统计代写|统计与机器学习作业代写Statistical and Machine Learning代考|MATH4432

如果你也在 怎样代写统计与机器学习Statistical and Machine Learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

统计学的目的是在样本的基础上对人群进行推断。机器学习被用来通过在数据中寻找模式来进行可重复的预测。

statistics-lab™ 为您的留学生涯保驾护航 在代写统计与机器学习Statistical and Machine Learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写统计与机器学习Statistical and Machine Learning方面经验极为丰富,各种代写机器学习Statistical and Machine Learning相关的作业也就用不着说。

我们提供的统计与机器学习Statistical and Machine Learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|统计与机器学习作业代写Statistical and Machine Learning代考|MATH4432

统计代写|统计与机器学习作业代写Statistical and Machine Learning代考|Concepts of Genomic Selection

The development of different molecular marker systems that started in the $1980 \mathrm{~s}$ drastically increased the total number of polymorphic markers available to breeders and molecular biologists in general. The single nucleotide polymorphism (SNP) that has been intensively used in QTL discovery is perhaps the most popular highthroughput genotyping system (Crossa et al. 2017). Initially, by applying markerassisted selection (MAS), molecular markers were integrated with traditional phenotypic selection. In the context of simple traits, MAS consists of selecting individuals with QTL-associated markers with major effects; markers not significantly associated with a trait are not used (Crossa et al. 2017). However, after many attempts to improve complex quantitative traits by using QTL-associated markers, there is not enough evidence that this method really can be helpful in practical breeding programs due to the difficulty of finding the same $\mathrm{QTL}$ across multiple environments (due to QTL $\times$ environment interaction) or in different genetic backgrounds (Bernardo 2016). Due to this difficulty of the MAS approach, in the early 2000 s, an approach called association mapping appeared with the purpose of overcoming the insufficient power of linkage analysis, thus facilitating the detection of marker-trait associations in non-biparental populations and fine-mapping chromosome segments with high recombination rates (Crossa et al. 2017). However, even the fine-mapping approach was unable to increase the power to detect rare variants that may be associated with economically important traits.

For this reason, Meuwissen et al. (2001) proposed the GS methodology (that was initially used in animal science), which is different from association mapping and QTL analysis, since GS simultaneously uses all the molecular markers available in a training data set for building a prediction model; then, with the output of the trained model, predictions are performed for new candidate individuals not included in the training data set, but only if genotypic information is available for those candidate individuals. This means that the goal of $\mathrm{GS}$ is to predict breeding and/or genetic values. Because GS is implemented in a two-stage process, to successfully implement it, the data must be divided into a training (TRN) and a testing (TST) set, as can be observed in Fig. 1.1. The training set is used in the first stage, while the testing set is used in the second stage. The main characteristics of the training set are (a) it combines molecular (independent variables) and phenotypic (dependent variables) data and (b) it contains enough observations (lines) and predictors (molecular data) to he able to train a statistical machine learning model with high generalized power (able to predict data not used in the training process) to predict new lines. The main characteristic of the testing set is that it only contains genotypic data (markers) for a sample of observations (lines) and the goal is to predict the phenotypic or breeding values of lines that have been genotyped but not phenotyped.

The two basic populations in a GS program are shown in Fig. 1.1: the training (TRN) data whose genotype and phenotype are known and the testing (TST) data whose phenotypic values are to be predicted using their genotypic information. GS substitutes phenotyping for a few selection cycles. Some advantages of GS over traditional (phenotypic) selection are that it: (a) reduces costs, in part by saving the resources required for extensive phenotyping, (b) saves time needed for variety development by reducing the cycle length, (c) has the ability to substantially increase the selection intensity, thus providing scenarios for capturing greater gain per unit time, (d) makes it possible to select traits that are very difficult to measure, and (e) can improve the accuracy of the selection process. Of course, successful implementation of GS depends strongly on the quality of the training and testing sets.
GS has great potential for quickly improving complex traits with low heritability, as well as significantly reducing the cost of line and hybrid development. Certainly, GS could also be employed for simple traits with higher heritability than complex traits, and high genomic prediction (GP) accuracy is expected.

统计代写|统计与机器学习作业代写Statistical and Machine Learning代考|Why Is Statistical Machine Learning a Key Element of Genomic Selection?

