two vertices of the same color to share an edge, which isn’t allowed. We’ll revisit Kempe’s strategy for coloring a vertex with degree five in Chapter $25 .$

数学代写|图论作业代写Graph Theory代考| The shading of one section of the B-R

图论代考

数学代写|图论作业代写Graph Theory代考|The shading of one section of the B-R

由于 Kempe 链的每个部分都与同一颜色对的其他部分隔离,因此 Kempe 链的任何部分的颜色可以颠倒,但仍满足四色定理。这是一个重要且有用的概念。

上面 BR 链的一个部分的阴影说明了任何 Kempe 链的任何部分的颜色如何可以反转。请注意,我们反转了 BR 链的一个部分的颜色,但没有反转中心部分的颜色。同一条链的每个部分的颜色可以独立于该链的其他部分反转。

为什么 PG 有 Kempe 链?很容易理解为什么 MPG 有 Kempe 链。(由于 PG 是通过从 MPG 中去除边缘而形成的,并且由于适用于 MPG 的着色也适用于 PG,因此 PG 也具有 Kempe 链。)

  • MPG 是三角测量的。它由具有三个边和三个顶点的面组成。
  • 每个面的三个顶点必须是三种不同的颜色。
  • 每条边由两个相邻的三角形共享,形成一个四边形。
  • 每个四边形将有 3 或 4 种不同的颜色。如果与共享边相对的两个顶点恰好是相同的颜色,则它有 3 种颜色。
  • 对于每个四边形,四个顶点中的至少 1 个顶点和最多 3 个顶点具有任何颜色对的颜色。例如,具有 R、G、B 和G有 1 个顶点R−是和3个顶点乙−G,或者您可以将其视为 1 个顶点乙−是和3个顶点G−R,或者您可以将其视为 BR 的 2 个顶点和 GY 的 2 个顶点。在后一种情况下,2G’ 不是同一链的连续颜色。
  • 当您将更多三角形组合在一起(四边形仅组合两个)并考虑可能的颜色时,您将看到 Kempe 的部分

链子出现。我们将在 Chápter 中看到这些 Kémpé chảins 是如何出现的21.
也很容易看出一对颜色(如 RY)将如何与其对应颜色(BG)相邻:

  • 画一张R顶点和一个是由边连接的顶点。
  • 如果一个新顶点连接到这些顶点中的每一个,它必须是乙或者G.
  • 如果一个新顶点连接到 R 而不是是,可能是是,乙, 或者G.
  • 如果一个新的顶点连接到是但不是R,可能是R,乙, 或者G.
  • RY 链要么继续增长,要么被 B 包围,G.
  • 如果你关注 B 和 G,你会为它的链条得出类似的结论。
  • 如果一条链条完全被其对应物包围,则链条的新部分可能会出现在其对应物的另一侧。
    Kempe 证明了所有具有四阶的顶点(那些恰好连接到其他四个顶点的顶点)都是四色的 [Ref. 2]。例如,考虑下面的中心顶点。

数学代写|图论作业代写Graph Theory代考|In the previous figure

在上图中,顶点和是四度,因为它连接到其他四个顶点。Kempe 表明顶点 A、B、C 和 D 不能被强制为四种不同的颜色,这样顶点 E 总是可以被着色而不会违反四色定理,无论 MPG 的其余部分看起来如何上一页显示的部分。

  • A 和 C 或者是 AC Kempe 链的同一部分的一部分,或者它们各自位于 AC Kempe 链的不同部分。(如果一种和C例如,是红色和黄色的,则 AC 链是红黄色链。) – 如果一种和C每个位于 AC Kempe 链的不同部分,其中一个部分的颜色可以反转,这有效地重新着色 C 以匹配 A 的颜色。如果 A 和 C 是 AC Kempe 链的同一部分的一部分,则 B 和 D每个都必须位于 BD Kempe 链的不同部分,因为 AC Kempe 链将阻止任何 BD Kempe 链从 B 到达 D。(如果乙和D是蓝色和绿色,例如,那么一种BD Kempe 链是蓝绿色链。)在这种情况下,由于 B 和 D 分别位于 BD Kempe 链的不同部分,因此 BD Kempe 链的其中一个部分的颜色可以反转,这有效地重新着色 D 以匹配 B颜色。– 因此,可以使 C 与 A 具有相同的颜色或使 D 具有与 A 相同的颜色乙通过反转 Kempe 链的分离部分。

上面的图表是不完整的。这些图只显示了一个四阶顶点(顶点 E)、它的最近邻居(A、B、C 和 D),以及 AC Kempe 链的片段。整个图还将包含几个其他顶点(特别是与 B 或 D 相同的颜色)和足够多的边以成为 MPG。左图有 A 连接到C在 AC Kempe 链的单个部分中(意味着该链的顶点颜色与 A 和 C 相同)。左图显示此 AC Kempe 链阻止 B 连接到DBD Kempe 链条的一个部分。中间的数字在 AC Kempe 链的不同部分有 A 和 C。在这种情况下,B 可以通过 BD Kempe 链的单个部分连接到 D。但是,由于四阶顶点的 A 和 C 位于不同的部分,因此可以反转 C 链的颜色,以便在四阶顶点中,C 有效地重新着色以匹配 A 的颜色,如右图所示. 类似地,可以在左图中反转 D 的部分,以便有效地重新着色 D 以匹配 B 的颜色。

