标签: MAT3100

数学代写|线性规划作业代写Linear Programming代考|MAT3100

如果你也在 怎样代写线性规划Linear Programming 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。线性规划Linear Programming是执行优化的最简单方法之一。通过一些简化的假设,它可以帮助你解决一些非常复杂的LP问题和线性优化问题。

线性规划Linear Programming是一种数学建模技术,涉及在考虑各种约束的情况下最大化或最小化线性函数。事实证明,这种方法在指导不同领域的定量决策方面很有用,比如商业规划、工业工程,在某种程度上还包括社会科学和物理科学。线性规划,也称为线性优化,是一种在需求由线性关系定义的数学模型中实现最佳可能结果的方法。

statistics-lab™ 为您的留学生涯保驾护航 在代写线性规划Linear Programming方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写线性规划Linear Programming代写方面经验极为丰富,各种代写线性规划Linear Programming相关的作业也就用不着说。

数学代写|线性规划作业代写Linear Programming代考|MAT3100

数学代写|线性规划作业代写Linear Programming代考|The Minimax Theorem

Having reduced the computation of the optimal strategies $x^$ and $y^$ to the solution of linear programs, it is now a simple matter to show that they are consistent with each other. The next theorem, which establishes this consistency, is called the Minimax Theorem:
THEOREM 11.1. There exist stochastic vectors $x^$ and $y^$ for which
$$
\max _x y^{* T} A x=\min _y y^T A x^* .
$$
PROOF. The proof follows trivially from the observation that (11.4) is the dual of (11.3). Therefore, $v^=u^$. Furthermore,
$$
v^=\min _i e_i^T A x^=\min _y y^T A x^*
$$
and similarly,
$$
u^=\max _j e_j^T A^T y^=\max _x x^T A^T y^=\max _x y^{ T} A x .
$$

数学代写|线性规划作业代写Linear Programming代考|Poker

Some card games such as poker involve a round of bidding in which the players at times bluff by increasing their bid in an attempt to coerce their opponents into backing down, even though if the challenge is accepted they will surely lose. Similarly, they will sometimes underbid to give their opponents false hope. In this section, we shall study a simplified version of poker (the real game is too hard to analyze) to see if bluffing and underbidding are justified bidding strategies.

Simplified poker involves two players, A and B, and a deck having three cards, 1, 2 , and 3 . At the beginning of a round, each player “antes up” $\$ 1$ and is dealt one card from the deck. A bidding session follows in which each player in turn, starting with A, either (a) bets and adds $\$ 1$ to the “kitty” or (b) passes. Bidding terminates when
a bet is followed by a bet,
a pass is followed by a pass, or
a bet is followed by a pass.
In the first two cases, the winner of the round is decided by comparing cards, and the kitty goes to the player with the higher card. In the third case, bet followed by pass, the player who bet wins the round independently of who had the higher card (in real poker, the player who passes is said to fold).

With these simplified betting rules, there are only five possible betting scenarios:
\begin{tabular}{|c|c|c|c|}
\hline A passes, & B passes: & & $\$ 1$ to holder of higher card \
\hline A passes, & B bets, & A passes: & $\$ 1$ to $B$ \
\hline A passes, & B bets, & A bets: & $\$ 2$ to holder of higher card \
\hline A bets, & B passes: & & $\$ 1$ to $\mathrm{A}$ \
\hline A bets, & B bets: & & $\$ 2$ to holder of higher card \
\hline
\end{tabular}

数学代写|线性规划作业代写Linear Programming代考|MAT3100

线性规划代写

数学代写|线性规划作业代写Linear Programming代考|The Minimax Theorem

将最优策略$x^$和$y^$的计算简化为线性规划的解后,现在证明它们彼此一致就很简单了。下一个定理,建立了这种一致性,被称为极大极小定理:
定理11.1。存在随机向量$x^$和$y^$
$$
\max _x y^{* T} A x=\min _y y^T A x^* .
$$
证明。从(11.4)是(11.3)的对偶这一观察不难得出证明。因此,$v^=u^$。此外,
$$
v^=\min _i e_i^T A x^=\min _y y^T A x^*
$$
类似地,
$$
u^=\max _j e_j^T A^T y^=\max _x x^T A^T y^=\max _x y^{ T} A x .
$$

数学代写|线性规划作业代写Linear Programming代考|Poker

有些纸牌游戏(如扑克)包含一轮竞价,玩家有时会通过提高自己的竞价来虚张声势,试图迫使对手让步,即使对手接受了挑战,他们也肯定会输。同样,他们有时会压低报价,给对手虚假的希望。在本节中,我们将研究一个简化版的扑克(真正的游戏很难分析),看看虚张声势和低竞价是否是合理的竞价策略。

简单的扑克包括两个玩家,A和B,一副牌有三张牌,1、2和3。在一轮开始时,每个玩家“antes up”$\$ 1$并从牌组中发一张牌。接下来是一个叫牌环节,每个玩家依次从A开始,(A)下注并在“kitty”中加上$\$ 1$,或者(b)通过。投标终止于
一赌再赌,
一个传球之后是一个传球,或者
下注后是通过。
在前两种情况下,这一轮的赢家是通过比较牌来决定的,小猫会给牌高的玩家。在第三种情况下,下注后通过,下注的玩家赢得这一轮,而不管谁的牌更高(在真正的扑克中,通过的玩家被称为弃牌)。

根据这些简化的投注规则,只有五种可能的投注场景:
\begin{tabular}{|c|c|c|c|}
\hline A passes, & B passes: & & $\$ 1$ to holder of higher card \hline A passes, & B bets, & A passes: & $\$ 1$ to $B$ \hline A passes, & B bets, & A bets: & $\$ 2$ to holder of higher card \hline A bets, & B passes: & & $\$ 1$ to $\mathrm{A}$ \hline A bets, & B bets: & & $\$ 2$ to holder of higher card \hline
\end{tabular}

数学代写|线性规划作业代写Linear Programming代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|MAT3100 Linear Programming

Statistics-lab™可以为您提供uio.no MAT3100 Linear Programming线性规划课程的代写代考辅导服务!

