数学代写|代数学代写Algebra代考|MAT523

如果你也在 怎样代写代数学Algebra这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

现代代数是数学的一个分支,涉及各种集合(如实数、复数、矩阵和矢量空间)的一般代数结构,而不是操作其个别元素的规则和程序。

statistics-lab™ 为您的留学生涯保驾护航 在代写代数学Algebra方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写代数学Algebra代写方面经验极为丰富,各种代写代数学Algebra相关的作业也就用不着说。

我们提供的代数学Algebra及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|代数学代写Algebra代考|MAT523

数学代写|代数学代写Algebra代考|The Dot Product

The main tool that helps us extend geometric notions from $\mathbb{R}^2$ and $\mathbb{R}^3$ to arbitrary dimensions is the dot product, which is a way of combining two vectors so as to create a single number:

Suppose $\mathbf{v}=\left(v_1, v_2, \ldots, v_n\right) \in \mathbb{R}^n$ and $\mathbf{w}=\left(w_1, w_2, \ldots, w_n\right) \in \mathbb{R}^n$ are vectors. Then their dot product, denoted by $\mathbf{v} \cdot \mathbf{w}$, is the quantity
$$
\mathbf{v} \cdot \mathbf{w} \stackrel{\text { dff }}{=} v_1 w_1+v_2 w_2+\cdots+v_n w_n .
$$
It is important to keep in mind that the output of the dot product is a number, not a vector. So, for example, the expression $\mathbf{v} \cdot(\mathbf{w} \cdot \mathbf{x})$ does not make sense, since $\mathbf{w} \cdot \mathbf{x}$ is a number, and so we cannot take its dot product with $\mathbf{v}$. On the other hand, the expression $\mathbf{v} /(\mathbf{w} \cdot \mathbf{x})$ does make sense, since dividing a vector by a number is a valid mathematical operation. As we introduce more operations between different types of objects, it will become increasingly important to keep in mind the type of object that we are working with at all times.

Compute (or state why it’s impossible to compute) the following dot products:
a) $(1,2,3) \cdot(4,-3,2)$,
b) $(3,6,2) \cdot(-1,5,2,1)$, and c) $\left(v_1, v_2, \ldots, v_n\right) \cdot \mathbf{e}j$, where $1 \leq j \leq n$. Solutions: a) $(1,2,3) \cdot(4,-3,2)=1 \cdot 4+2 \cdot(-3)+3 \cdot 2=4-6+6=4$. b) $(3,6,2) \cdot(-1,5,2,1)$ does not exist, since these vectors do not have the same number of entries. c) For this dot product to make sense, we have to assume that the vector $\mathbf{e}_j$ has $n$ entries (the same number of entries as $\left(v_1, v_2, \ldots, v_n\right)$ ). Then $$ \begin{aligned} \left(v_1, v_2, \ldots, v_n\right) \cdot \mathbf{e}_j &=0 v_1+\cdots+0 v{j-1}+1 v_j+0 v_{j+1}+\cdots+0 v_n \
&=v_j .
\end{aligned}
$$
The dot product can be interpreted geometrically as roughly measuring the amount of overlap between $\mathbf{v}$ and $\mathbf{w}$. For example, if $\mathbf{v}=\mathbf{w}=(1,0)$ then $\mathbf{v} \cdot \mathbf{w}=1$, but as we rotate $\mathbf{w}$ away from $\mathbf{v}$, their dot product decreases down to 0 when $\mathbf{v}$ and $\mathbf{w}$ are perpendicular (i.e., when $\mathbf{w}=(0,1)$ or $\mathbf{w}=(0,-1))$, as illustrated in Figure 1.7. It then decreases even farther down to $-1$ when $w$ points in the opposite direction of $\mathbf{v}$ (i.e., when $\mathbf{w}=(-1,0)$ ).

More specifically, if we rotate $w$ counter-clockwise from $\mathbf{v}$ by an angle of $\theta$ then its coordinates become $w=(\cos (\theta), \sin (\theta))$. The dot product between $\mathbf{v}$ and $\mathbf{w}$ is then $\mathbf{v} \cdot \mathbf{w}=1 \cos (\theta)+0 \sin (\theta)=\cos (\theta)$, which is largest when $\theta$ is small (i.e., when w points in almost the same direction as $\mathbf{v}$ ).

数学代写|代数学代写Algebra代考|The Angle Between Vectors

In order to get a bit of an idea of how to discuss the angle between vectors in terms of things like the dot product, we first focus on vectors in $\mathbb{R}^2$ or $\mathbb{R}^3$. In these lower-dimensional cases, we can use geometric techniques to determine the angle between two vectors $\mathbf{v}$ and $\mathbf{w}$. If $\mathbf{v}, \mathbf{w} \in \mathbb{R}^2$ then we can place $\mathbf{v}$ and $\mathbf{w}$ in standard position, so that the vectors $\mathbf{v}, \mathbf{w}$, and $\mathbf{v}-\mathbf{w}$ form the sides of a triangle, as in Figure 1.11(a).

