机器学习代写|监督学习代考Supervised and Unsupervised learning代写|Feature Reduction with Support Vector Machines

如果你也在 怎样代写监督学习Supervised and Unsupervised learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

监督学习算法从标记的训练数据中学习,帮你预测不可预见的数据的结果。成功地建立、扩展和部署准确的监督机器学习数据科学模型需要时间和高技能数据科学家团队的技术专长。此外,数据科学家必须重建模型,以确保给出的见解保持真实,直到其数据发生变化。

statistics-lab™ 为您的留学生涯保驾护航 在代写监督学习Supervised and Unsupervised learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写监督学习Supervised and Unsupervised learning代写方面经验极为丰富,各种代写监督学习Supervised and Unsupervised learning相关的作业也就用不着说。

我们提供的监督学习Supervised and Unsupervised learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
机器学习代写|监督学习代考Supervised and Unsupervised learning代写|Feature Reduction with Support Vector Machines

机器学习代写|监督学习代考Supervised and Unsupervised learning代写|Feature Reduction with Support Vector Machines

Recently, more and more instances have occurred in which the learning problems are characterized by the presence of a small number of the highdimensional training data points, i.e. $n$ is small and $m$ is large. This often occurs in the bioinformatics area where obtaining training data is an expensive and time-consuming process. As mentioned previously, recent advances in the DNA microarray technology allow biologists to measure several thousands of genes’ expressions in a single experiment. However, there are three basic reasons why it is not possible to collect many DNA microarrays and why we have to work with sparse data sets. First, for a given type of cancer it is not simple to have thousands of patients in a given time frame. Second, for many cancer studies, each tissue sample used in an experiment needs to be obtained by surgically removing cancerous tissues and this is an expensive and time consuming procedure. Finally, obtaining the DNA microarrays is still expensive technology. As a result, it is not possible to have a relatively large quantity of training examples available. Generally, most of the microarray studies have a few dozen of samples, but the dimensionality of the feature spaces (i.e. space of input vector $\mathbf{x}$ ) can be as high as several thousand. In such cases, it is difficult to produce a classifier that can generalize well on the unseen data, because the amount of training data available is insufficient to cover the high dimensional feature space. It is like trying to identify objects in a big dark room with only a few lights turned on. The fact that $n$ is much smaller than $m$ makes this problem one of the most challenging tasks in the areas of machine learning, statistics and bioinformatics.

The problem of having high-dimensional feature space led to the idea of selecting the most relevant set of genes or features first, and only then the classifier is constructed from these selected and “important”‘ features by the learning algorithms. More precisely, the classifier is constructed over a reduced space (and, in the comparative example above, this corresponds to an object identification in a smaller room with the same number of lights). As a result such a classifier is more likely to generalize well on the unseen data. In the book, a feature reduction technique based on SVMs (dubbed Recursive Feature Elimination with Support Vector Machines (RFE-SVMs)) developed in [61], is implemented and improved. In particular, the focus is on gene selection for cancer diagnosis using RFE-SVMs. RFE-SVM is included in the book because it is the most natural way to harvest the discriminative power of SVMs for microarray analysis. At the same time, it is also a natural extension of the work on solving SVMs efficiently. The original contributions presented in the book in this particular area are as follows:

机器学习代写|监督学习代考Supervised and Unsupervised learning代写|Graph-Based Semi-supervised Learning Algorithms

As mentioned previously, semi-supervised learning (SSL) is the latest development in the field of machine learning. It is driven by the fact that in many real-world problems the cost of labeling data can be quite high and there is an abundance of unlabeled data. The original goal of this book was to develop large-scale solvers for SVMs and apply SVMs to real-world problems only. However, it was found that some of the techniques developed in SVMs can be extended naturally to the graph-based semi-supervised learning, because the optimization problems associated with both learning techniques are identical (more details shortly).

In the book, two very popular graph-based semi-supervised learning algorithms, namely, the Gaussian random fields model (GRFM) introduced in $[160]$ and $[159]$, and the consistency method (CM) for semi-supervised learning proposed in [155] were improved. The original contributions to the field of SSL presented in this book are as follows:

  1. An introduction of the novel normalization step into both CM and GRFM. This additional step improves the performance of both algorithms significantly in the cases where labeled data are unbalanced. The labeled data are regarded as unbalanced when each class has a different number of labeled data in the training set. This contribution is presented in Sect. $5.3$ and 5.4.
  2. The world first large-scale graph-based semi-supervised learning software SemiL is developed as part of this book. The software is based on a Conjugate Gradient (CG) method which can take box-constraints into account and it is used as a backbone for all the simulation results in Chap. $5 .$ Furthermore, SemiL has become a very popular tool in this area at the time of writing this book, with approximately 100 downloads per month. The details of this contribution are given in Sect. $5.6$.

