### 数学代写|交换代数代写commutative algebra代考|MATH2322

statistics-lab™ 为您的留学生涯保驾护航 在代写交换代数commutative algebra方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写交换代数commutative algebra代写方面经验极为丰富，各种代写交换代数commutative algebra相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• Advanced Probability Theory 高等概率论
• Advanced Mathematical Statistics 高等数理统计学
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 数学代写|交换代数代写commutative algebra代考|Extension of Coefficients

Let $\varphi: R \longrightarrow R^{\prime}$ be a ring homomorphism and $N^{\prime}$ an $R^{\prime}$-module. Then $N^{\prime}$ can be viewed as an $R$-module via $\varphi ;$ just look at $N^{\prime}$ as an additive group and define the scalar multiplication by $r x^{\prime}=\varphi(r) x^{\prime}$ for elements $r \in R$ and $x^{\prime} \in N^{\prime}$, where $\varphi(r) x^{\prime}$ is the product on $N^{\prime}$ as an $R^{\prime}$-module. We say that the $R$-module structure on $N^{\prime}$ is obtained by restriction of coefficients with respect to $\varphi$. In particular, $R^{\prime}$ itself can be viewed as an $R$-module via $\varphi$, and we see that the tensor product $M \otimes_{R} R^{\prime}$, for any $R$-module $M$, makes sense as an $R$-module. It is easily seen that $M \otimes_{R} R^{\prime}$ can even be viewed as an $R^{\prime}$-module. Indeed, let $a^{\prime} \in R^{\prime}$ and consider the $R$-bilinear map

$$M \times R^{\prime} \longrightarrow M \otimes_{R} R^{\prime}, \quad\left(x, b^{\prime}\right) \longmapsto x \otimes a^{\prime} b^{\prime},$$
as well as the induced $R$-linear map
$$M \otimes_{R} R^{\prime} \longrightarrow M \otimes_{R} R^{\prime}, \quad x \otimes b^{\prime} \longmapsto x \otimes a^{\prime} b^{\prime} .$$
Taking the latter as multiplication by $a^{\prime} \in R^{\prime}$ on $M \otimes_{R} R^{\prime}$, it is straightforward to see that the additive group $M \otimes_{R} R^{\prime}$ becomes an $R^{\prime}$-module this way. We say that $M \otimes_{R} R^{\prime}$, viewed as an $R^{\prime}$-module, is obtained from $M$ by extension of coefficients with respect to $\varphi$. More generally, given any $R^{\prime}$-module $N^{\prime}$, we can view the tensor product $M \otimes_{R} N^{\prime}$ as an $R^{\prime}$-module, just by using the map
$$R^{\prime} \times\left(M \otimes_{R} N^{\prime}\right) \longrightarrow M \otimes_{R} N^{\prime}, \quad\left(a^{\prime}, x \otimes y^{\prime}\right) \longmapsto x \otimes a^{\prime} y^{\prime},$$
as scalar multiplication.

## 数学代写|交换代数代写commutative algebra代考|Faithfully Flat Descent of Module Properties

For any ring homomorphism $R \longrightarrow R^{\prime}$, the process $\cdot \otimes_{R} R^{\prime}$ of tensoring with $R^{\prime}$ over $R$ can be viewed as an assignment that attaches to an $R$-module $M$ the $R^{\prime}$-module $M \otimes_{R} R^{\prime}$ and to a morphism of $R$-modules $\varphi: M^{\prime} \longrightarrow M$ the corresponding morphism of $R^{\prime}$-modules $\varphi \otimes \mathrm{id}: M^{\prime} \otimes_{R} R^{\prime} \longrightarrow M \otimes_{R} R^{\prime}$. We talk about a so-called functor from the category of $R$-modules to the category of $R^{\prime}$-modules. As will be seen in Section $4.6$, the general problem of descent is, in some sense, to find an inverse to this process. As a preparation, categories and their functors will be discussed more extensively in Section 4.5. At this place we start descent theory by looking at several module properties that behave well when switching back and forth between $R$ – and $R^{\prime}$-modules by means of extension of coefficients via tensor products.

Proposition 1. Let $M$ be an $R$-module and $R \longrightarrow R^{\prime}$ a ring homomorphism.
(i) If $M$ is of finite type over $R$, then $M \otimes_{R} R^{\prime}$ is of finite type over $R^{\prime}$.
(ii) If $M$ is of finite presentation over $R$, then $M \otimes_{R} R^{\prime}$ is of finite presentation over $R^{\prime}$.
(iii) If $M$ is a flat $R$-module, then $M \otimes_{R} R^{\prime}$ is a flat $R^{\prime}$-module.
(iv) If $M$ is a faithfully flat $R$-module, then $M \otimes_{R} R^{\prime}$ is a faithfully flat $R^{\prime}-$ module.
(v) If $R \longrightarrow R^{\prime}$ is faithfully flat in the sense that $R^{\prime}$ is a faithfully flat $R$-module via $R \longrightarrow R^{\prime}$, then the reversed implications of (i)-(iv) hold as well.
Proof. If
$$R^{n} \longrightarrow M \longrightarrow 0$$
or
$$R^{m} \longrightarrow R^{n} \longrightarrow M \longrightarrow 0$$
are exact sequences of $R$-modules, then the sequences obtained by tensoring with $R^{\prime}$ over $R$ are exact by $4.2 / 1$. Using the fact that the isomorphisms $R^{m} \otimes_{R} R^{\prime} \simeq\left(R^{\prime}\right)^{m}$ and $R^{n} \otimes_{R} R^{\prime} \simeq\left(R^{\prime}\right)^{n}$ furnished by $4.1 / 9$ are, in fact, isomorphisms of $R^{\prime}$-modules, assertions (i) and (ii) are clear.