We can then use the law of cosines to relate $|\mathbf{v}|,|\mathbf{w}|,|\mathbf{v}-\mathbf{w}|$, and the angle $\theta$ between $\mathbf{v}$ and $\mathbf{w}$. Specifically, we find that
$$
|\mathbf{v}-\mathbf{w}|^2=|\mathbf{v}|^2+|\mathbf{w}|^2-2|\mathbf{v}||\mathbf{w}| \cos (\theta) .
$$
On the other hand, the basic properties of the dot product that we saw back in Theorem 1.2.1 tell us that
$$
\begin{aligned}
|\mathbf{v}-\mathbf{w}|^2 &=(\mathbf{v}-\mathbf{w}) \cdot(\mathbf{v}-\mathbf{w}) \
&=\mathbf{v} \cdot \mathbf{v}-\mathbf{v} \cdot \mathbf{w}-\mathbf{w} \cdot \mathbf{v}+\mathbf{w} \cdot \mathbf{w}=|\mathbf{v}|^2-2(\mathbf{v} \cdot \mathbf{w})+|\mathbf{w}|^2
\end{aligned}
$$

By setting these two expressions for $|\mathbf{v}-\mathbf{w}|^2$ equal to each other, we see that
$$
|\mathbf{v}|^2+|\mathbf{w}|^2-2|\mathbf{v}||\mathbf{w}| \cos (\theta)=|\mathbf{v}|^2-2(\mathbf{v} \cdot \mathbf{w})+|\mathbf{w}|^2 .
$$
Simplifying and rearranging this equation then gives a formula for $\theta$ in terms of the lengths of $\mathbf{v}$ and $\mathbf{w}$ and their dot product:
$$
\cos (\theta)=\frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|}, \quad \text { so } \quad \theta=\arccos \left(\frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|}\right) .
$$
This argument still works, but is slightly trickier to visualize, when working with vector $\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ that are 3-dimensional. In this case, we can still arrange $\mathbf{v}, \mathbf{w}$, and $\mathbf{v}-\mathbf{w}$ to form a triangle, and the calculation that we did in $\mathbb{R}^2$ is the exact same – the only change is that the triangle is embedded in 3-dimensional space, as in Figure 1.11(b).

When considering vectors in higher-dimensional spaces, we no longer have a visual guide for what the angle between two vectors means, so instead we simply define the angle so as to be consistent with the formula that we derived above:
The angle $\theta$ between two non-zero vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ is the quantity
$$
\theta=\arccos \left(\frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|}\right)
$$

数学代写|代数学代写Algebra代考|MAT523

代数学代考

数学代写|代数学代写Algebra代考|The Dot Product


帮助我们将几何概念从$\mathbb{R}^2$和$\mathbb{R}^3$扩展到任意维度的主要工具是点积,这是一种组合两个向量从而生成单个数字的方法:

假设$\mathbf{v}=\left(v_1, v_2, \ldots, v_n\right) \in \mathbb{R}^n$和$\mathbf{w}=\left(w_1, w_2, \ldots, w_n\right) \in \mathbb{R}^n$是向量。然后它们的点积,用$\mathbf{v} \cdot \mathbf{w}$表示,是数量
$$
\mathbf{v} \cdot \mathbf{w} \stackrel{\text { dff }}{=} v_1 w_1+v_2 w_2+\cdots+v_n w_n .
$$
。重要的是要记住,点积的输出是一个数字,而不是一个向量。因此,例如,表达式$\mathbf{v} \cdot(\mathbf{w} \cdot \mathbf{x})$没有意义,因为$\mathbf{w} \cdot \mathbf{x}$是一个数字,所以我们不能取它与$\mathbf{v}$的点积。另一方面,表达式$\mathbf{v} /(\mathbf{w} \cdot \mathbf{x})$是有意义的,因为用一个数字除以一个向量是一个有效的数学运算。当我们在不同类型的对象之间引入更多的操作时,时刻记住我们正在处理的对象的类型将变得越来越重要