机器学习代写|监督学习代考Supervised and Unsupervised learning代写|Unsupervised Learning Based on Principle

SVMs as the latest supervised learning technique from the statistical learning theory as well as any other supervised learning method require labeled data in

order to train the learning machine. As already mentioned, in many real world problems the cost of labeling data can be quite high. This presented motivation for most recent development of the semi-supervised learning where only small amount of data is assumed to be labeled. However, there exist classification problems where accurate labeling of the data is sometime even impossible. One such application is classification of remotely sensed multispectral and hyperspectral images $[46,47]$. Recall that typical family RGB color image (photo) contains three spectral bands. In other words we can say that family photo is a three-spectral image. A typical hyperspectral image would contain more than one hundred spectral bands. As remote sensing and its applications receive lots of interests recently, many algorithms in remotely sensed image analysis have been proposed [152]. While they have achieved a certain level of success, most of them are supervised methods, i.e., the information of the objects to be detected and classified is assumed to be known a priori. If such information is unknown, the task will be much more challenging. Since the area covered by a single pixel is very large, the reflectance of a pixel can be considered as the mixture of all the materials resident in the area covered by the pixel. Therefore, we have to deal with mixed pixels instead of pure pixels as in conventional digital image processing. Linear spectral unmixing analysis is a popular approach used to uncover material distribution in an image scene $[127,2,125,3]$. Formally, the problem is stated as:
$$
\mathbf{r}=\mathbf{M} \alpha+\mathbf{n}
$$
where $\mathbf{r}$ is a reflectance column pixel vector with dimension $L$ in a hyperspectral image with $L$ spectral bands. An element $r_{i}$ in the $\mathbf{r}$ is the reflectance collected in the $i^{\text {th }}$ wavelength band. $\mathbf{M}$ denotes a matrix containing $p$ independent material spectral signatures (referred to as endmembers in linear mixture model), i.e., $\mathbf{M}=\left[\mathbf{m}{1}, \mathbf{m}{2}, \ldots, \mathbf{m}{p}\right], \boldsymbol{\alpha}$ represents the unknown abundance column vector of size $p \times 1$ associated with $\mathbf{M}$, which is to be estimated and $\mathbf{n}$ is the noise term. The $i^{t h}$ item $\alpha{i}$ in $\boldsymbol{\alpha}$ represents the abundance fraction of $\mathbf{m}_{i}$ in pixel $\mathbf{r}$. When $\mathbf{M}$ is known, the estimation of $\boldsymbol{\alpha}$ can be accomplished by least squares approach. In practice, it may be difficult to have prior information about the image scene and endmember signatures. Moreover, in-field spectral signatures may be different from those in spectral libraries due to atmospheric and environmental effects. So an unsupervised classification approach is preferred. However, when $\mathbf{M}$ is also unknown, i.e., in unsupervised analysis, the task is much more challenging since both $\mathbf{M}$ and $\boldsymbol{\alpha}$ need to be estimated [47]. Under stated conditions the problem represented by linear mixture model (1.3) can be interpreted as a linear instantaneous blind source separation (BSS) problem [76] mathematically described as:
$$
\mathbf{x}=\mathbf{A s}+\mathbf{n}
$$
where x represents data vector, $\mathbf{A}$ is unknown mixing matrix, $\mathbf{s}$ is vector of source signals or classes to be found by an unsupervised method and $\mathbf{n}$ is again additive noise term.

机器学习代写|监督学习代考Supervised and Unsupervised learning代写|Feature Reduction with Support Vector Machines

监督学习代写

机器学习代写|监督学习代考Supervised and Unsupervised learning代写|Feature Reduction with Support Vector Machines

最近,出现了越来越多的例子,其中学习问题的特点是存在少量的高维训练数据点,即n很小而且米很大。这通常发生在生物信息学领域,其中获取训练数据是一个昂贵且耗时的过程。如前所述,DNA 微阵列技术的最新进展允许生物学家在一次实验中测量数千个基因的表达。然而,为什么不可能收集许多 DNA 微阵列以及为什么我们必须使用稀疏数据集有三个基本原因。首先,对于给定类型的癌症,在给定的时间范围内拥有数千名患者并不容易。其次,对于许多癌症研究,实验中使用的每个组织样本都需要通过手术切除癌组织获得,这是一个昂贵且耗时的过程。最后,获得 DNA 微阵列仍然是一项昂贵的技术。因此,不可能有相对大量的训练示例可用。通常,大多数微阵列研究都有几十个样本,但特征空间的维数(即输入向量的空间)X) 可高达数千。在这种情况下,很难产生一个可以很好地概括看不见的数据的分类器,因为可用的训练数据量不足以覆盖高维特征空间。这就像在一个只有几盏灯打开的大黑暗房间里试图识别物体。事实是n远小于米使这个问题成为机器学习、统计学和生物信息学领域最具挑战性的任务之一。

