### 数学代写|信息论代写information theory代考|ELEN90030

statistics-lab™ 为您的留学生涯保驾护航 在代写信息论information theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写信息论information theory代写方面经验极为丰富，各种代写信息论information theory相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• Advanced Probability Theory 高等概率论
• Advanced Mathematical Statistics 高等数理统计学
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 数学代写|信息论代写information theory代考|Conditional entropy. Hierarchical additivity

Let us generalize formulae (1.2.1), (1.2.3) to the case of conditional probabilities. Let $\xi_{1}, \ldots, \xi_{n}$ be random variables described by the joint distribution $P\left(\xi_{1}, \ldots, \xi_{n}\right)$. The conditional probabilities
$$P\left(\xi_{k}, \ldots, \xi_{n} \mid \xi_{1}, \ldots, \xi_{k-1}\right)=\frac{P\left(\xi_{1}, \ldots, \xi_{n}\right)}{P\left(\xi_{1}, \ldots, \xi_{k-1}\right)} \quad(k \leqslant n)$$
are associated with the random conditional entropy
$$H\left(\xi_{k}, \ldots, \xi_{n} \mid \xi_{1}, \ldots, \xi_{k-1}\right)=-\ln P\left(\xi_{k}, \ldots, \xi_{n} \mid \xi_{1}, \ldots, \xi_{k-1}\right)$$
Let us introduce a special notation for the result of averaging (1.3.1) over $\xi_{k}, \ldots, \xi_{n}$ :
\begin{aligned} H_{\xi_{k} \ldots \xi_{n}}\left(\mid \xi_{1}, \ldots \xi_{k-1}\right)=-\sum_{\xi_{k} \ldots \xi_{n}} P\left(\xi_{k}, \ldots\right.&\left., \xi_{n} \mid \xi_{1}, \ldots, \xi_{k-1}\right) \times \ & \times \ln P\left(\xi_{k}, \ldots, \xi_{n} \mid \xi_{1}, \ldots, \xi_{k-1}\right) \end{aligned} and also for the result of total averaging:
\begin{aligned} H_{\xi_{k}, \ldots, \xi_{n}} \mid \xi_{1}, \ldots, \xi_{k-1} &=\mathbb{E}\left[H\left(\xi_{k}, \ldots, \xi_{n} \mid \xi_{1}, \ldots, \xi_{k-1}\right)\right] \ &=-\sum_{\xi_{1} \ldots \xi_{n}} P\left(\xi_{1} \ldots \xi_{n}\right) \ln P\left(\xi_{k}, \ldots, \xi_{n} \mid \xi_{1}, \ldots, \xi_{k-1}\right) \end{aligned}
If, in addition, we vary $k$ and $n$, then we will form a large number of different entropies, conditional and non-conditional, random and non-random. They are related by identities that will be considered below.

Before we formulate the main hierarchical equality (1.3.4), we show how to introduce a hierarchical set of random variables $\xi_{1}, \ldots, \xi_{n}$, even if there was just one random variable $\xi$ initially.

Let $\xi$ take one of $M$ values with probabilities $P(\xi)$. The choice of one realization will be made in several stages. At the first stage, we indicate which subset (from a full ensemble of non-overlapping subsets $E_{1}, \ldots, E_{m_{1}}$ ) the realization belongs to. Let $\xi_{1}$ be the index of such a subset. At the second stage, each subset is partitioned into smaller subsets $E_{\xi_{1} \xi_{2}}$. The second random variable $\xi_{2}$ points to which smaller subset the realization of the random variable belongs to. In turn, those smaller subsets are further partitioned until we obtain subsets consisting of a single element. Apparently, the number of nontrivial partitioning stages $n$ cannot exceed $M-1$. We can juxtapose a fixed partitioning scheme with a ‘decision tree’ depicted on Figure 1.1. Further considerations will be associated with a particular selected ‘tree’.

