统计代写|统计推断代写Statistical inference代考|ST502

如果你也在 怎样代写统计推断Statistical Inference 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。统计推断Statistical Inference领域,有两种主要的思想流派。每一种方法都有其支持者,但人们普遍认为,在入门课程中涵盖的所有问题上,这两种方法都是有效的,并且在应用于实际问题时得到相同的数值。传统课程只涉及其中一种方法,这使得学生无法接触到统计推断的整个领域。传统的方法,也被称为频率论或正统观点,几乎直接导致了上面的问题。另一种方法,也称为概率论作为逻辑${}^1$,直接从概率论导出所有统计推断。

统计推断Statistical Inference指的是一个研究领域,我们在面对不确定性的情况下,根据我们观察到的数据,试图推断世界的未知特性。它是一个数学框架,在许多情况下量化我们的常识所说的话,但在常识不够的情况下,它允许我们超越常识。对正确的统计推断的无知会导致错误的决策和浪费金钱。就像对其他领域的无知一样,对统计推断的无知也会让别人操纵你,让你相信一些错误的事情是正确的。

statistics-lab™ 为您的留学生涯保驾护航 在代写统计推断Statistical inference方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写统计推断Statistical inference代写方面经验极为丰富,各种代写统计推断Statistical inference相关的作业也就用不着说。

统计代写|统计推断代写Statistical inference代考|ST502

统计代写|统计推断代写Statistical inference代考|Sufficiency and Unbiasedness

In the previous section, the concept of sufficiency was not used in our search for unbiased estimates. We will now see that consideration of sufficiency is a powerful tool, indeed.

The main theorem of this section, which relates sufficient statistics to unbiased estimates, is, as in the case of the Cramér-Rao Theorem, another clever application of some well-known theorems. Recall from Chapter 4 that if $X$ and $Y$ are any two random variables, then, provided the expectations exist, we have
$$
\begin{aligned}
\mathrm{E} X & =\mathrm{E}[\mathrm{E}(X \mid Y)], \
\operatorname{Var} X & =\operatorname{Var}[\mathrm{E}(X \mid Y)]+\mathrm{E}[\operatorname{Var}(X \mid Y)] .
\end{aligned}
$$
Using these tools we can prove the following theorem.
Theorem 7.3.17 (Rao-Blackwell) Let $W$ be any unbiased estimator of $\tau(\theta)$, and let $T$ be a sufficient statistic for $\theta$. Define $\phi(T)=\mathrm{E}(W \mid T)$. Then $\mathrm{E}\theta \phi(T)=\tau(\theta)$ and $\operatorname{Var}\theta \phi(T) \leq \operatorname{Var}\theta W$ for all $\theta$; that is, $\phi(T)$ is a uniformly better unbiased estimator of $\tau(\theta)$. Proof: From (7.3.13) we have $$ \tau(\theta)=\mathrm{E}\theta W=\mathrm{E}\theta[\mathrm{E}(W \mid T)]=\mathrm{E}\theta \phi(T),
$$
so $\phi(T)$ is unbiased for $\tau(\theta)$. Also,
$$
\begin{array}{rlr}
\operatorname{Var}\theta W & =\operatorname{Var}\theta[\mathrm{E}(W \mid T)]+\mathrm{E}\theta[\operatorname{Var}(W \mid T)] & \ & =\operatorname{Var}\theta \phi(T)+\mathrm{E}\theta[\operatorname{Var}(W \mid T)] \ & \geq \operatorname{Var}\theta \phi(T) . & (\operatorname{Var}(W ; T) \geq 0)
\end{array}
$$

统计代写|统计推断代写Statistical inference代考|Loss Function Optimality

Our evaluations of point estimators have been based on their mean squared error performance. Mean squared error is a special case of a function called a loss function. The study of the performance, and the optimality, of estimators evaluated through loss functions is a branch of decision theory.

After the data $\mathbf{X}=\mathbf{x}$ are observed, where $X \sim f(\mathbf{x} \mid \theta), \theta \in \Theta$, a decision regarding $\theta$ is made. The set of allowable decisions is the action space, denoted by $\mathcal{A}$. Often in point estimation problems $\mathcal{A}$ is equal to $\Theta$, the parameter space, but this will change in other problems (such as hypothesis testing-see Section 8.3.5).