计算(或说明为什么不可能计算)以下点积:
a) $(1,2,3) \cdot(4,-3,2)$,
b) $(3,6,2) \cdot(-1,5,2,1)$,和c) $\left(v_1, v_2, \ldots, v_n\right) \cdot \mathbf{e}j$,其中$1 \leq j \leq n$。a) $(1,2,3) \cdot(4,-3,2)=1 \cdot 4+2 \cdot(-3)+3 \cdot 2=4-6+6=4$。B) $(3,6,2) \cdot(-1,5,2,1)$不存在,因为这些向量没有相同数量的条目。c)为了使这个点积有意义,我们必须假设向量$\mathbf{e}_j$有$n$个条目(与$\left(v_1, v_2, \ldots, v_n\right)$的条目数量相同)。那么$$ \begin{aligned} \left(v_1, v_2, \ldots, v_n\right) \cdot \mathbf{e}_j &=0 v_1+\cdots+0 v{j-1}+1 v_j+0 v_{j+1}+\cdots+0 v_n \
&=v_j .
\end{aligned}
$$
点积可以从几何上解释为大致测量$\mathbf{v}$和$\mathbf{w}$之间的重叠量。例如,如果$\mathbf{v}=\mathbf{w}=(1,0)$,那么$\mathbf{v} \cdot \mathbf{w}=1$,但是当我们将$\mathbf{w}$从$\mathbf{v}$旋转时,当$\mathbf{v}$和$\mathbf{w}$垂直时(即$\mathbf{w}=(0,1)$或$\mathbf{w}=(0,-1))$,如图1.7所示),它们的点积减小到0。然后,当$w$指向$\mathbf{v}$的相反方向时(即,当$\mathbf{w}=(-1,0)$),它甚至下降到$-1$ 更具体地说,如果我们从$\mathbf{v}$逆时针旋转$w$$\theta$,那么它的坐标就变成$w=(\cos (\theta), \sin (\theta))$。$\mathbf{v}$和$\mathbf{w}$之间的点积则为$\mathbf{v} \cdot \mathbf{w}=1 \cos (\theta)+0 \sin (\theta)=\cos (\theta)$,当$\theta$很小时(即当w与$\mathbf{v}$指向几乎相同的方向时)最大

数学代写|代数学代写Algebra代考|向量之间的角度

. . 为了稍微了解如何用点积之类的东西来讨论向量之间的角度,我们首先关注$\mathbb{R}^2$或$\mathbb{R}^3$中的向量。在这些低维情况下,我们可以使用几何技术来确定两个向量$\mathbf{v}$和$\mathbf{w}$之间的角度。如果$\mathbf{v}, \mathbf{w} \in \mathbb{R}^2$,那么我们可以将$\mathbf{v}$和$\mathbf{w}$放在标准位置,这样向量$\mathbf{v}, \mathbf{w}$和$\mathbf{v}-\mathbf{w}$就形成了三角形的边,如图1.11(a)所示。 我们可以用余弦定律来联系$|\mathbf{v}|,|\mathbf{w}|,|\mathbf{v}-\mathbf{w}|$,以及$\mathbf{v}$和$\mathbf{w}$之间的角度$\theta$。具体来说,我们发现
$$
|\mathbf{v}-\mathbf{w}|^2=|\mathbf{v}|^2+|\mathbf{w}|^2-2|\mathbf{v}||\mathbf{w}| \cos (\theta) .
$$
另一方面,我们在定理1.2.1中看到的点积的基本性质告诉我们
$$
\begin{aligned}
|\mathbf{v}-\mathbf{w}|^2 &=(\mathbf{v}-\mathbf{w}) \cdot(\mathbf{v}-\mathbf{w}) \
&=\mathbf{v} \cdot \mathbf{v}-\mathbf{v} \cdot \mathbf{w}-\mathbf{w} \cdot \mathbf{v}+\mathbf{w} \cdot \mathbf{w}=|\mathbf{v}|^2-2(\mathbf{v} \cdot \mathbf{w})+|\mathbf{w}|^2
\end{aligned}
$$


通过设置$|\mathbf{v}-\mathbf{w}|^2$的这两个表达式彼此相等,我们看到
$$
|\mathbf{v}|^2+|\mathbf{w}|^2-2|\mathbf{v}||\mathbf{w}| \cos (\theta)=|\mathbf{v}|^2-2(\mathbf{v} \cdot \mathbf{w})+|\mathbf{w}|^2 .
$$
简化并重新排列这个方程,然后给出了$\theta$用$\mathbf{v}$和$\mathbf{w}$的长度以及它们的点积表示的公式:
$$
\cos (\theta)=\frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|}, \quad \text { so } \quad \theta=\arccos \left(\frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|}\right) .
$$
这个参数仍然有效,但在处理三维向量$\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$时,可视化有点麻烦。在本例中,我们仍然可以将$\mathbf{v}, \mathbf{w}$和$\mathbf{v}-\mathbf{w}$排列成一个三角形,我们在$\mathbb{R}^2$中所做的计算是完全相同的-唯一的变化是,三角形嵌入到三维空间中,如图1.11(b)所示。


当考虑高维空间中的向量时,我们不再有一个直观的指南来说明两个向量之间的角度意味着什么,所以我们简单地定义这个角度,以便与我们上面推导的公式一致:两个非零向量之间的角度$\theta$$\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$是量
$$
\theta=\arccos \left(\frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|}\right)
$$

数学代写|代数学代写Algebra代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注