Kempe 还试图证明五阶顶点是可四色的,以证明四色定理 [Ref. 2],但 Heawood 在 1890 年证明他关于五次顶点的论点是不充分的 [Ref. 3]。让我们探讨一下如果我们尝试将我们对度数为四的顶点的推理应用于度数为五的顶点会发生什么。

数学代写|图论作业代写Graph Theory代考|The previous diagrams

前面的图表显示,当在交叉链图中一次执行两种颜色反转时,第一次颜色反转可能会破坏另一个链,从而允许第二次颜色反转影响 F 的一个邻居的颜色。当我们执行2−4反转将 B 从 2 更改为 4 ,这打破了 1-4 链。然后,当我们执行 2-3 反转以将 E 从 3 更改时,这导致 C 从 3 更改为 2 。结果,F 仍然连接到四种不同的颜色;这并没有像预期的那样反转为三个。
不幸的是,由于以下原因,您不能“同时”执行两个冲销。让我们尝试“同时”执行两个反转。在这个交叉链图中,当我们在 1-3 链的 B 侧交换 2 和 4 时,1-4 链中的一个 4 可能会变成 2,当我们在 E 侧交换 2 和 3 时1-4 链,1-3 链中的 3 之一可能会变为 2 。如下图所示:每条链中的一个 2 为灰色阴影。回想一下,这些数字是不完整的;他们专注于一个顶点 (F)、它的邻居 (A 到 E) 和 Kempe 链。其他顶点和边未显示。

请注意左侧的 3 之一如何变为 2。当我们反转时会发生这种情况C和和(最初是 3 和 2 )在 1-4 链的 E 侧。还要注意 4 个中的一个如何在右侧变为 2。当我们在 1-3 链之外反转 B 和 D(最初是 2 和 4)时,就会发生这种情况。现在我们看到了尝试同时交换两条链的颜色时会出现问题的地方。如果这两个 2 恰好通过上图虚线这样的边连接起来,如果我们同时进行双重反转,就会导致两个相同颜色的顶点共享一条边,这是不允许的。我们将在第 1 章重新讨论 Kempe 为五阶顶点着色的策略25.

数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|图论作业代写Graph Theory代考|MATH3V03

如果你也在 怎样代写图论Graph Theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

在数学中,图论是对图的研究,它是用来模拟对象之间成对关系的数学结构。这里,图由顶点(也称为节点或点)组成,这些顶点由边(也称为链接或线)连接。

statistics-lab™ 为您的留学生涯保驾护航 在代写图论Graph Theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写图论Graph Theory代写方面经验极为丰富,各种代写图论Graph Theory相关的作业也就用不着说。

我们提供的图论Graph Theory及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|图论作业代写Graph Theory代考|MATH3V03

数学代写|图论作业代写Graph Theory代考|Snowplow Routes

Having grown up in the northeast, when a snowplow came down our road could have a major effect on morning commutes. If a city wants to optimize their snowplows, they would want to plan the routes so no plow would need to travel over a road more than once (assuming it takes only one pass to clear the street). This is a little different than finding a singular eulerian circuit in the graph, since we do not need one snowplow to cover all the streets, but rather we want to split a city into sectors that each snowplow would then travel using an eulerian circuit or trail.

For simplicity, assume the town of Crystal Spring has already determined the sectors for their plows; the following map shows one such sector. To turn this into a problem of finding an eulerian circuit, we first model the town as a graph where the edges represent street blocks and the vertices the street intersections.

Notice that this graph is not eulerian since there are odd vertices, in fact there are quite a lot of them! At this point, we must adjust the graph so that a snowplow route can still be found. This is called an eulerization or semi-eulerization.

Our goal with an eulerization or semi-eulerization is to determine which edges should be traveled twice in order to find an optimal exhaustive route, that is a route that visits each edge at least once. The difficulty in this problem is in determining which edges should be duplicated. There is an additional issue we need to consider when choosing which edges to duplicate: are the edges equivalent or would some cost more to duplicate? Note cost could represent mileage, time, or dollars spent. For this example, we restrict our discussion to the scenario when the edges have equal cost. The next section discusses a variablé cost example.

To begin, we must first identify which vertices are odd and determine if we want an eulerization or semi-eulerization. For the snow plow example we will assume we want an eulerization (though it is reasonable to look for a semieulerization so long as the starting and ending vertices are on the edge of the city sector, see Exercise 2.12). The graph below displays the odd vertices in bold.

数学代写|图论作业代写Graph Theory代考|RNA Fragment Assembly

An RNA (ribonucleic acid) chain can contain one of four nucleotides: adenine $(A)$, cytosine $(C)$, guanine $(G)$, and uracil $(U)$. Early attempts to study RNA were hampered by long chains and to combat this enzymes were used to cut the strands, with a $G$-enzyme cutting after each $G$ in the strand and a $U C$ enzyme cutting after each $U$ and $C$ in the strand. In the example shown below, if these enzymes are applied to the same RNA chain then two different collections of fragments will be produced.

