统计代写|贝叶斯分析代写Bayesian Analysis代考|Finite population notation and terminology

如果你也在 怎样代写贝叶斯分析Bayesian Analysis 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。贝叶斯分析Bayesian Analysis一种统计推断方法(以英国数学家托马斯-贝叶斯命名),它允许人们将关于人口参数的先验信息与样本中包含的信息证据相结合,以指导统计推断过程。首先指定一个感兴趣的参数的先验概率分布。然后通过应用贝叶斯定理获得并结合证据,为参数提供一个后验概率分布。后验分布为有关该参数的统计推断提供了基础。

贝叶斯分析,一种统计推断方法(以英国数学家托马斯-贝叶斯命名),允许人们将关于人口参数的先验信息与样本所含信息的证据相结合,以指导统计推断过程。

statistics-lab™ 为您的留学生涯保驾护航 在代写贝叶斯分析Bayesian Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写贝叶斯分析Bayesian Analysis代写方面经验极为丰富,各种代写贝叶斯分析Bayesian Analysis相关的作业也就用不着说。

统计代写|贝叶斯分析代写Bayesian Analysis代考|Finite population notation and terminology

统计代写|贝叶斯分析代写Bayesian Analysis代考|Finite population notation and terminology

Consider a finite population of $N$ units labelled $i=1, \ldots, N$, and let $y_i$ be the value of the $i$ th unit for some observable variable of interest.
Define $y=\left(y_1, \ldots, y_N\right)$ as the population vector.
Suppose that $n$ units are selected from the finite population without replacement.

We refer to $n$ as the sample size and to $m=N-n$ as the nonsample size.
Let $s=\left(s_1, \ldots, s_n\right)$ be the vector of the ordered labels of the sampled units.
Also let $r=\left(r_1, \ldots, r_m\right)$ be the vector of the ordered labels of the nonsampled units, i.e. those remaining.

Define $y_s=\left(y_{s_1}, \ldots, y_{s_n}\right)$ to be the sample vector, and likewise define $y_r=\left(y_{r_1}, \ldots, y_{r_m}\right)$ to be the nonsample vector.

Note 1: With the above definitions, it is always true that
$$
s_1<\ldots<s_n
$$
and
$$
r_1<\ldots<r_m
$$
irrespective of the order in which the population units may actually be sampled. Also,
$$
\left{s_1, \ldots, s_n, r_1, \ldots, r_m\right}={1, \ldots, N}
$$
Note 2: For mathematical convenience, the population, sample and nonsample vectors may later sometimes be defined as the column vectors
$$
y=\left(y_1, \ldots, y_N\right)^{\prime}=\left(\begin{array}{c}
y_1 \
\vdots \
y_N
\end{array}\right), y_s=\left(y_{s_1}, \ldots, y_{s_n}\right)^{\prime} \text { and } y_r=\left(y_{r_1}, \ldots, y_{r_m}\right)^{\prime},
$$
respectively.
Also, the population vector may sometimes be written using upper case letters, as $Y=\left(Y_1, \ldots, Y_N\right)$ or $Y=\left(Y_1, \ldots, Y_N\right)^{\prime}$. For the remainder of this chapter, these alternative notations will not be used.

统计代写|贝叶斯分析代写Bayesian Analysis代考|Bayesian finite population models

Consider a finite population vector $y$ which may be thought of as having been generated from some probability distribution which depends on a parameter $\theta$ (possibly a vector).

Also suppose that a sample of size $n$ is drawn from the finite population without replacement according to some probability distribution for $s$.

This scenario may be expressed in terms of a Bayesian finite population model with the following form:
$\begin{array}{ll}f(s \mid y, \theta) \quad & \text { (the probability of obtaining sample } s \text { for given } \ & \text { values of } y \text { and } \theta \text { ) } \ f(y \mid \theta) \quad & \text { (the model density of the finite population vector } \ & \text { given } \theta \text { ) } \ f(\theta) \quad & \text { (the prior density of the parameter). }\end{array}$
Suppose that we have data of the form $D=\left(s, y_s\right)$ and are interested in a quantity $Q=g(y, \theta)$, for some function $g$. Then the task is to determine the distribution of $Q$ given $D$.