MAT3100 Linear Programming课程简介

The book is a comprehensive text on linear programming, covering both the theoretical foundations and practical applications of the subject. It is intended for graduate-level students and researchers in mathematics, engineering, and related fields.

Some of the topics covered in the book include linear algebra, convex analysis, duality theory, sensitivity analysis, and algorithms for solving linear programming problems. The book also includes numerous examples and exercises to help readers develop their understanding of the material.

If you have access to SpringerLink through your institution, you should be able to access the book online. You can search for the book on the SpringerLink website and click on the “Access” button to log in and view the book.

PREREQUISITES 

Instructor: Mikhail Lavrov
Location: Mathematics 112
Lecture times: 5:00pm to 6:15pm on Tuesday and Thursday
Textbook: Linear Programming: Foundations and Extensions by Robert
Vanderbei. You can access it online via SpringerLink (you will have to click Log in, in the top right, and access it via KSU’s subscription).
Office hours: Tuesday 12:00pm to 1:00pm, Wednesday 4:00pm to 5:00pm in Mathematics 245.
D2L page: https://kennesaw.view.usg.edu/d2l/home/2672229
During the scheduled office hours, you are welcome to stop by my office without an appointment: answering your questions is the reason I’m there! Outside that time, please email me at [email protected] and I will either answer your question by email, or we will find a different time to meet.
(However, it is difficult for me to adjust my schedule on very short notice, so please email me the day before if you want to set up a meeting.)

D2L will be used to submit assignments (these will be posted both here and on D2L, for convenience) and to view grades. The syllabus is also posted on D2L.

MAT3100 Linear Programming HELP(EXAM HELP, ONLINE TUTOR)

问题 1.

Theorem 1 Let $f$ be a convex function defined on the convex set $\Omega$. Then the set $\Gamma$ where $f$ achieves its minimum is convex, and any relative minimum of $f$ is a global minimum.

Proof If $f$ has no relative minima the theorem is valid by default. Assume now that $c_0$ is the minimum of $f$. Then clearly $\Gamma=\left{\mathbf{x}: f(\mathbf{x}) \leqslant c_0, \mathbf{x} \in \Omega\right}$ and this is convex by Proposition 3 of the last section.

Suppose now that $\mathbf{x}^* \in \Omega$ is a relative minimum point of $f$, but that there is another point $\mathbf{y} \in \Omega$ with $f(\mathbf{y})<f\left(\mathbf{x}^\right)$. On the line $\alpha \mathbf{y}+(1-\alpha) \mathbf{x}^, 0<\alpha<1$ we have
$$
f\left(\alpha \mathbf{y}+(1-\alpha) \mathbf{x}^\right) \leqslant \alpha f(\mathbf{y})+(1-\alpha) f\left(\mathbf{x}^\right)<f\left(\mathbf{x}^\right), $$ contradicting the fact that $\mathbf{x}^$ is a relative minimum point.
We might paraphrase the above theorem as saying that for convex functions, all minimum points are located together (in a convex set) and all relative minima are global minima. The next theorem says that if $f$ is continuously differentiable and convex, then satisfaction of the first-order necessary conditions are both necessary and sufficient for a point to be a global minimizing point.

问题 2.

Theorem 2 Let $f \in C^1$ be convex on the convex set $\Omega$. If there is a point $\mathbf{x}^* \in \Omega$ such that, for all $\mathbf{y} \in \Omega, \nabla f\left(\mathbf{x}^\right)\left(\mathbf{y}-\mathbf{x}^\right) \geqslant 0$, then $\mathbf{x}^*$ is a global minimum point of $f$ over $\Omega$.

Proof We note parenthetically that since $\mathbf{y}-\mathbf{x}^$ is a feasible direction at $\mathbf{x}^$, the given condition is equivalent to the first-order necessary condition stated in Sect. 7.1. The proof of the proposition is immediate, since by Proposition 4 of the last section
$$
f(\mathbf{y}) \geqslant f\left(\mathbf{x}^\right)+\nabla f\left(\mathbf{x}^\right)\left(\mathbf{y}-\mathbf{x}^\right) \geqslant f\left(\mathbf{x}^\right)
$$
Next we turn to the question of maximizing a convex function over a convex set. There is, however, no analog of Theorem 1 for maximization; indeed, the tendency is for the occurrence of numerous nonglobal relative maximum points. Nevertheless, it is possible to prove one important result. It is not used in subsequent chapters, but it is useful for some areas of optimization (Fig. 7.5).

Textbooks


• An Introduction to Stochastic Modeling, Fourth Edition by Pinsky and Karlin (freely
available through the university library here)
• Essentials of Stochastic Processes, Third Edition by Durrett (freely available through
the university library here)
To reiterate, the textbooks are freely available through the university library. Note that
you must be connected to the university Wi-Fi or VPN to access the ebooks from the library
links. Furthermore, the library links take some time to populate, so do not be alarmed if
the webpage looks bare for a few seconds.

此图像的alt属性为空;文件名为%E7%B2%89%E7%AC%94%E5%AD%97%E6%B5%B7%E6%8A%A5-1024x575-10.png
数学代写|MAT3100 Linear Programming

Statistics-lab™可以为您提供uio.no MAT3100 Linear Programming线性规划课程的代写代考辅导服务! 请认准Statistics-lab™. Statistics-lab™为您的留学生涯保驾护航。