Some fragments obtained in this way will not end in the required nucleotides (such as $C A$ on the left and $A$ on the right) since they were at the end of the original RNA chain. If we were to attempt to reconstruct the original RNA chain, we would only know the ending fragment and not the arrangement of the other fragments. However, any such arrangement must be obtainable from both sets of fragments. For example, the chain UAAGCAGU AGCA would also produce these two sets. In 1969, George Hutchinson devised a way to use this information to determine the possible starting RNA chains based upon an eulerian circuit in a digraph constructed to show the interactions of the fragments [50]. While there have been many advances in the study of RNA and DNA since the 1960’s, Hutchinson’s use of graph theory in the early study of genetics and has led to further collaborations between mathematics and biology.

数学代写|图论作业代写Graph Theory代考|MATH3V03

图论代考

数学代写|图论作业代写Graph Theory代考|Snowplow Routes

在东北长大,当扫雪机从我们的道路上驶过时,可能会对早上的通勤产生重大影响。如果一个城市想要优化他们的扫雪机,他们会想要规划路线,这样犁就不需要在一条道路上多次行驶(假设只需要一次通过就可以清理街道)。这与在图中找到一个单一的欧拉回路有点不同,因为我们不需要一台扫雪机来覆盖所有街道,而是我们希望将一个城市分成多个扇区,然后每个扫雪机将使用欧拉回路或轨迹行驶.

为简单起见,假设水晶泉镇已经确定了犁的扇区;下图显示了一个这样的部门。为了将其转化为寻找欧拉回路的问题,我们首先将城镇建模为一个图,其中边代表街区,顶点代表街道交叉口。

请注意,该图不是欧拉图,因为有奇数个顶点,实际上有很多!此时,我们必须调整图表,以便仍然可以找到扫雪机路线。这称为欧拉化或半欧拉化。

我们使用欧拉化或半欧拉化的目标是确定哪些边应该经过两次才能找到最优的穷举路线,即至少访问每个边一次的路线。这个问题的困难在于确定哪些边应该被复制。在选择要复制的边时,我们还需要考虑一个额外的问题:边是等价的还是复制的成本更高?注意成本可以代表里程、时间或花费的美元。对于这个例子,我们将讨论限制在边具有相同成本的情况下。下一节讨论一个可变成本示例。

首先,我们必须首先确定哪些顶点是奇数,并确定我们想要欧拉化还是半欧拉化。对于扫雪机的例子,我们假设我们想要一个欧拉化(尽管只要起始和结束顶点都在城市扇区的边缘,寻找一个半欧拉化是合理的,请参见练习 2.12)。下图以粗体显示奇数顶点。

数学代写|图论作业代写Graph Theory代考|RNA Fragment Assembly

RNA(核糖核酸)链可以包含四种核苷酸之一:腺嘌呤(一个), 胞嘧啶(C), 鸟嘌呤(G), 和尿嘧啶(在). 早期研究 RNA 的尝试受到长链的阻碍,为了对抗这种酶,人们使用了一种G-每次酶切后G在链和一个在C每次酶切后在和C在链中。在下面显示的示例中,如果将这些酶应用于相同的 RNA 链,则会产生两个不同的片段集合。

以这种方式获得的某些片段不会以所需的核苷酸结尾(例如C一个在左边和一个右侧),因为它们位于原始 RNA 链的末端。如果我们要尝试重建原始 RNA 链,我们将只知道结束片段而不知道其他片段的排列。然而,任何这样的安排必须可以从两组片段中获得。例如,链 UAAGCAGU AGCA 也会生产这两组。1969 年,George Hutchinson 设计了一种方法,使用该信息来确定可能的起始 RNA 链,该方法基于构建用于显示片段相互作用的有向图中的欧拉回路 [50]。虽然自 1960 年代以来 RNA 和 DNA 的研究取得了许多进展,但 Hutchinson 在早期遗传学研究中使用图论并导致了数学和生物学之间的进一步合作。

此图片的alt属性为空;文件名为statistics-lab-1024x443.jpg
数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。



广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。



术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。



有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。



回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。



R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

The graphs above are incomplete. These figures only show a vertex with degree four (vertex E), its nearest neighbors (A, B, C, and D), and segments of A-C Kempe chains. The entire graphs would also contain several other vertices (especially, more colored the same as B or D) and enough edges to be MPG’s. The left figure has A connected to $C$ in a single section of an A-C Kempe chain (meaning that the vertices of this chain are colored the same as A and C). The left figure shows that this A-C Kempe chain prevents B from connecting to $\mathrm{D}$ with a single section of a B-D Kempe chain. The middle figure has A and C in separate sections of A-C Kempe chains. In this case, B could connect to D with a single section of a B-D Kempe chain. However, since the A and C of the vertex with degree four lie on separate sections, the color of C’s chain can be reversed so that in the vertex with degree four, C is effectively recolored to match A’s color, as shown in the right figure. Similarly, D’s section could be reversed in the left figure so that D is effectively recolored to match B’s color.

Kempe also attempted to demonstrate that vertices with degree five are fourcolorable in his attempt to prove the four-color theorem [Ref. 2], but his argument for vertices with degree five was shown by Heawood in 1890 to be insufficient [Ref. 3]. Let’s explore what happens if we attempt to apply our reasoning for vertices with degree four to a vertex with degree five.