Now let $M$ be a flat $R$-module. To establish (iii), we have to show for every monomorphism of $R^{\prime}$-modules $E^{\prime} \longrightarrow E$ that the tensorized map
$$E^{\prime} \otimes_{R^{\prime}}\left(R^{\prime} \otimes_{R} M\right) \longrightarrow E \otimes_{R^{\prime}}\left(R^{\prime} \otimes_{R} M\right)$$
is injective as well. To do this, look at the commutative diagram
$$E^{\prime} \otimes_{R^{\prime}}\left(R^{\prime} \otimes_{R} M\right) \longrightarrow E \otimes_{R^{\prime}}\left(R^{\prime} \otimes_{R} M\right)$$
where the vertical maps are the canonical isomorphisms from $4.3 / 2$. Since $M$ is a flat $R$-module, the lower horizontal homomorphism is injective and the same holds for the upper horizontal one.

## 数学代写|交换代数代写commutative algebra代考|Categories and Functors

The language of categories and their functors is an essential tool in advanced Algebraic Geometry. Implicitly this concept has already appeared in earlier sections, mostly in the form of “universal properties”. But we need to make more intensive use of it, especially for the descent of modules in Section 4.6. Since pure category theory is not very enlightening by itself, we have chosen to include only basic material al this place.

Definition 1. A category $\mathfrak{C}$ consists of a collection ${ }^{2} \mathrm{Ob}(\mathfrak{C})$ of so-called objects and, for each pair of objects $X, Y \in \mathrm{Ob}(\mathfrak{C})$, of a set $\operatorname{Hom}(X, Y)$ of so-called morphisms (or arrows), together with a law of composition
$$\operatorname{Hom}(Y, Z) \times \operatorname{Hom}(X, Y) \longrightarrow \operatorname{Hom}(X, Z), \quad(g, f) \longmapsto g \circ f$$
for any objects $X, Y, Z \in \mathrm{Ob}(\mathfrak{C})$. The following conditions are required:
(i) The composition of morphisms is associative.
(ii) For all $X \in \mathrm{Ob}(\mathfrak{C})$ there is a morphism $\mathrm{id}{X} \in \operatorname{Hom}(X, X)$ such that $\mathrm{id}{X} \circ f=f$ for all $f \in \operatorname{Hom}(Y, X)$ and $f \circ \mathrm{id}{X}=f$ for all $f \in \operatorname{Hom}(X, Y)$. Note that $\mathrm{id}{X}$ is unique, it is called the identity morphism on $X$.
Sometimes we write $\operatorname{Hom}{\mathfrak{C}}(X, Y)$ instead of $\operatorname{Hom}(X, Y)$, in order to specify the category $\mathfrak{C}$ whose morphisms are to be considered. In most cases, morphisms between objects $X, Y$ are indicated by arrows $X \longrightarrow Y$, thereby appealing to the concept of a (set theoretical) map. However, since only the above conditions (i) and (ii) are required, morphisms can be much more general than just maps. A morphism $f: X \longrightarrow Y$ between two objects of $\mathfrak{C}$ is called an isomorphism if there is a morphism $g: Y \longrightarrow X$ such that $g \circ f=\mathrm{id}{X}$ and $f \circ g=\mathrm{id}_{Y}$. Let us consider some examples.

## 数学代写|交换代数代写commutative algebra代考|Extension of Coefficients

R′×(米⊗Rñ′)⟶米⊗Rñ′,(一个′,X⊗是′)⟼X⊗一个′是′,

## 数学代写|交换代数代写commutative algebra代考|Faithfully Flat Descent of Module Properties

(一) 如果米是有限类型的R， 然后米⊗RR′是有限类型的R′.
(ii) 如果米是有限表示的R， 然后米⊗RR′是有限表示的R′.
(iii) 如果米是一个单位R-模块，然后米⊗RR′是一个单位R′-模块。
(iv) 如果米是一个忠实的平面R-模块，然后米⊗RR′是一个忠实的平面R′−模块。
(v) 如果R⟶R′在这个意义上是忠实平坦的R′是一个忠实的平面R-模块通过R⟶R′，那么 (i)-(iv) 的相反含义也成立。

Rn⟶米⟶0

R米⟶Rn⟶米⟶0

## 数学代写|交换代数代写commutative algebra代考|Categories and Functors

(i) 态射的组合是关联的。
(ii) 对所有人X∈○b(C)存在态射一世dX∈他⁡(X,X)这样一世dX∘F=F对所有人F∈他⁡(是,X)和F∘一世dX=F对所有人F∈他⁡(X,是). 注意一世dX是唯一的，称为恒等态射X.

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。