分类: R语言代写

统计代写|抽样调查作业代写sampling theory of survey代考|Nonexistence Results

如果你也在 怎样代写抽样调查sampling theory of survey这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

抽样调查是一种非全面调查,根据随机的原则从总体中抽取部分实际数据进行调查,并运用概率估计方法,根据样本数据推算总体相应的数量指标的一种统计分析方法。

statistics-lab™ 为您的留学生涯保驾护航 在代写抽样调查sampling theory of survey方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写抽样调查sampling theory of survey方面经验极为丰富,各种代写抽样调查sampling theory of survey相关的作业也就用不着说。

我们提供的抽样调查sampling theory of survey及其相关学科的代写,服务范围广, 其中包括但不限于:

统计代写|抽样调查作业代写sampling theory of survey代考|Nonexistence Results

统计代写|抽样调查作业代写sampling theory of survey代考|Nonexistence Results

Let a design $p$ be given and consider a $p$-unbiased estimator $t$, that is, $B_p(t)=E_p(t-Y)=0$ uniformly in $Y$. The performance of such an estimator is assessed by $V_p(t)=E_p(t-Y)^2$ and we would like to minimize $V_p(t)$ uniformly in $Y$. Assume $t^$ is such a uniformly minimum variance (UMV) unbiased estimator (UMVUE), that is, for every unbiased $t$ (other than $\left.t^\right)$ one has $V_p\left(t^\right) \leq V_p(t)$ for every $Y$ and $V_p\left(t^\right)<V_p(t)$ at least for one $Y$.

Let $\Omega$ be the range (usually known) of $Y$; for example, $\Omega=\left{Y: a_i<Y_i<b_i, i=1, \ldots, N\right}$ with $a_i, b_i(i=1, \ldots, N)$ as known real numbers. If $a_i=-\infty$ and $b_i=+\infty$, then $\Omega$ coincides with the $N$-dimensional Euclidean space $\mathbb{R}^N$; otherwise $\Omega$ is a subset of $\mathbb{R}^N$. Let us choose a point $A=\left(A_1, \ldots, A_i, \ldots\right.$, $\left.A_N\right)^{\prime}$ in $\Omega$ and consider as an estimator for $Y$
$$
\begin{aligned}
t_A & =t_A(s, Y) \
& =t^(s, Y)-t^(s, A)+A
\end{aligned}
$$
where $A=\Sigma A_i$. Then,
$$
E_p\left(t_A\right)=E_p t^(s, Y)-E_p t^(s, A)+A=Y-A+A=Y
$$
that is, $t_A$ is unbiased for $Y$. Now the value of
$$
V_p\left(t_A\right)=E_p\left[t^(s, Y)-t^(s, A)+A-Y\right]^2
$$
equals zero at the point $Y=A$. Since $t^$ is supposed to be the UMVUE, $V_p\left(t^\right)$ must also be zero when $Y=A$. Now $A$ is arbitrary. So, in order to qualify as the UMVUE for $Y$, the $t^$ must have its variance identically equal to zero. This is possible only if one has a census, that is, every unit of $U$ is in $s$ rendering $t^$ coincident with $Y$. So, for no design except a census design, for which the entire population is surveyed, there may exist a UMV estimator among all UE’s for $Y$. The same is true if, instead of $Y$, one takes $\bar{Y}$ as the estimand. This important nonexistence result is due to GODAMBE and JOSHI (1965) while the proof presented above was given by BASU (1971).

统计代写|抽样调查作业代写sampling theory of survey代考|Rao-Blackwellization

An estimator $t=t(s, Y)$ may depend on the order in which the units appear in $s$ and may depend on the multiplicities of the appearances of the units in $s$.

EXAMPLE 3.1 Let $P_i\left(0<P_i<1, \Sigma_1^N P_i=1\right)$ be known numbers associated with the units $i$ of $U$. Suppose on the first draw a unit $i$ is chosen from $U$ with probability $P_i$ and on the second draw a unit $j(\neq i)$ is chosen with probability $\frac{P_j}{1-P_i}$.

Consider RAJ’s (1956) estimator (see section 2.4.6)
$$
t_D=t(i, j)=\frac{1}{2}\left[\frac{Y_i}{P_i}+\left(Y_i+\frac{Y_j}{P_j}\left(1-P_i\right)\right)\right]=\frac{1}{2}\left(e_1+e_2\right), \text { say. }
$$
Now,
$$
E_p\left(e_1\right)=E_p\left[\frac{Y_i}{P_i}\right]=\sum_1^N \frac{Y_i}{P_i} P_i=Y
$$
and
$$
e_2=Y_i+\frac{Y_j}{P_j}\left(1-P_j\right)
$$
has the conditional expectation, given that $\left(i, Y_i\right)$ is observed on the first draw,
$$
E_C\left(e_2\right)=Y_i+\sum_{j \neq i}\left[\frac{Y_j}{P_j}\left(1-P_i\right)\right] \frac{P_j}{1-P_i}=Y_i+\sum_{j \neq i} Y_j=Y
$$
and hence the unconditional expectation $E_p\left(e_2\right)=Y$. So $t_D$ is unbiased for $Y$, but depends on the order in which the units appear in the sample $s=(i, j)$ that is, in general
$$
t_D(i, j) \neq t_D(j, i)
$$

