### 物理代写|理论力学作业代写Theoretical Mechanics代考|Vector-Valued Functions

statistics-lab™ 为您的留学生涯保驾护航 在代写理论力学Theoretical Mechanics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写理论力学Theoretical Mechanics代写方面经验极为丰富，各种代写理论力学Theoretical Mechanics相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• Advanced Probability Theory 高等概率论
• Advanced Mathematical Statistics 高等数理统计学
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 物理代写|理论力学作业代写Theoretical Mechanics代考|Parametrization of Space Curves

In physics space curves are typical examples of vector-valued functions. To start with we choose in the $E_{3}$ an arbitrary but fixed origin of coordinates $\mathcal{O}$. Then the momentary position $P$ of a ‘particle’ is determined by the position vector $\mathbf{r}=\overrightarrow{0 P}$ (Fig. 1.57). By a ‘particle’ we understand a physical body of mass $m$ but with negligible extension in all directions. Later we will introduce for it the term ‘mass point’. In course of time the particle will in general change its position, i.e. $\mathbf{r}$ will change direction and magnitude. In a time-independent, complete orthonormal system (CONS) $\mathbf{e}_{i}$ the components of the position vector become normal time-

dependent functions:
$$\mathbf{r}(t)=\sum_{j=1}^{3} x_{j}(t) \mathbf{e}{j} \equiv\left(x{1}(t), x_{2}(t), x_{3}(t)\right)$$
This is called the trajectory or the path line of the particle.
The set of space points the particle passes through over the time define the socalled
$$\text { space curve : }=\left{\mathbf{r}(t), t_{a} \leq t \leq t_{e}\right} \text {. }$$
One calls (1.202) a parametrization of the space curve (1.203). The independent parameter in this case is the time $t$. Of course there also exist other possibilities of parametrization as we will see later in this section. Furthermore, it is clear that different path lines may parametrize the same space curve. For example this is already true when one and the same space curve is run through in opposite directions or in different time intervals.
Examples

1. Circular motion in the $x z$-plane
Let the circle have the radius $R$ and let its center point be at the origin of coordinates (Fig. 1.58). Then a self-evident parametrization is via the angle $\varphi$ :
\begin{aligned} &M={\varphi ; \quad 0 \leq \varphi \leq 2 \pi}, \ &\mathbf{r}(\varphi)=R(\cos \varphi, 0, \sin \varphi) \end{aligned}
Another parametrization can use, e.g., the $x$ component $x_{1}$ :
\begin{aligned} &M=\left{x_{1} ; \quad-R \leq x_{1} \leq+R\right}, \ &\mathbf{r}\left(x_{1}\right)=\left(x_{1}, 0, \pm \sqrt{R^{2}-x_{1}^{2}}\right) \end{aligned}
where the plus sign holds for the upper, the minus sign for the lower half-plane.

## 物理代写|理论力学作业代写Theoretical Mechanics代考|Differentiation of Vector-Valued Functions

We consider a vector-valued function $\mathbf{a}(t)$ and look into the differential changes of the vector, i.e. the changes due to very small changes in time. Practically such a time interval, being determined by the measuring process, is of course always finite. Mathematically, however, an infinitely small time interval shall be considered. Furthermore, instead of time $t$ any other parameter can also be used in the following formulae. The vector-valued function $\mathbf{a}(t)$ in general has at different times (parameters) $t$ and $t+\Delta t$ different magnitudes and/or different directions. The magnitude of the difference vector
$$\Delta \mathbf{a}=\mathbf{a}(t+\Delta t)-\mathbf{a}(t)$$
will become smaller with decreasing time difference $\Delta t$, whereby its direction can change continuously in order to arrive for very small $\Delta t$ in the corresponding direction of the respective tangent.
Definition 1.4.2 Derivation of a Vector-Valued Function
$$\frac{d \mathbf{a}}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\mathbf{a}(t+\Delta t)-\mathbf{a}(t)}{\Delta t} .$$
This definition clearly presumes that such a limiting vector does exist at all (Fig. 1.60). For time-derivatives sometimes one writes briefly:
$$\dot{\mathbf{a}}(t) \equiv \frac{d \mathbf{a}}{d t}$$