GS is challenging and very interesting because it aims to improve crop productivity to satisfy humankind’s need for food. Addressing the current challenges to increase crop productivity by improving the genetic makeup of plants and avoiding plant diseases is not new, but it is of paramount importance today to be able to increase crop productivity around the world without the need to increase the arable land. Statistical machine learning methods can help improve GS methodology, since they are able to make computers learn patterns that could be used for analysis, interpretation, prediction, and decision-making. These methods learn the relationships between the predictors and the target output using statistical and mathematical models that are implemented using computational tools to be able to predict (or explain) one or more dependent variables based on one or more independent variables in an efficient manner. However, to do this successfully, many real-world problems are only approximated using the statistical machine learning tools, by evaluating probabilistic distributions, and the decisions made using these models are supported by indicators like confidence intervals. However, the creation of models using probability distributions and indicators for evaluating prediction (or association) performance is a field of statistical machine learning, which is a branch of artificial intelligence, understanding as statistical machine learning the application of statistical methods to identify patterns in data using computers, but giving computers the ability to learn without being explicitly programmed (Samuel 1959). However, artificial intelligence is the field of science that creates machines or devices that can mimic intelligent behaviors.

As mentioned above, statistical machine learning allows learning the relationship between two types of information that are assumed to be related. Then one part of the information (input or independent variables) can be used to predict the information lacking (output or dependent variables) in the other using the learned relationship. The information we want to predict is defined as the response variable $(y)$, while the information we use as input are the predictor variables $(\boldsymbol{X})$. Thanks to the continuous reduction in the cost of genotyping, GS nowadays is implemented in many crops around the world, which has caused the accumulation of large amounts of biological data that can be used for prediction of non-phenotyped plants and animals. However, GS implementation is still challenging, since the quality of the data (phenotypic and genotypic) needs to be improved. Many times the genotypic information available is not enough to make high-quality predictions of the target trait, since the information available has a lot of noise. Also, since there is no universal best prediction model that can be used under all circumstances, a good understanding of statistical machine learning models is required to increase the efficiency of the selection process of the best candidate individuals with GS early in time. This is very important because one of the key components of genomic selection is the use of statistical machine learning models for the prediction of non-phenotyped individuals. For this reason, statistical machine learning tools have the power to help increase the potential of GS if more powerful statistical machine learning methods are developed, if the existing methods can deal with larger data sets, and if these methods can be automatized to perform the prediction process with only a limited knowledge of the subject.

统计代写|统计与机器学习作业代写Statistical and Machine Learning代考|MATH4432

统计与机器学习代考

统计代写|统计与机器学习作业代写统计和机器学习代考|基因组选择的概念


从$1980 \mathrm{~s}$开始的不同分子标记系统的发展大大增加了育种家和一般分子生物学家可用的多态标记的总数。单核苷酸多态性(SNP)被大量用于QTL发现,可能是最受欢迎的高通量基因分型系统(Crossa et al. 2017)。首先,利用标记辅助选择(MAS)将分子标记与传统表型选择相结合。在简单性状的背景下,MAS包括选择具有主要效应的qtl相关标记的个体;与性状无显著相关的标记不使用(Crossa et al. 2017)。然而,在多次尝试使用QTL相关标记来改善复杂的数量性状后,由于难以在多个环境(由于QTL $\times$环境相互作用)或在不同的遗传背景中找到相同的$\mathrm{QTL}$ (Bernardo 2016),没有足够的证据表明该方法在实际育种项目中真的有帮助。由于MAS方法的这一困难,在21世纪初,一种名为关联映射的方法出现了,其目的是克服连锁分析能力不足的问题,从而促进在非双亲本群体和高重组率的精细映射染色体段中检测标记-性状关联(Crossa et al. 2017)。然而,即使是精细映射方法也无法提高检测可能与经济重要性状相关的罕见变异的能力


