### 数学代写|优化算法代写optimization algorithms代考|Improvement of the Lower Estimate of the Accuracy

statistics-lab™ 为您的留学生涯保驾护航 在代写优化算法optimization algorithms方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写优化算法optimization algorithms代写方面经验极为丰富，各种代写优化算法optimization algorithms相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 数学代写|优化算法代写optimization algorithms代考|Approximate Solving Problem by the Choice

Let $\widetilde{I}$ be any class of informational operators [285]. Assume that the class creates the informational operators of one type with different sets of functionals. For example, if a set of values of function is used, then their number or set of nodes can change their number or even the value of function is computed within constant $N$ (or both). Informational operators of different types (the value of the function and its derivatives, the coefficient of the factorize by certain basis, etc.) create different classes. It is possible to introduce the characteristics:
\begin{aligned} &\rho(\Pi, A, \widetilde{I})=\inf {I{N}(f) \in I} \rho\left(\Pi, A, I_{N}(P)\right)\left(\rho\left(\Pi, A, I_{N}(P)\right) \equiv \rho(\Pi, A)\right) \ &\rho(\Pi, \Lambda, \widetilde{I})=\inf _{A \in \Lambda} \rho(\Pi, A, \widetilde{I}) \end{aligned}
where $\rho=(\Pi, A, \tilde{I})$ is a lower boundary of the error of the algorithm $A \in \Lambda$ in the problem class $\Pi$ using information from class $\tilde{I}$, and $\rho(\Pi, \Lambda, \tilde{I})$ is a lower bound of the error of algorithms in the computing model $(\Pi, \Lambda, \widehat{I})$.

Information $I_{N}^{0}(P) \in \widetilde{I}$, for which the condition $\rho\left(\Pi, A, I_{N}^{0}(P)\right)=\rho(\Pi, A, \widetilde{I})$ is performed, is called an optimal in classes $\Pi, \tilde{I}$ by using the algorithm $A \in \Lambda$. If $\rho\left(\Pi, A^{0}, I_{N}^{0}(P)\right)=\rho(\Pi, \Lambda, \widetilde{I})$, then the algorithm $A^{0} \in \Lambda$ and the information $I_{N}^{0}(P) \in \widetilde{I}$ are called optimal in this computational model $(\Pi, \Lambda, \widetilde{I})$.

Likewise, it is possible to introduce the definition of complexity for the problem $P$ and the problem of class $\Pi$ and their characteristics:

• $T(\Pi, A, \widetilde{I}, \varepsilon)=\inf {I{N}(P) \in \widetilde{I}} T\left(\Pi, A, I_{N}(P), \varepsilon\right)$ is $\varepsilon$-complexity of the algorithm $A \in \Lambda(\varepsilon)$ in the problem of class $\Pi$ within the use of information $\tilde{I}$.
• $T(\Pi, \Lambda(\varepsilon), \tilde{I})=\inf _{A \in \Lambda(\varepsilon)} T(\Pi, A, \tilde{I}, \varepsilon)$ is $\varepsilon$-complexity of the problem in this computation model $(\Pi, \Lambda(\varepsilon), \widetilde{I})$.
• $T(P, A, \widetilde{I}, \varepsilon)$ is the $\varepsilon$-complexity of the algorithm $A \in \Lambda(\varepsilon)$ when the problem $P \in \Pi$ is solved using information $\tilde{I}$.
• $T(P, \Lambda(\varepsilon), \widetilde{I})$ is the $\varepsilon$-complexity of the problem $P$ by using the algorithms $\Lambda(\varepsilon)$ and information $\tilde{I}$, as well as the definition of complexity optimal algorithm and optimal information.

It is possible to introduce an optimization of nodes in numerical integrating as an example of such optimization: by optimization with accuracy for a fixed $N$ by computing $\varepsilon$-solution with $N=O\left(\varepsilon^{-1 / q}\right), q$ is the index of the smoothness of the subintegral function.

This case is about the optimization of choosing the functionals within the constrain of the same type of informational operator that is a set of values of the subintegral function.