数学代写|图论作业代写Graph Theory代考|The previous diagrams

The previous diagrams show that when the two color reversals are performed one at a time in the crossed-chain graph, the first color reversal may break the other chain, allowing the second color reversal to affect the colors of one of F’s neighbors. When we performed the $2-4$ reversal to change B from 2 to 4 , this broke the 1-4 chain. When we then performed the 2-3 reversal to change E from 3, this caused C to change from 3 to 2 . As a result, F remains connected to four different colors; this wasn’t reversed to three as expected.
Unfortunately, you can’t perform both reversals “at the same time” for the following reason. Let’s attempt to perform both reversals “at the same time.” In this crossed-chain diagram, when we swap 2 and 4 on B’s side of the 1-3 chain, one of the 4’s in the 1-4 chain may change into a 2, and when we swap 2 and 3 on E’s side of the 1-4 chain, one of the 3’s in the 1-3 chain may change into a 2 . This is shown in the following figure: one 2 in each chain is shaded gray. Recall that these figures are incomplete; they focus on one vertex (F), its neighbors (A thru E), and Kempe chains. Other vertices and edges are not shown.

Note how one of the 3’s changed into 2 on the left. This can happen when we reverse $\mathrm{C}$ and $\mathrm{E}$ (which were originally 3 and 2 ) on E’s side of the 1-4 chain. Note also how one of the 4’s changed into 2 on the right. This can happen when we reverse B and D (which were originally 2 and 4) outside of the 1-3 chain. Now we see where a problem can occur when attempting to swap the colors of two chains at the same time. If these two 2’s happen to be connected by an edge like the dashed edge shown above, if we perform the double reversal at the same time, this causes two vertices of the same color to share an edge, which isn’t allowed. We’ll revisit Kempe’s strategy for coloring a vertex with degree five in Chapter $25 .$

数学代写|图论作业代写Graph Theory代考| The shading of one section of the B-R

图论代考

数学代写|图论作业代写Graph Theory代考|The shading of one section of the B-R

由于 Kempe 链的每个部分都与同一颜色对的其他部分隔离,因此 Kempe 链的任何部分的颜色可以颠倒,但仍满足四色定理。这是一个重要且有用的概念。

上面 BR 链的一个部分的阴影说明了任何 Kempe 链的任何部分的颜色如何可以反转。请注意,我们反转了 BR 链的一个部分的颜色,但没有反转中心部分的颜色。同一条链的每个部分的颜色可以独立于该链的其他部分反转。

为什么 PG 有 Kempe 链?很容易理解为什么 MPG 有 Kempe 链。(由于 PG 是通过从 MPG 中去除边缘而形成的,并且由于适用于 MPG 的着色也适用于 PG,因此 PG 也具有 Kempe 链。)

  • MPG 是三角测量的。它由具有三个边和三个顶点的面组成。
  • 每个面的三个顶点必须是三种不同的颜色。
  • 每条边由两个相邻的三角形共享,形成一个四边形。
  • 每个四边形将有 3 或 4 种不同的颜色。如果与共享边相对的两个顶点恰好是相同的颜色,则它有 3 种颜色。
  • 对于每个四边形,四个顶点中的至少 1 个顶点和最多 3 个顶点具有任何颜色对的颜色。例如,具有 R、G、B 和G有 1 个顶点R−是和3个顶点乙−G,或者您可以将其视为 1 个顶点乙−是和3个顶点G−R,或者您可以将其视为 BR 的 2 个顶点和 GY 的 2 个顶点。在后一种情况下,2G’ 不是同一链的连续颜色。
  • 当您将更多三角形组合在一起(四边形仅组合两个)并考虑可能的颜色时,您将看到 Kempe 的部分

链子出现。我们将在 Chápter 中看到这些 Kémpé chảins 是如何出现的21.
也很容易看出一对颜色(如 RY)将如何与其对应颜色(BG)相邻:

  • 画一张R顶点和一个是由边连接的顶点。
  • 如果一个新顶点连接到这些顶点中的每一个,它必须是乙或者G.
  • 如果一个新顶点连接到 R 而不是是,可能是是,乙, 或者G.
  • 如果一个新的顶点连接到是但不是R,可能是R,乙, 或者G.
  • RY 链要么继续增长,要么被 B 包围,G.
  • 如果你关注 B 和 G,你会为它的链条得出类似的结论。
  • 如果一条链条完全被其对应物包围,则链条的新部分可能会出现在其对应物的另一侧。
    Kempe 证明了所有具有四阶的顶点(那些恰好连接到其他四个顶点的顶点)都是四色的 [Ref. 2]。例如,考虑下面的中心顶点。

数学代写|图论作业代写Graph Theory代考|In the previous figure

在上图中,顶点和是四度,因为它连接到其他四个顶点。Kempe 表明顶点 A、B、C 和 D 不能被强制为四种不同的颜色,这样顶点 E 总是可以被着色而不会违反四色定理,无论 MPG 的其余部分看起来如何上一页显示的部分。