## 数学代写|信息论代写information theory代考|Asymptotic equivalence of non-equiprobable

The idea that the general case of non-equiprobable outcomes can be asymptotically reduced to the case of equiprobable outcomes is fundamental for information theory in the absence of noise. This idea belongs to Ludwig Boltzmann who derived formula (1.2.3) for entropy. Claude Shannon revived this idea and broadly used it for derivation of new results.

In considering this question here, we shall not try to reach generality, since these results form a particular case of more general results of Section 1.5. Consider the set of independent realizations $\eta=\left(\xi_{1}, \ldots, \xi_{n}\right)$ of a random variable $\xi=\xi_{j}$, which assumes one of two values 1 or 0 with probabilities $P[\xi=1]=p<1 / 2 ; P[\xi=$ $0]=1-p=q$. Evidently, the number of such different combinations (realizations) is equal to $2^{n}$. Let realization $\eta_{n_{1}}$ contain $n_{1}$ ones and $n-n_{1}=n_{0}$ zeros. Then its probability is given by
$$P\left(\eta_{n_{1}}\right)=p^{n_{1}} q^{n-n_{1}}$$
Of course, these probabilities are different for different $n_{1}$. The ratio $P\left(\eta_{0}\right) / P\left(\eta_{n}\right)=$ $(q / p)^{n}$ of the largest probability to the smallest one is big and increases fast with a growth of $n$. What equiprobability can we talk about then? The thing is that due to the Law of Large Numbers the number of ones $n_{1}=\xi_{1}+\cdots+\xi_{n}$ has a tendency to take values, which are close to its mean
$$\mathbb{E}\left[n_{1}\right]=\sum_{j=1}^{n} \mathbb{E}\left[\xi_{j}\right]=n \mathbb{E}\left[\xi_{j}\right]=n p$$

## 数学代写|信息论代写information theory代考|Asymptotic equiprobability and entropic stability

1. The ideas of preceding section concerning asymptotic equivalence of nonequiprobable and equiprobable outcomes can be extended to essentially more general cases of random sequences and processes. It is not necessary for random variables $\xi_{j}$ forming the sequence $\eta^{n}=\left(\xi_{1}, \ldots, \xi_{n}\right)$ to take only one of two values and to have the same distribution law $P\left(\xi_{j}\right)$. There is also no need for $\xi_{j}$ to be statistically independent and even for $\eta^{n}$ to be the sequence $\left(\xi_{1}, \ldots, \xi_{n}\right)$. So what is really necessary, the asymptotic equivalence?

In order to state the property of asymptotic equivalence of non-equiprobable and equiprobable outcomes in general terms we should use the notion of entropic stability of family of random variables.

A family of random variables $\left{\eta^{n}\right}$ is entropically stable if the ratio $H\left(\eta^{n}\right) / H_{\eta^{n}}$ converges in probability to one as $n \rightarrow \infty$. This means that whatever $\varepsilon>0, \eta>0$ are, there exists $N(\varepsilon, \eta)$ such that the inequality
$$P\left{\left|H\left(\eta^{n}\right) / H_{\eta^{n}}-1\right| \geqslant \varepsilon\right}<\eta$$
is satisfied for every $n \geqslant N(\varepsilon, \eta)$.
The above definition implies that $0<H_{\eta^{n}}<\infty$ and $H_{\eta^{n}}$ does not decrease with
$n$. Usually $H_{\eta^{n}} \rightarrow \infty$.
Asymptotic equiprobability can be expressed in terms of entropic stability in the form of the following general theorem.

Theorem 1.9. If a family of random variables $\left{\eta^{n}\right}$ is entropically stable, then the set of realizations of each random variable can be partitioned into two subsets $A_{n}$ and $B_{n}$ in such a way that

1. The total probability of realizations from subset $A_{n}$ vanishes:
$$P\left(A_{n}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty$$