具有高维特征空间的问题导致了首先选择最相关的一组基因或特征的想法,然后才通过学习算法从这些选择的“重要”特征中构建分类器。更准确地说,分类器是在缩小的空间上构建的(并且,在上面的比较示例中,这对应于具有相同灯数的较小房间中的对象识别)。因此,这样的分类器更有可能很好地概括看不见的数据。在本书中,实现并改进了 [61] 中开发的基于支持向量机(称为递归特征消除与支持向量机 (RFE-SVM))的特征减少技术。特别是,重点是使用 RFE-SVM 进行癌症诊断的基因选择。本书中包含 RFE-SVM,因为它是获取 SVM 用于微阵列分析的判别能力的最自然方法。同时,它也是高效求解 SVM 工作的自然延伸。本书在这一特定领域的原始贡献如下:

机器学习代写|监督学习代考Supervised and Unsupervised learning代写|Graph-Based Semi-supervised Learning Algorithms

如前所述,半监督学习(SSL)是机器学习领域的最新发展。这是因为在许多现实世界的问题中,标记数据的成本可能相当高,并且存在大量未标记的数据。本书的最初目标是为 SVM 开发大规模求解器,并将 SVM 仅应用于实际问题。然而,发现在 SVM 中开发的一些技术可以自然地扩展到基于图的半监督学习,因为与两种学习技术相关的优化问题是相同的(稍后会详细介绍)。

书中介绍了两种非常流行的基于图的半监督学习算法,即高斯随机场模型(GRFM)[160]和[159],并对[155]中提出的半监督学习的一致性方法(CM)进行了改进。本书对 SSL 领域的原始贡献如下:

  1. 将新的标准化步骤引入 CM 和 GRFM。在标记数据不平衡的情况下,这一额外步骤显着提高了两种算法的性能。当每个类别在训练集中具有不同数量的标记数据时,标记数据被认为是不平衡的。这一贡献在第 3 节中介绍。5.3和 5.4。
  2. 世界上第一个大规模的基于图的半监督学习软件 SemiL 是本书的一部分。该软件基于共轭梯度 (CG) 方法,该方法可以考虑框约束,并用作第 1 章中所有模拟结果的主干。5.此外,在编写本书时,SemiL 已成为该领域非常流行的工具,每月下载量约为 100 次。该贡献的详细信息在第 3 节中给出。5.6.

机器学习代写|监督学习代考Supervised and Unsupervised learning代写|Unsupervised Learning Based on Principle

支持向量机作为统计学习理论中最新的监督学习技术以及任何其他监督学习方法都需要标记数据

为了训练学习机。如前所述,在许多现实世界的问题中,标记数据的成本可能非常高。这为半监督学习的最新发展提供了动力,其中假设只有少量数据被标记。但是,存在分类问题,有时甚至不可能准确地标记数据。一种这样的应用是遥感多光谱和高光谱图像的分类[46,47]. 回想一下典型的家庭 RGB 彩色图像(照片)包含三个光谱带。换句话说,我们可以说全家福是一张三光谱图像。典型的高光谱图像将包含一百多个光谱带。近年来,随着遥感及其应用受到广泛关注,人们提出了许多遥感图像分析算法[152]。虽然它们已经取得了一定程度的成功,但大多数都是有监督的方法,即假设要检测和分类的对象的信息是先验已知的。如果此类信息未知,则任务将更具挑战性。由于单个像素所覆盖的区域非常大,因此一个像素的反射率可以认为是该像素所覆盖区域内所有材料的混合。所以,我们必须处理混合像素而不是传统数字图像处理中的纯像素。线性光谱分解分析是一种流行的方法,用于揭示图像场景中的材料分布[127,2,125,3]. 正式地,问题描述为:
r=米一种+n
在哪里r是具有维度的反射列像素向量大号在高光谱图像中大号光谱带。一个元素r一世在里面r是收集到的反射率一世th 波段。米表示一个矩阵,包含p独立的材料光谱特征(在线性混合模型中称为端元),即米=[米1,米2,…,米p],一种表示大小的未知丰度列向量p×1有关联米, 这是估计和n是噪声项。这一世吨H物品一种一世在一种表示丰度分数米一世以像素为单位r. 什么时候米已知,估计一种可以通过最小二乘法来完成。在实践中,可能很难获得有关图像场景和末端成员签名的先验信息。此外,由于大气和环境影响,现场光谱特征可能与光谱库中的光谱特征不同。因此,首选无监督分类方法。然而,当米也是未知的,即在无监督分析中,任务更具挑战性,因为两者米和一种需要估计[47]。在规定的条件下,由线性混合模型(1.3)表示的问题可以解释为线性瞬时盲源分离(BSS)问题[76],数学上描述为:
X=一种s+n
其中 x 表示数据向量,一种是未知的混合矩阵,s是由无监督方法找到的源信号或类别的向量,并且n又是加性噪声项。

机器学习代写|监督学习代考Supervised and Unsupervised learning代写 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注