  • A 和 C 或者是 AC Kempe 链的同一部分的一部分,或者它们各自位于 AC Kempe 链的不同部分。(如果一种和C例如,是红色和黄色的,则 AC 链是红黄色链。) – 如果一种和C每个位于 AC Kempe 链的不同部分,其中一个部分的颜色可以反转,这有效地重新着色 C 以匹配 A 的颜色。如果 A 和 C 是 AC Kempe 链的同一部分的一部分,则 B 和 D每个都必须位于 BD Kempe 链的不同部分,因为 AC Kempe 链将阻止任何 BD Kempe 链从 B 到达 D。(如果乙和D是蓝色和绿色,例如,那么一种BD Kempe 链是蓝绿色链。)在这种情况下,由于 B 和 D 分别位于 BD Kempe 链的不同部分,因此 BD Kempe 链的其中一个部分的颜色可以反转,这有效地重新着色 D 以匹配 B颜色。– 因此,可以使 C 与 A 具有相同的颜色或使 D 具有与 A 相同的颜色乙通过反转 Kempe 链的分离部分。

上面的图表是不完整的。这些图只显示了一个四阶顶点(顶点 E)、它的最近邻居(A、B、C 和 D),以及 AC Kempe 链的片段。整个图还将包含几个其他顶点(特别是与 B 或 D 相同的颜色)和足够多的边以成为 MPG。左图有 A 连接到C在 AC Kempe 链的单个部分中(意味着该链的顶点颜色与 A 和 C 相同)。左图显示此 AC Kempe 链阻止 B 连接到DBD Kempe 链条的一个部分。中间的数字在 AC Kempe 链的不同部分有 A 和 C。在这种情况下,B 可以通过 BD Kempe 链的单个部分连接到 D。但是,由于四阶顶点的 A 和 C 位于不同的部分,因此可以反转 C 链的颜色,以便在四阶顶点中,C 有效地重新着色以匹配 A 的颜色,如右图所示. 类似地,可以在左图中反转 D 的部分,以便有效地重新着色 D 以匹配 B 的颜色。

Kempe 还试图证明五阶顶点是可四色的,以证明四色定理 [Ref. 2],但 Heawood 在 1890 年证明他关于五次顶点的论点是不充分的 [Ref. 3]。让我们探讨一下如果我们尝试将我们对度数为四的顶点的推理应用于度数为五的顶点会发生什么。

数学代写|图论作业代写Graph Theory代考|The previous diagrams

前面的图表显示,当在交叉链图中一次执行两种颜色反转时,第一次颜色反转可能会破坏另一个链,从而允许第二次颜色反转影响 F 的一个邻居的颜色。当我们执行2−4反转将 B 从 2 更改为 4 ,这打破了 1-4 链。然后,当我们执行 2-3 反转以将 E 从 3 更改时,这导致 C 从 3 更改为 2 。结果,F 仍然连接到四种不同的颜色;这并没有像预期的那样反转为三个。
不幸的是,由于以下原因,您不能“同时”执行两个冲销。让我们尝试“同时”执行两个反转。在这个交叉链图中,当我们在 1-3 链的 B 侧交换 2 和 4 时,1-4 链中的一个 4 可能会变成 2,当我们在 E 侧交换 2 和 3 时1-4 链,1-3 链中的 3 之一可能会变为 2 。如下图所示:每条链中的一个 2 为灰色阴影。回想一下,这些数字是不完整的;他们专注于一个顶点 (F)、它的邻居 (A 到 E) 和 Kempe 链。其他顶点和边未显示。

请注意左侧的 3 之一如何变为 2。当我们反转时会发生这种情况C和和(最初是 3 和 2 )在 1-4 链的 E 侧。还要注意 4 个中的一个如何在右侧变为 2。当我们在 1-3 链之外反转 B 和 D(最初是 2 和 4)时,就会发生这种情况。现在我们看到了尝试同时交换两条链的颜色时会出现问题的地方。如果这两个 2 恰好通过上图虚线这样的边连接起来,如果我们同时进行双重反转,就会导致两个相同颜色的顶点共享一条边,这是不允许的。我们将在第 1 章重新讨论 Kempe 为五阶顶点着色的策略25.

数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|图论作业代写Graph Theory代考|MATH361

如果你也在 怎样代写图论Graph Theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

在数学中,图论是对图的研究,它是用来模拟对象之间成对关系的数学结构。这里,图由顶点(也称为节点或点)组成,这些顶点由边(也称为链接或线)连接。

statistics-lab™ 为您的留学生涯保驾护航 在代写图论Graph Theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写图论Graph Theory代写方面经验极为丰富,各种代写图论Graph Theory相关的作业也就用不着说。

我们提供的图论Graph Theory及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|图论作业代写Graph Theory代考|MATH361

数学代写|图论作业代写Graph Theory代考|Eulerian Graphs

Looking back at the Königsberg Bridge Problem, we now have the necessary pieces to describe the question in graph theoretic terminology, namely an exhaustive circuit that includes all vertices and edges of the graph. In honor of Euler’s solution, these special types of circuits bear his name.

Definition 2.6 Let $G$ be a graph. An eulerian circuit (or trail) is a circuit (or trail) that contains every edge and every vertex of $G$.