## 数学代写|信息论代写information theory代考|Conditional entropy. Hierarchical additivity

$$P\left(\xi_{k}, \ldots, \xi_{n} \mid \xi_{1}, \ldots, \xi_{k-1}\right)=\frac{P\left(\xi_{1}, \ldots, \xi_{n}\right)}{P\left(\xi_{1}, \ldots, \xi_{k-1}\right)} \quad(k \leqslant n)$$

$$H\left(\xi_{k}, \ldots, \xi_{n} \mid \xi_{1}, \ldots, \xi_{k-1}\right)=-\ln P\left(\xi_{k}, \ldots, \xi_{n} \mid \xi_{1}, \ldots, \xi_{k-1}\right)$$

$$H_{\xi_{k}, \ldots \xi_{n}}\left(\mid \xi_{1}, \ldots \xi_{k-1}\right)=-\sum_{\xi_{k} \ldots \xi_{n}} P\left(\xi_{k}, \ldots, \xi_{n} \mid \xi_{1}, \ldots, \xi_{k-1}\right) \times \quad \times \ln P\left(\xi_{k}, \ldots, \xi_{n} \mid \xi_{1}, \ldots, \xi_{k-1}\right)$$

$$H_{\xi_{k}, \ldots, \xi_{n}} \mid \xi_{1}, \ldots, \xi_{k-1}=\mathbb{E}\left[H\left(\xi_{k}, \ldots, \xi_{n} \mid \xi_{1}, \ldots, \xi_{k-1}\right)\right]=-\sum_{\xi_{1} \ldots \xi_{n}} P\left(\xi_{1} \ldots \xi_{n}\right) \ln P\left(\xi_{k}, \ldots, \xi_{n}\right.$$

## 数学代写|信息论代写information theory代考|Asymptotic equivalence of non-equiprobable

$P[\xi=1]=p<1 / 2 ; P[\xi=0]=1-p=q$. 显然，这种不同组合（实现）的数量等于 $2^{n}$. 让实现 $\eta_{n_{1}}$ 包含 $n_{1}$ 一个和 $n-n_{1}=n_{0}$ 零。那么它的概率由下式给出
$$P\left(\eta_{n_{1}}\right)=p^{n_{1}} q^{n-n_{1}}$$

$$\mathbb{E}\left[n_{1}\right]=\sum_{j=1}^{n} \mathbb{E}\left[\xi_{j}\right]=n \mathbb{E}\left[\xi_{j}\right]=n p$$

## 数学代写|信息论代写information theory代考|Asymptotic equiprobability and entropic stability

1. 上一节关于非等概率和等概率结果的渐近等价的想法可以扩展到更一般的随机序列和过程的情况。随机变量 不是必需的 $\xi_{j}$ 形成序列 $\eta^{n}=\left(\xi_{1}, \ldots, \xi_{n}\right)$ 只取两个值之一并具有相同的分布规律 $P\left(\xi_{j}\right)$. 也没有必要 $\xi_{j}$ 在统 计上是独立的，甚至对于 $\eta^{n}$ 成为序列 $\left(\xi_{1}, \ldots, \xi_{n}\right)$. 那么什么是真正必要的，渐近等价呢?
为了概括地说明非等概率和等概率结果的渐近等价性质，我们应该使用随机变量族的嫡稳定性的概念。
随机变量族 Veft {leta^{n}\right } } \text { 如果比率是樀稳定的 } H ( \eta ^ { n } ) / H _ { \eta ^ { n } } \text { 在概率上收敛为 } 1 n \rightarrow \infty \text { . 这意味着无论 } $\varepsilon>0, \eta>0$ 是，存在 $N(\varepsilon, \eta)$ 这样不等式
P\left{\eft $\mid H \backslash l e f t(\mathrm{~ l e t a}$
满足于每一个 $n \geqslant N(\varepsilon, \eta)$.
上述定义意味着 $0<H_{\eta^{n}}<\infty$ 和 $H_{\eta^{n}}$ 不减少
$n$. 通常 $H_{\eta^{n}} \rightarrow \infty$.
渐近等概率可以用以下一般定理的形式用嫡稳定性表示。
$\mathrm{~ 定 理 ~ 1 . 9 。 如 果 一 个 随 机 变 量 族 l l e f t : n e t a ^ { n }}$ $A_{n}$ 和 $B_{n}$ 以这样的方式
2. 子集实现的总概率 $A_{n}$ 消失:
$$P\left(A_{n}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty$$

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。