为此,Meuwissen等人(2001)提出了GS方法(最初用于动物科学),它不同于关联映射和QTL分析,因为GS同时使用训练数据集中可用的所有分子标记来构建预测模型;然后,根据训练模型的输出,对训练数据集中不包括的新候选个体进行预测,但只有在这些候选个体的基因型信息可用的情况下才进行预测。这意味着$\mathrm{GS}$的目标是预测育种和/或遗传价值。由于GS是分两阶段实现的,要成功实现GS,必须将数据分为训练集(TRN)和测试集(TST),如图1.1所示。第一阶段使用训练集,第二阶段使用测试集。训练集的主要特征是(a)它结合了分子(自变量)和表型(因变量)数据,(b)它包含足够多的观察(线)和预测(分子数据),从而能够训练一个具有高广义幂的统计机器学习模型(能够预测训练过程中未使用的数据)来预测新的线。该测试集的主要特点是它只包含观察样本(系)的基因型数据(标记),目的是预测已基因分型但未表型的系的表型或育种值


GS程序中的两个基本种群如图1.1所示:已知基因型和表型的训练(TRN)数据和使用基因型信息预测表型值的测试(TST)数据。GS代替了表型的几个选择周期。GS相对于传统(表型)选择的一些优势是:(a)降低成本,部分是通过节省大量表型分型所需的资源,(b)通过减少周期长度节省品种开发所需的时间,(c)有能力大幅增加选择强度,从而提供在单位时间内获得更大增益的场景,(d)使选择非常难以测量的性状成为可能,(e)可以提高选择过程的准确性。当然,GS的成功实施很大程度上取决于训练和测试集的质量。
GS在快速改良遗传力低的复杂性状以及显著降低品系和杂交种育种成本方面具有巨大潜力。当然,对于遗传力比复杂性状更高的简单性状,也可以采用GS方法进行遗传预测,从而获得较高的基因组预测精度。

统计代写|统计与机器学习作业代写统计和机器学习代考|为什么统计机器学习是基因组选择的关键因素?


GS是具有挑战性和非常有趣的,因为它旨在提高作物生产力,以满足人类对食物的需求。通过改善植物的基因组成和避免植物病害来应对目前的挑战,以提高作物生产力,这并不新鲜,但今天能够在不需要增加耕地的情况下提高世界各地的作物生产力是至关重要的。统计机器学习方法可以帮助改进GS方法,因为它们能够使计算机学习可以用于分析、解释、预测和决策的模式。这些方法使用使用计算工具实现的统计和数学模型来学习预测器和目标输出之间的关系,从而能够基于一个或多个自变量以有效的方式预测(或解释)一个或多个因变量。然而,要成功做到这一点,许多现实世界的问题只能使用统计机器学习工具,通过评估概率分布来近似求解,使用这些模型做出的决策由诸如置信区间等指标支持。然而,使用概率分布和指标来评估预测(或关联)性能的模型的创建是统计机器学习的一个领域,它是人工智能的一个分支,将统计机器学习理解为使用计算机识别数据模式的统计方法的应用,但赋予计算机无需明确编程的学习能力(Samuel 1959)。然而,人工智能是一门创造能够模仿智能行为的机器或设备的科学领域


如上所述,统计机器学习允许学习两种被认为是相关的信息之间的关系。然后,利用学习到的关系,可以用一部分信息(输入或自变量)来预测另一部分信息(输出或因变量)的缺失。我们想要预测的信息被定义为响应变量$(y)$,而我们用作输入的信息是预测变量$(\boldsymbol{X})$。由于基因分型成本的不断降低,GS如今在世界各地的许多作物中都得到了应用,积累了大量的生物学数据,可用于非表现型动植物的预测。然而,GS的实施仍然具有挑战性,因为数据(表型和基因型)的质量需要提高。很多时候,可用的基因型信息不足以对目标性状做出高质量的预测,因为可用的信息有很多噪声。此外,由于不存在可以在所有情况下使用的通用最佳预测模型,因此需要很好地理解统计机器学习模型,以提高早期GS最佳候选人个体选择过程的效率。这是非常重要的,因为基因组选择的关键组成部分之一是使用统计机器学习模型来预测非表现型个体。因此,如果开发出更强大的统计机器学习方法,如果现有的方法可以处理更大的数据集,如果这些方法可以自动执行预测过程,只需对主题的有限知识,统计机器学习工具就有能力帮助提高GS的潜力

统计代写|统计与机器学习作业代写Statistical and Machine Learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。统计代写|python代写代考

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注