If $G$ contains an eulerian circuit it is called eulerian and if $G$ contains an eulerian trail but not an eulerian circuit it is called semi-eulerian.
Part of Euler’s brilliance was not only his ability to quickly solve a puzzle, such as the Königsberg Bridge Problem, but also the foresight to expand on that puzzle. What makes a graph eulerian? Under what conditions will a city have the proper tour? In his original paper, Euler laid out the conditions for such a solution, though as was typical of the time, he only proved a portion of the statement (see [6] or [33]).
Theorem 2.7 A graph $G$ is eulerian if and only if
(i) $G$ is connected and
(ii) every vertex has even degree.
The theorem above is of a special type in mathematics. It is written as an “if and only if” statement, which indicates that the conditions laid out are both necessary and sufficient. A necessary condition is a property that must be achieved in order for a solution to be possible and a sufficient condition is a property that guarantees the existence of a solution.

For a more familiar example, consider renting and driving a car. If you want to rent a car, a necessary condition would be having a driver’s license; but this condition may not be sufficient since some companies will only rent a car to a person of at least 25 years of age. In contrast, having a driver’s license is sufficient to be able to drive a car, but is not necessary since you can drive a car with a learner’s permit as long as a guardian is present.

数学代写|图论作业代写Graph Theory代考|Algorithms

As we now know when a graph will be eulerian or semi-eulerian, the next obvious question is how do we find one. There are numerous methods for finding an eulerian circuit (or trail), though we will focus on only two of these. Each of these algorithms will be described in terms of the input, steps to perform, and output, so it is clear how to apply the algorithm in various scenarios. See Appendix E for the pseudocode for various algorithms appearing in this book. For more a more technical discussion of the algorithms, the reader is encouraged to explore [8] or [52].

The first method for finding an eulerian circuit that we discuss is Fleury’s Algorithm. Although Fleury’s solution was not the first in print, it is one of the easiest to walk through (no pun intended) [35]. As with all future algorithms presented in this book, an example will immediately follow the description of the algorithm and further examples are available in the Exercises. Note that Fleury’s Algorithm will produce either an eulerian circuit or an eulerian trail depending on which solution is possible.

The intention behind Fleury’s Algorithm is that you are prevented from getting stuck at a vertex with no edges left to travel. In practice, it may be helpful to use two copies of the graph-one to keep track of the route and the other where labeled edges are removed. This second copy makes it easier to see which edges are unavailable to be chosen. In the example below, the vertex under consideration during a step of the algorithm will be highlighted and edges will be labeled in the order in which they are chosen.

数学代写|图论作业代写Graph Theory代考|MATH361

图论代考

数学代写|图论作业代写Graph Theory代考|Eulerian Graphs

回顾柯尼斯堡桥问题,我们现在有必要的部分来用图论术语来描述这个问题,即包含图的所有顶点和边的穷举电路。为了纪念欧拉的解决方案,这些特殊类型的电路以他的名字命名。

定义 2.6 让G成为一个图表。欧拉回路(或轨迹)是包含每个边和每个顶点的回路(或轨迹)G.

如果G包含一个欧拉回路,它被称为欧拉回路,如果G包含欧拉轨迹但不包含欧拉回路,它被称为半欧拉。
欧拉的部分才华不仅在于他能够快速解决诸如柯尼斯堡桥问题之类的难题,而且还在于他具有扩展该难题的远见。什么使图欧拉?一个城市在什么条件下会有合适的游览?在他的原始论文中,欧拉列出了这种解决方案的条件,尽管按照当时的典型情况,他只证明了陈述的一部分(参见 [6] 或 [33])。
定理 2.7 一个图G是欧拉当且仅当
(i)G是连通的并且
(ii) 每个顶点都有偶数度。
上述定理是数学中的一种特殊类型。它被写成“当且仅当”的陈述,表明所列出的条件既是必要的又是充分的。必要条件是为了使解决方案成为可能而必须实现的属性,而充分条件是保证解决方案存在的属性。

举一个更熟悉的例子,考虑租车和开车。如果你想租车,一个必要条件是有驾照;但这个条件可能还不够,因为一些公司只会将汽车租给至少 25 岁的人。相比之下,拥有驾驶执照足以驾驶汽车,但不是必需的,因为只要有监护人在场,您就可以使用学习许可证驾驶汽车。

数学代写|图论作业代写Graph Theory代考|Algorithms

正如我们现在知道的图何时是欧拉或半欧拉,下一个明显的问题是我们如何找到一个。有许多方法可以找到欧拉回路(或轨迹),但我们将只关注其中两种。这些算法中的每一个都将根据输入、执行步骤和输出进行描述,因此很清楚如何在各种场景中应用该算法。有关本书中出现的各种算法的伪代码,请参见附录 E。有关算法的更多技术性讨论,鼓励读者探索 [8] 或 [52]。

我们讨论的寻找欧拉回路的第一种方法是 Fleury 算法。尽管 Fleury 的解决方案不是第一个印刷的,但它是最容易理解的解决方案之一(没有双关语)[35]。与本书中介绍的所有未来算法一样,算法描述之后将立即提供一个示例,练习中提供了更多示例。请注意,根据可能的解决方案,Fleury 算法将产生欧拉回路或欧拉轨迹。

Fleury 算法背后的意图是防止您卡在没有边可移动的顶点。在实践中,使用图的两个副本可能会有所帮助 – 一个用于跟踪路线,另一个用于删除标记的边缘。第二个副本可以更容易地查看哪些边无法选择。在下面的示例中,在算法的一个步骤中考虑的顶点将被突出显示,边将按照它们被选择的顺序被标记。