This distribution will be based on the joint distribution of the two unobserved quantities $\theta$ and $y_r$, given the two observed quantities, namely:
$s \quad$ (which tells us which units are sampled); and
$y_s \quad$ (the vector of the values of the sampled units).
Thus, inference on the quantity of interest $Q=g(y, \theta)$ is based on the density $f(Q \mid D)$, which in turn is based on the density
$$
\begin{aligned}
f\left(\theta, y_r \mid s, y_s\right) & \propto f\left(\theta, y_s, y_r, s\right) \
& =f(\theta) f\left(y_s, y_r \mid \theta\right) f\left(s \mid y_s, y_r, \theta\right) .
\end{aligned}
$$

统计代写|贝叶斯分析代写Bayesian Analysis代考|Finite population notation and terminology

贝叶斯分析代考

统计代写|贝叶斯分析代写Bayesian Analysis代考|Finite population notation and terminology

考虑一个标记为$i=1, \ldots, N$的$N$单元的有限总体,并设$y_i$为某个感兴趣的可观察变量的第$i$个单元的值。
将$y=\left(y_1, \ldots, y_N\right)$定义为人口向量。
假设$n$单位是从有限的总体中选择的,没有替换。

我们将$n$作为样本量,$m=N-n$作为非样本量。
设$s=\left(s_1, \ldots, s_n\right)$为采样单元的有序标签向量。
同时设$r=\left(r_1, \ldots, r_m\right)$为非采样单元(即剩余的那些)的有序标签向量。

定义$y_s=\left(y_{s_1}, \ldots, y_{s_n}\right)$为样本向量,同样定义$y_r=\left(y_{r_1}, \ldots, y_{r_m}\right)$为非样本向量。

注1:根据上述定义,总是正确的
$$
s_1<\ldots<s_n
$$

$$
r_1<\ldots<r_m
$$
不管总体单位实际抽样的顺序如何。还有,
$$
\left{s_1, \ldots, s_n, r_1, \ldots, r_m\right}={1, \ldots, N}
$$
注2:为了数学上的方便,总体向量、样本向量和非样本向量有时可以定义为列向量
$$
y=\left(y_1, \ldots, y_N\right)^{\prime}=\left(\begin{array}{c}
y_1 \
\vdots \
y_N
\end{array}\right), y_s=\left(y_{s_1}, \ldots, y_{s_n}\right)^{\prime} \text { and } y_r=\left(y_{r_1}, \ldots, y_{r_m}\right)^{\prime},
$$
分别。
此外,种群载体有时可以用大写字母书写,如$Y=\left(Y_1, \ldots, Y_N\right)$或$Y=\left(Y_1, \ldots, Y_N\right)^{\prime}$。在本章的其余部分,将不再使用这些替代符号。

统计代写|贝叶斯分析代写Bayesian Analysis代考|Bayesian finite population models

考虑一个有限种群向量$y$,它可以被认为是由依赖于参数$\theta$(可能是一个向量)的概率分布生成的。

还假设根据$s$的某个概率分布,从有限总体中抽取一个大小为$n$的样本,而不进行替换。

这种情况可以用贝叶斯有限人口模型表示,其形式如下:
$\begin{array}{ll}f(s \mid y, \theta) \quad & \text { (the probability of obtaining sample } s \text { for given } \ & \text { values of } y \text { and } \theta \text { ) } \ f(y \mid \theta) \quad & \text { (the model density of the finite population vector } \ & \text { given } \theta \text { ) } \ f(\theta) \quad & \text { (the prior density of the parameter). }\end{array}$
假设我们有形式为$D=\left(s, y_s\right)$的数据,并且对某个函数$g$的数量$Q=g(y, \theta)$感兴趣。然后任务是确定给定$D$的$Q$的分布。

该分布将基于两个未观测量$\theta$和$y_r$的联合分布,给定两个观测量,即:
$s \quad$(它告诉我们哪些单元被采样);和
$y_s \quad$(采样单位值的向量)。
因此,对兴趣数量的推断$Q=g(y, \theta)$基于密度$f(Q \mid D)$,而密度又基于密度
$$
\begin{aligned}
f\left(\theta, y_r \mid s, y_s\right) & \propto f\left(\theta, y_s, y_r, s\right) \
& =f(\theta) f\left(y_s, y_r \mid \theta\right) f\left(s \mid y_s, y_r, \theta\right) .
\end{aligned}
$$

统计代写|贝叶斯分析代写Bayesian Analysis代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注