The loss function in a point estimation problem reflects the fact that if an action $a$ is close to $\theta$, then the decision $a$ is reasonable and little loss is incurred. If $a$ is far from $\theta$, then a large loss is incurred. The loss function is a nonnegative function that generally increases as the distance between $a$ and $\theta$ increases. If $\theta$ is real-valued, two commonly used loss functions are
absolute error loss, $\quad L(\theta, a)=|a-\theta|$,
and
squared error loss, $L(\theta, a)=(a-\theta)^2$.
Both of these loss functions increase as the distance between $\theta$ and $a$ increases, with minimum value $L(\theta, \theta)=0$. That is, the loss is minimum if the action is correct. Squared error loss gives relatively more penalty for large discrepancies, and absolute error loss gives relatively more penalty for small discrepancies. A variation of squared error loss, one that penalizes overestimation more than underestimation, is
$$
L(\theta, a)= \begin{cases}(a-\theta)^2 & \text { if } a<\theta \ 10(a-\theta)^2 & \text { if } a \geq \theta\end{cases}
$$
A loss that penalizes errors in estimation more if $\theta$ is near 0 than if $|\theta|$ is large, a relative squared error loss, is
$$
L(\theta, a)=\frac{(a-\theta)^2}{|\theta|+1}
$$

统计代写|统计推断代写Statistical inference代考|ST502

统计推断代考

统计代写|统计推断代写Statistical inference代考|Sufficiency and Unbiasedness

在前一节中,我们在寻找无偏估计时没有使用充分性的概念。我们现在将看到,考虑是否足够确实是一个强有力的工具。

本节的主要定理将充分统计量与无偏估计联系起来,与cram – rao定理一样,它是对一些著名定理的另一个巧妙应用。回想第4章,如果$X$和$Y$是任意两个随机变量,那么,假设期望存在,我们有
$$
\begin{aligned}
\mathrm{E} X & =\mathrm{E}[\mathrm{E}(X \mid Y)], \
\operatorname{Var} X & =\operatorname{Var}[\mathrm{E}(X \mid Y)]+\mathrm{E}[\operatorname{Var}(X \mid Y)] .
\end{aligned}
$$
利用这些工具,我们可以证明以下定理。
定理7.3.17 (Rao-Blackwell)设$W$为$\tau(\theta)$的任意无偏估计量,且设$T$为$\theta$的充分统计量。定义$\phi(T)=\mathrm{E}(W \mid T)$。然后$\mathrm{E}\theta \phi(T)=\tau(\theta)$和$\operatorname{Var}\theta \phi(T) \leq \operatorname{Var}\theta W$表示所有的$\theta$;也就是说,$\phi(T)$是$\tau(\theta)$的一致更好的无偏估计量。证明:从(7.3.13)我们得到$$ \tau(\theta)=\mathrm{E}\theta W=\mathrm{E}\theta[\mathrm{E}(W \mid T)]=\mathrm{E}\theta \phi(T),
$$
所以$\phi(T)$对$\tau(\theta)$是无偏的。还有,
$$
\begin{array}{rlr}
\operatorname{Var}\theta W & =\operatorname{Var}\theta[\mathrm{E}(W \mid T)]+\mathrm{E}\theta[\operatorname{Var}(W \mid T)] & \ & =\operatorname{Var}\theta \phi(T)+\mathrm{E}\theta[\operatorname{Var}(W \mid T)] \ & \geq \operatorname{Var}\theta \phi(T) . & (\operatorname{Var}(W ; T) \geq 0)
\end{array}
$$

统计代写|统计推断代写Statistical inference代考|Loss Function Optimality

我们对点估计器的评价是基于它们的均方误差性能。均方误差是一种叫做损失函数的特殊情况。通过损失函数评估估计器的性能和最优性的研究是决策理论的一个分支。

在观察到数据$\mathbf{X}=\mathbf{x}$(其中$X \sim f(\mathbf{x} \mid \theta), \theta \in \Theta$)之后,就会做出关于$\theta$的决策。允许的决策集合是动作空间,用$\mathcal{A}$表示。通常在点估计问题$\mathcal{A}$等于$\Theta$,参数空间,但这将改变在其他问题(如假设检验-见8.3.5节)。

点估计问题中的损失函数反映了一个事实,即如果一个动作$a$接近$\theta$,则该决策$a$是合理的,损失很小。如果$a$离$\theta$很远,那么就会产生很大的损失。损失函数是非负函数,通常随着$a$和$\theta$之间距离的增加而增加。如果$\theta$为实值,则两种常用的损失函数为
绝对误差损失,$\quad L(\theta, a)=|a-\theta|$,

平方误差损失,$L(\theta, a)=(a-\theta)^2$。
这两个损失函数都随着$\theta$和$a$之间距离的增加而增加,最小值为$L(\theta, \theta)=0$。也就是说,如果行动正确,损失是最小的。对于较大的差异,平方误差损失会给相对较多的惩罚,对于较小的差异,绝对误差损失会给相对较多的惩罚。平方误差损失的变化,对高估的惩罚大于对低估的惩罚,是
$$
L(\theta, a)= \begin{cases}(a-\theta)^2 & \text { if } a<\theta \ 10(a-\theta)^2 & \text { if } a \geq \theta\end{cases}
$$
如果$\theta$接近于0,相对平方误差损失(相对平方误差损失)比$|\theta|$较大时对估计误差的惩罚更大
$$
L(\theta, a)=\frac{(a-\theta)^2}{|\theta|+1}
$$

统计代写|统计推断代写Statistical inference代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写