Examples of the value optimization of the characteristics $E(\rho(\cdot))$ and $T$ moving to another class of informational operators are contained in [298].

Approximate Information There is known information (approximated) $I_{N \sigma}(P)$ instead of information (exact) $I_{N}(P)$ where $\sigma \geq 0$ characterizes the deviation of the approximate information from the exact one. It is possible to consider the characteristics for the approximate information $I_{N \sigma}(P)$ that are similar to those that were given above for $I_{N}(P)$ assuming that information $I_{N \sigma}(P)$ can be adjusted considering $I_{0}$-information about the problem of the class $\Pi$. Thus, the central algorithm [270] in this case decreases the effect of error of the information $I_{N o}(P)$ on the approximate solution. Examples of constructing these algorithms are given in $[33,106]$.

## 数学代写|优化算法代写optimization algorithms代考|Basic Approaches to Constructing the Accuracy

Consider the problem of the computation of the integral that looks
\begin{aligned} &I_{1}(\omega)=\int_{a}^{b} f(x) e^{-i \omega x} d x \ &I_{2}(\omega)=\int_{a}^{b} f(x) \sin \omega x d x \ &I_{3}(\omega)=\int_{a}^{b} f(x) \cos \omega x d x \end{aligned}
assuming that $f(x) \in F(F)$ is a certain class of functions, and $\omega$ is a certain real number $(\omega \mid \geq 2 \pi(b-a))$.

Let the information about $f(x)$ be given by $N$ values at nodes $\left{x_{i}\right}_{0}^{N-1}$ from its definition domain: $\left{f_{i}\right}_{0}^{N-1}=\left{f\left(x_{i}\right)\right}_{0}^{N-1}$, $\varepsilon_{i}$ characterizes the accuracy of the problem $f\left(x_{i}\right)=f_{i}:\left|\tilde{f}{i}-f{i}\right| \leq \varepsilon_{i}, i=\overline{0, N-1}$.

We concretize the general definition of the accuracy optimal algorithm that is given in the par. $1.4$ for the problem of the approximate computation $I(\omega)$ (we will understand one of the integrals $(1.20,1.21$, and $1.22)$ under $I(\omega))$ ).

Mark $R=R\left(f, A,\left{x_{i}\right}_{0}^{N-1},\left{\varepsilon_{i}\right}_{0}^{N-1}, \omega\right)$ as the result of the approximate computation $I(\omega)$ with quadrature formula $A$.
Introduce the characteristics
\begin{aligned} &V\left(f, A,\left{x_{i}\right}_{0}^{N-1},\left{\varepsilon_{i}\right}_{0}^{N-1}, \omega\right)=\rho(I(\omega), R) \ &V\left(F, A,\left{\varepsilon_{i}\right}_{0}^{N-1}, \omega\right)=\sup {f \in F} V\left(f, A,\left{x{i}\right}_{0}^{N-1},\left{\varepsilon_{i}\right}_{0}^{N-1}, \omega\right) \ &V=V\left(F,\left{\varepsilon_{i}\right}_{0}^{N-1}, \omega\right)=\inf {A} V\left(F, A,\left{\varepsilon{i}\right}_{0}^{N-1}, \omega\right) \ &V(F, \omega)=V(F, 0, \omega) \end{aligned}

## 数学代写|优化算法代写optimization algorithms代考|The function f(x)

Definition 1.1 The function $f^{\pm}(x)$ is called majorizing (minorant) class of functions $F_{N}$ that are defined in some domain $D$ if:

1. $f^{+}(x) \geq f(x)\left(f^{-}(x) \leq f(x)\right)$ for all $m$,
2. $f^{+}(x) \in F_{N}\left(f^{-}(x) \in F_{N}\right)$.
The Chebyshev center $\left(y_{1}, \ldots, y_{N}\right)$ and the Chebyshev radius $\rho^{}(\omega)$ of domain of uncertainty of solving the problem $(1.20,1.21$, and $1.22$ ) can be defined as follows [102]: $$\left(y_{1}, \ldots, y_{m}\right),\left(y_{1}, \ldots, y_{m}\right)=F\left(x_{1}, \ldots, x_{n}\right) \ldots$$ The quadrature formula that computes $I^{}(\omega)$ will be called accuracy optimal, and $\rho^{}(\omega)$ is the error of introduction of the value domain of the integral $I(\omega)$ using $I^{}(\omega)$ or the optimal estimate of the error of numerical integration $I(\omega)$ on the class $F_{N}\left(\delta=\rho^{}(\omega)\right)$. The quadrature formula $R(\omega)$ of the computation $I(\omega)$ for which $$\sup {f \in F{N}}|R(\omega)-I(\omega)| \leq \rho^{}(\omega)+\eta, \eta>0 \text { and } \eta=o\left(\rho^{}\right), O\left(\rho^{}\right)$$
$\left(y_{1}, \ldots, y_{N}\right)$ is called asymptotically optimal or accuracy order optimal.
Within given information about the problem, any quadrature formula can’t give an accuracy less than $\rho^{}(\omega)$. For interpolation classes $\left(y_{1}, \ldots, y_{m}\right)=F\left(x_{1}, \ldots, x_{n}\right)$, the Chebyshev radius $\rho^{}(\omega)$ ) coincides with an optimal estimate $V_{1}$.

The use of the limiting function method for the estimate $V$ is based on the following statement [293].

Theorem $1.3$ Let $f(x) \in F$ ( $F$ is a class of limiting functions) on $f(x)$ the information about its value in $N$ nodes of a random grid, and there is at least one quadrature formula $A \in M$ such as that $I^{+}(\omega) \leq I(\omega) \leq \Gamma(\omega)$. Then the next estimate is valid for $V_{1}$ :

$$V_{1} \geq \sup {F{N} \in F} \rho^{}(\omega)$$ It follows from the definition of the estimates $V$ and $V_{1}$ : $$V \geq V_{1}$$ In the case of $F \equiv F_{N}$, we have $V=\rho^{}(\omega)$.
Remark 1.1 Similar statements are colligated on n-dimensional case [293, 298], and they are used to construct optimal error estimates and prove some optimal cubature formulae of computation of multidimensional integrals from highoscillating functions of the form
\begin{aligned} I_{1}^{n}(\omega) &=\underbrace{\int_{0}^{1} \ldots \int_{0}^{1}}{n} f\left(x{1}, \ldots, x_{n}\right) \sin \omega x_{1} \cdot \ldots \cdot \sin \omega x_{n} d x_{1} \ldots d x_{n}, \ I_{2}^{n}(\omega) &=\underbrace{\int_{0}^{1} \ldots \int_{0}^{1}}{n} f\left(x{1}, \ldots, x_{n}\right) \cos \omega x_{1} \ldots \ldots \cos \omega x_{n} d x_{1} \ldots d x_{n} \end{aligned}
in the case when $n>1, f(X)$ is a known function, $f(X)=f\left(x_{1}, \ldots, x_{n}\right) \in F(F$ is a certain class of functions $X=\left{x_{1}, \ldots, x_{n}\right}, \omega$ is a certain real number $(|\omega| \geq 2 \pi)$, and information about $f(X)$ is given by $N$ values in node points $\left{X_{i}\right}_{0}^{N-1}$ from its domain of definition: $\left{f_{i}\right}_{0}^{N-1}=\left{f\left(X_{i}\right)\right}_{0}^{N-1}$.