此图片的alt属性为空;文件名为statistics-lab-1024x443.jpg
数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。



广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。



术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。



有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。



回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。



R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

The graphs above are incomplete. These figures only show a vertex with degree four (vertex E), its nearest neighbors (A, B, C, and D), and segments of A-C Kempe chains. The entire graphs would also contain several other vertices (especially, more colored the same as B or D) and enough edges to be MPG’s. The left figure has A connected to $C$ in a single section of an A-C Kempe chain (meaning that the vertices of this chain are colored the same as A and C). The left figure shows that this A-C Kempe chain prevents B from connecting to $\mathrm{D}$ with a single section of a B-D Kempe chain. The middle figure has A and C in separate sections of A-C Kempe chains. In this case, B could connect to D with a single section of a B-D Kempe chain. However, since the A and C of the vertex with degree four lie on separate sections, the color of C’s chain can be reversed so that in the vertex with degree four, C is effectively recolored to match A’s color, as shown in the right figure. Similarly, D’s section could be reversed in the left figure so that D is effectively recolored to match B’s color.

Kempe also attempted to demonstrate that vertices with degree five are fourcolorable in his attempt to prove the four-color theorem [Ref. 2], but his argument for vertices with degree five was shown by Heawood in 1890 to be insufficient [Ref. 3]. Let’s explore what happens if we attempt to apply our reasoning for vertices with degree four to a vertex with degree five.

数学代写|图论作业代写Graph Theory代考|The previous diagrams

The previous diagrams show that when the two color reversals are performed one at a time in the crossed-chain graph, the first color reversal may break the other chain, allowing the second color reversal to affect the colors of one of F’s neighbors. When we performed the $2-4$ reversal to change B from 2 to 4 , this broke the 1-4 chain. When we then performed the 2-3 reversal to change E from 3, this caused C to change from 3 to 2 . As a result, F remains connected to four different colors; this wasn’t reversed to three as expected.
Unfortunately, you can’t perform both reversals “at the same time” for the following reason. Let’s attempt to perform both reversals “at the same time.” In this crossed-chain diagram, when we swap 2 and 4 on B’s side of the 1-3 chain, one of the 4’s in the 1-4 chain may change into a 2, and when we swap 2 and 3 on E’s side of the 1-4 chain, one of the 3’s in the 1-3 chain may change into a 2 . This is shown in the following figure: one 2 in each chain is shaded gray. Recall that these figures are incomplete; they focus on one vertex (F), its neighbors (A thru E), and Kempe chains. Other vertices and edges are not shown.

Note how one of the 3’s changed into 2 on the left. This can happen when we reverse $\mathrm{C}$ and $\mathrm{E}$ (which were originally 3 and 2 ) on E’s side of the 1-4 chain. Note also how one of the 4’s changed into 2 on the right. This can happen when we reverse B and D (which were originally 2 and 4) outside of the 1-3 chain. Now we see where a problem can occur when attempting to swap the colors of two chains at the same time. If these two 2’s happen to be connected by an edge like the dashed edge shown above, if we perform the double reversal at the same time, this causes two vertices of the same color to share an edge, which isn’t allowed. We’ll revisit Kempe’s strategy for coloring a vertex with degree five in Chapter $25 .$

数学代写|图论作业代写Graph Theory代考| The shading of one section of the B-R

图论代考

数学代写|图论作业代写Graph Theory代考|The shading of one section of the B-R

由于 Kempe 链的每个部分都与同一颜色对的其他部分隔离,因此 Kempe 链的任何部分的颜色可以颠倒,但仍满足四色定理。这是一个重要且有用的概念。

上面 BR 链的一个部分的阴影说明了任何 Kempe 链的任何部分的颜色如何可以反转。请注意,我们反转了 BR 链的一个部分的颜色,但没有反转中心部分的颜色。同一条链的每个部分的颜色可以独立于该链的其他部分反转。

为什么 PG 有 Kempe 链?很容易理解为什么 MPG 有 Kempe 链。(由于 PG 是通过从 MPG 中去除边缘而形成的,并且由于适用于 MPG 的着色也适用于 PG,因此 PG 也具有 Kempe 链。)

  • MPG 是三角测量的。它由具有三个边和三个顶点的面组成。
  • 每个面的三个顶点必须是三种不同的颜色。
  • 每条边由两个相邻的三角形共享,形成一个四边形。
  • 每个四边形将有 3 或 4 种不同的颜色。如果与共享边相对的两个顶点恰好是相同的颜色,则它有 3 种颜色。
  • 对于每个四边形,四个顶点中的至少 1 个顶点和最多 3 个顶点具有任何颜色对的颜色。例如,具有 R、G、B 和G有 1 个顶点R−是和3个顶点乙−G,或者您可以将其视为 1 个顶点乙−是和3个顶点G−R,或者您可以将其视为 BR 的 2 个顶点和 GY 的 2 个顶点。在后一种情况下,2G’ 不是同一链的连续颜色。
  • 当您将更多三角形组合在一起(四边形仅组合两个)并考虑可能的颜色时,您将看到 Kempe 的部分

链子出现。我们将在 Chápter 中看到这些 Kémpé chảins 是如何出现的21.
也很容易看出一对颜色(如 RY)将如何与其对应颜色(BG)相邻:

  • 画一张R顶点和一个是由边连接的顶点。
  • 如果一个新顶点连接到这些顶点中的每一个,它必须是乙或者G.
  • 如果一个新顶点连接到 R 而不是是,可能是是,乙, 或者G.
  • 如果一个新的顶点连接到是但不是R,可能是R,乙, 或者G.
  • RY 链要么继续增长,要么被 B 包围,G.
  • 如果你关注 B 和 G,你会为它的链条得出类似的结论。
  • 如果一条链条完全被其对应物包围,则链条的新部分可能会出现在其对应物的另一侧。
    Kempe 证明了所有具有四阶的顶点(那些恰好连接到其他四个顶点的顶点)都是四色的 [Ref. 2]。例如,考虑下面的中心顶点。

数学代写|图论作业代写Graph Theory代考|In the previous figure

在上图中,顶点和是四度,因为它连接到其他四个顶点。Kempe 表明顶点 A、B、C 和 D 不能被强制为四种不同的颜色,这样顶点 E 总是可以被着色而不会违反四色定理,无论 MPG 的其余部分看起来如何上一页显示的部分。

  • A 和 C 或者是 AC Kempe 链的同一部分的一部分,或者它们各自位于 AC Kempe 链的不同部分。(如果一种和C例如,是红色和黄色的,则 AC 链是红黄色链。) – 如果一种和C每个位于 AC Kempe 链的不同部分,其中一个部分的颜色可以反转,这有效地重新着色 C 以匹配 A 的颜色。如果 A 和 C 是 AC Kempe 链的同一部分的一部分,则 B 和 D每个都必须位于 BD Kempe 链的不同部分,因为 AC Kempe 链将阻止任何 BD Kempe 链从 B 到达 D。(如果乙和D是蓝色和绿色,例如,那么一种BD Kempe 链是蓝绿色链。)在这种情况下,由于 B 和 D 分别位于 BD Kempe 链的不同部分,因此 BD Kempe 链的其中一个部分的颜色可以反转,这有效地重新着色 D 以匹配 B颜色。– 因此,可以使 C 与 A 具有相同的颜色或使 D 具有与 A 相同的颜色乙通过反转 Kempe 链的分离部分。

上面的图表是不完整的。这些图只显示了一个四阶顶点(顶点 E)、它的最近邻居(A、B、C 和 D),以及 AC Kempe 链的片段。整个图还将包含几个其他顶点(特别是与 B 或 D 相同的颜色)和足够多的边以成为 MPG。左图有 A 连接到C在 AC Kempe 链的单个部分中(意味着该链的顶点颜色与 A 和 C 相同)。左图显示此 AC Kempe 链阻止 B 连接到DBD Kempe 链条的一个部分。中间的数字在 AC Kempe 链的不同部分有 A 和 C。在这种情况下,B 可以通过 BD Kempe 链的单个部分连接到 D。但是,由于四阶顶点的 A 和 C 位于不同的部分,因此可以反转 C 链的颜色,以便在四阶顶点中,C 有效地重新着色以匹配 A 的颜色,如右图所示. 类似地,可以在左图中反转 D 的部分,以便有效地重新着色 D 以匹配 B 的颜色。

Kempe 还试图证明五阶顶点是可四色的,以证明四色定理 [Ref. 2],但 Heawood 在 1890 年证明他关于五次顶点的论点是不充分的 [Ref. 3]。让我们探讨一下如果我们尝试将我们对度数为四的顶点的推理应用于度数为五的顶点会发生什么。

数学代写|图论作业代写Graph Theory代考|The previous diagrams

前面的图表显示,当在交叉链图中一次执行两种颜色反转时,第一次颜色反转可能会破坏另一个链,从而允许第二次颜色反转影响 F 的一个邻居的颜色。当我们执行2−4反转将 B 从 2 更改为 4 ,这打破了 1-4 链。然后,当我们执行 2-3 反转以将 E 从 3 更改时,这导致 C 从 3 更改为 2 。结果,F 仍然连接到四种不同的颜色;这并没有像预期的那样反转为三个。
不幸的是,由于以下原因,您不能“同时”执行两个冲销。让我们尝试“同时”执行两个反转。在这个交叉链图中,当我们在 1-3 链的 B 侧交换 2 和 4 时,1-4 链中的一个 4 可能会变成 2,当我们在 E 侧交换 2 和 3 时1-4 链,1-3 链中的 3 之一可能会变为 2 。如下图所示:每条链中的一个 2 为灰色阴影。回想一下,这些数字是不完整的;他们专注于一个顶点 (F)、它的邻居 (A 到 E) 和 Kempe 链。其他顶点和边未显示。

请注意左侧的 3 之一如何变为 2。当我们反转时会发生这种情况C和和(最初是 3 和 2 )在 1-4 链的 E 侧。还要注意 4 个中的一个如何在右侧变为 2。当我们在 1-3 链之外反转 B 和 D(最初是 2 和 4)时,就会发生这种情况。现在我们看到了尝试同时交换两条链的颜色时会出现问题的地方。如果这两个 2 恰好通过上图虚线这样的边连接起来,如果我们同时进行双重反转,就会导致两个相同颜色的顶点共享一条边,这是不允许的。我们将在第 1 章重新讨论 Kempe 为五阶顶点着色的策略25.

数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写