We represent $\mathbf{a}(t)$ in a time-independent basis system $\left{\mathbf{e}{i}\right}$ : $$\mathbf{a}(t)=\sum{j} a_{j}(t) \mathbf{e}{j} .$$ Then it holds: $$\mathbf{a}(t+\Delta t)-\mathbf{a}(t)=\sum{j}\left[a_{j}(t+\Delta t)-a_{j}(t)\right] \mathbf{e}{j} .$$ Therewith the differentiation of a vector-valued function is obviously and completely expressed in terms of derivatives of the time-dependent component functions: $$\dot{\mathbf{a}}(t)=\frac{d \mathbf{a}}{d i}=\sum{j} \dot{a}{j}(t) \mathbf{e}{j}$$
Correspondingly it holds also for all higher derivatives:
$$\frac{d^{n}}{d t^{n}} \mathbf{a}(t)=\sum_{j}\left(\frac{d^{n}}{d t^{n}} a_{j}(t)\right) \mathbf{e}_{j} ; \quad n=0,1,2, \ldots$$
Then it is not difficult to prove the following rules of differentiation
1) $\frac{d}{d t}[\mathbf{a}(t)+\mathbf{b}(t)]=\dot{\mathbf{a}}(t)+\dot{\mathbf{b}}(t)$,
2) $\frac{d}{d t}[f(t) \mathbf{a}(t)]=\dot{f}(t) \mathbf{a}(t)+f(t) \dot{\mathbf{a}}(t)$,
if $f(t)$ is a differentiable, scalar function,
3) $\frac{d}{d t}[\mathbf{a}(t) \cdot \mathbf{b}(t)]=\dot{\mathbf{a}}(t) \cdot \mathbf{b}(t)+\mathbf{a}(t) \cdot \dot{\mathbf{b}}(t)$,
4) $\frac{d}{d t}[\mathbf{a}(t) \times \mathbf{b}(t)]=\dot{\mathbf{a}}(t) \times \mathbf{b}(t)+\mathbf{a}(t) \times \dot{\mathbf{b}}(t)$.
In 4) we have to be very careful about the correct order of the factors.
Examples
a) velocity: $\mathbf{v}(t)=\dot{\mathbf{r}}(t)$
(always tangential to the path line),
acceleration: $\mathbf{a}(t)=\dot{\mathbf{v}}(t)=\ddot{\mathbf{r}}(t)$.
(1.215)

## 物理代写|理论力学作业代写Theoretical Mechanics代考|Arc Length

The integration of vector-valued functions can also be transferred to the corresponding integration of parameter-dependent component functions:
$$\int_{t_{a}}^{t_{e}} \mathbf{a}(t) d t=\sum_{j=1}^{3} \mathbf{e}{j} \int{t_{a}}^{t_{e}} a_{j}(t) d t$$
If the basis vectors are parameter-independent they can be drawn in front of the integral Thus in cuch a case nne integrates the vertor hy integrating its components in the ordinary manner. However, is should be expressly indicaled that the so defined integral of course depends on the special choice of the parameters and therefore does not at all represent a genuine curve property. During the course of this book we will meet other integrals of totally different type. However, at this stage we will make do with (1.217).

From now on, temporarily, we want to concentrate ourselves exclusively on space curves and path lines as examples of vector-valued functions. Thereby we assume for the following that the curve under consideration is ‘smooth’.

Definition 1.4.3 A space curve is denoted as smooth, if there exists at least one continuously differentiable parametrization $\mathbf{r}=\mathbf{r}(t)$ for which at no point we have:
$$\frac{d \mathbf{r}}{d t}=0$$
For such smooth space curves it often appears convenient to use the so-called arc length $s$ as curve parameter.

Definition 1.4.4 The arc length $s$ is the length of the space curve, measured along the curved line starting from an arbitrarily chosen initial point.

## 物理代写|理论力学作业代写Theoretical Mechanics代考|Parametrization of Space Curves

r(吨)=∑j=13Xj(吨)和j≡(X1(吨),X2(吨),X3(吨))

\text { 空间曲线 : }=\left{\mathbf{r}(t), t_{a} \leq t \leq t_{e}\right} \text {. }\text { 空间曲线 : }=\left{\mathbf{r}(t), t_{a} \leq t \leq t_{e}\right} \text {. }

1. 在圆周运动X和-plane
让圆有半径R并使其中心点位于坐标原点（图 1.58）。然后一个不言而喻的参数化是通过角度披 :
米=披;0≤披≤2圆周率, r(披)=R(因⁡披,0,罪⁡披)
另一个参数化可以使用，例如，X零件X1:
\begin{aligned} &M=\left{x_{1} ; \quad-R \leq x_{1} \leq+R\right}, \ &\mathbf{r}\left(x_{1}\right)=\left(x_{1}, 0, \pm \sqrt {R^{2}-x_{1}^{2}}\right) \end{对齐}\begin{aligned} &M=\left{x_{1} ; \quad-R \leq x_{1} \leq+R\right}, \ &\mathbf{r}\left(x_{1}\right)=\left(x_{1}, 0, \pm \sqrt {R^{2}-x_{1}^{2}}\right) \end{对齐}
其中加号适用于上半平面，减号适用于下半平面。

## 物理代写|理论力学作业代写Theoretical Mechanics代考|Differentiation of Vector-Valued Functions

Δ一种=一种(吨+Δ吨)−一种(吨)

d一种d吨=林Δ吨→0一种(吨+Δ吨)−一种(吨)Δ吨.

dnd吨n一种(吨)=∑j(dnd吨n一种j(吨))和j;n=0,1,2,…

1)dd吨[一种(吨)+b(吨)]=一种˙(吨)+b˙(吨),
2) dd吨[F(吨)一种(吨)]=F˙(吨)一种(吨)+F(吨)一种˙(吨),

3)dd吨[一种(吨)⋅b(吨)]=一种˙(吨)⋅b(吨)+一种(吨)⋅b˙(吨),
4) dd吨[一种(吨)×b(吨)]=一种˙(吨)×b(吨)+一种(吨)×b˙(吨).
4）我们必须非常小心因素的正确顺序。

a) 速度：在(吨)=r˙(吨)
（总是与路径线相切），

(1.215)

## 物理代写|理论力学作业代写Theoretical Mechanics代考|Arc Length

∫吨一种吨和一种(吨)d吨=∑j=13和j∫吨一种吨和一种j(吨)d吨

drd吨=0

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。