## 数学代写|优化算法代写optimization algorithms代考|Approximate Solving Problem by the Choice

\begin{aligned} &\rho(\Pi, A, \widetilde{I})=\inf {I {N}(f) \in I} \rho\left( \Pi, A, I_{N}(P)\right)\left(\rho\left(\Pi, A, I_{N}(P)\right) \equiv \rho(\Pi, A)\right ) \ &\rho(\Pi, \Lambda, \widetilde{I})=\inf _{A \in \Lambda} \rho(\Pi, A, \widetilde{I}) \end{aligned}

• $T(\Pi, A, \widetilde{I}, \varepsilon)=\inf {I {N}(P) \in \widetilde{I}} T\left(\Pi, A, I_{N}( P), \varrepsilon\right)一世s\伐普西隆−C这米pl和X一世吨是这F吨H和一种lG这r一世吨H米一个 \in \Lambda(\varepsilon)一世n吨H和pr这bl和米这FCl一种ss\π在一世吨H一世n吨H和在s和这F一世nF这r米一种吨一世这n\波浪号{I}$。
• 吨(圆周率,Λ(e),一世~)=信息一种∈Λ(e)吨(圆周率,一种,一世~,e)是e-此计算模型中问题的复杂性(圆周率,Λ(e),一世~).
• 吨(磷,一种,一世~,e)是个e- 算法的复杂性一种∈Λ(e)当问题磷∈圆周率使用信息解决一世~.
• 吨(磷,Λ(e),一世~)是个e- 问题的复杂性磷通过使用算法Λ(e)和信息一世~，以及复杂度最优算法和最优信息的定义。

## 数学代写|优化算法代写optimization algorithms代考|Basic Approaches to Constructing the Accuracy

\begin{aligned} &V\left(f, A,\left{x_{i}\right}_{0}^{N-1},\left{\varepsilon_{i}\right} _{0}^{N-1}, \omega\right)=\rho(I(\omega), R) \ &V\left(F, A,\left{\varepsilon_{i}\right}_{ 0}^{N-1}, \omega\right)=\sup {f \in F} V\left(f, A,\left{x {i}\right}_{0}^{N-1 },\left{\varepsilon_{i}\right}_{0}^{N-1}, \omega\right) \ &V=V\left(F,\left{\varepsilon_{i}\right}_ {0}^{N-1}, \omega\right)=\inf {A} V\left(F, A,\left{\varepsilon {i}\right}_{0}^{N-1} , \omega\right) \ &V(F, \omega)=V(F, 0, \omega) \end{aligned}

## 数学代写|优化算法代写optimization algorithms代考|The function f(x)

1. F+(X)≥F(X)(F−(X)≤F(X))对全部米,
2. F+(X)∈Fñ(F−(X)∈Fñ).
切比雪夫中心(是1,…,是ñ)和切比雪夫半径ρ(ω)解决问题的不确定性域(1.20,1.21， 和1.22) 可以定义如下[102]：(是1,…,是米),(是1,…,是米)=F(X1,…,Xn)…计算的求积公式一世(ω)将被称为精度最优，并且ρ(ω)是积分值域引入的误差一世(ω)使用一世(ω)或数值积分误差的最优估计一世(ω)在课堂上Fñ(d=ρ(ω)). 求积公式R(ω)计算的一世(ω)为此支持F∈Fñ|R(ω)−一世(ω)|≤ρ(ω)+这,这>0 和 这=这(ρ),这(ρ)
(是1,…,是ñ)称为渐近最优或精度阶最优。
在有关问题的给定信息内，任何求积公式的准确度都不能低于ρ(ω). 对于插值类(是1,…,是米)=F(X1,…,Xn), 切比雪夫半径ρ(ω)) 与最优估计一致在1.

\begin{aligned}形式的高振荡函数计算多维积分的一些最优容积公式 I_{1}^{n}(\omega) &=\underbrace{\int_{0}^{1} \ldots \int_{0}^{1}} {n} f\left(x {1}, \ldots, x_{n}\right) \sin \omega x_{1} \cdot \ldots \cdot \sin \omega x_{n} d x_{1} \ldots d x_{n}, \ I_{2} ^{n}(\omega) &=\underbrace{\int_{0}^{1} \ldots \int_{0}^{1}} {n} f\left(x {1}, \ldots, x_ {n}\right) \cos \omega x_{1} \ldots \ldots \cos \omega x_{n} d x_{1} \ldots d x_{n} \end{aligned}

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。