统计代写|抽样调查作业代写sampling theory of survey代考|Nonexistence Results

抽样调查代考

统计代写|抽样调查作业代写sampling theory of survey代考|Nonexistence Results

假设给定一个设计$p$,并考虑一个$p$ -无偏估计量$t$,即在$Y$中均匀地$B_p(t)=E_p(t-Y)=0$。这种估计器的性能由$V_p(t)=E_p(t-Y)^2$评估,我们希望在$Y$中一致地最小化$V_p(t)$。假设$t^$是这样一个一致最小方差(UMV)无偏估计量(UMVUE),也就是说,对于每个无偏$t$(除了$\left.t^\right)$之外),对于每个$Y$和$V_p\left(t^\right)<V_p(t)$至少有一个$Y$都有$V_p\left(t^\right) \leq V_p(t)$。

设$\Omega$为$Y$的范围(通常已知);例如,$\Omega=\left{Y: a_i<Y_i<b_i, i=1, \ldots, N\right}$和$a_i, b_i(i=1, \ldots, N)$作为已知的实数。如果$a_i=-\infty$和$b_i=+\infty$,则$\Omega$与$N$维欧氏空间$\mathbb{R}^N$重合;否则$\Omega$是$\mathbb{R}^N$的子集。让我们在$\Omega$中选择一个点$A=\left(A_1, \ldots, A_i, \ldots\right.$, $\left.A_N\right)^{\prime}$,并将其作为$Y$的估计量
$$
\begin{aligned}
t_A & =t_A(s, Y) \
& =t^(s, Y)-t^(s, A)+A
\end{aligned}
$$
在哪里$A=\Sigma A_i$。然后,
$$
E_p\left(t_A\right)=E_p t^(s, Y)-E_p t^(s, A)+A=Y-A+A=Y
$$
也就是说,$t_A$对$Y$是无偏的。的值
$$
V_p\left(t_A\right)=E_p\left[t^(s, Y)-t^(s, A)+A-Y\right]^2
$$
在$Y=A$处等于0。因为$t^$应该是UMVUE,所以当$Y=A$时$V_p\left(t^\right)$也必须为零。$A$是任意的。因此,为了符合$Y$的UMVUE, $t^$必须具有完全等于零的方差。这只有在进行人口普查时才有可能,也就是说,$U$的每个单位都在$s$中,使$t^$与$Y$一致。因此,除了对整个人口进行调查的人口普查设计之外,对于$Y$,所有UE中可能存在UMV估计量。如果不取$Y$,而取$\bar{Y}$作为估计值,情况也是如此。这个重要的不存在性结果是由GODAMBE和JOSHI(1965)给出的,而上面的证明是由BASU(1971)给出的。

统计代写|抽样调查作业代写sampling theory of survey代考|Rao-Blackwellization

估计量$t=t(s, Y)$可能取决于$s$中各单元出现的顺序,也可能取决于$s$中各单元出现的次数。

例3.1设$P_i\left(0<P_i<1, \Sigma_1^N P_i=1\right)$为与$U$的单位$i$相关联的已知数。假设第一次抽中单位$i$以$P_i$的概率从$U$中选择,第二次抽中单位$j(\neq i)$以$\frac{P_j}{1-P_i}$的概率选择。

考虑RAJ的(1956)估计器(见第2.4.6节)
$$
t_D=t(i, j)=\frac{1}{2}\left[\frac{Y_i}{P_i}+\left(Y_i+\frac{Y_j}{P_j}\left(1-P_i\right)\right)\right]=\frac{1}{2}\left(e_1+e_2\right), \text { say. }
$$
现在,
$$
E_p\left(e_1\right)=E_p\left[\frac{Y_i}{P_i}\right]=\sum_1^N \frac{Y_i}{P_i} P_i=Y
$$

$$
e_2=Y_i+\frac{Y_j}{P_j}\left(1-P_j\right)
$$
有条件期望,假设在第一次抽签时观察到$\left(i, Y_i\right)$,
$$
E_C\left(e_2\right)=Y_i+\sum_{j \neq i}\left[\frac{Y_j}{P_j}\left(1-P_i\right)\right] \frac{P_j}{1-P_i}=Y_i+\sum_{j \neq i} Y_j=Y
$$
这就是无条件期望$E_p\left(e_2\right)=Y$。所以$t_D$对于$Y$是无偏的,但是取决于样本中各单元出现的顺序$s=(i, j)$也就是说,一般情况下
$$
t_D(i, j) \neq t_D(j, i)
$$

统计代写|抽样调查作业代写sampling theory of survey代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。统计代写|python代写代考

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|抽样调查作业代写sampling theory of survey代考|Ratio Strategy

如果你也在 怎样代写抽样调查sampling theory of survey这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

抽样调查是一种非全面调查,根据随机的原则从总体中抽取部分实际数据进行调查,并运用概率估计方法,根据样本数据推算总体相应的数量指标的一种统计分析方法。

statistics-lab™ 为您的留学生涯保驾护航 在代写抽样调查sampling theory of survey方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写抽样调查sampling theory of survey方面经验极为丰富,各种代写抽样调查sampling theory of survey相关的作业也就用不着说。

我们提供的抽样调查sampling theory of survey及其相关学科的代写,服务范围广, 其中包括但不限于:

统计代写|抽样调查作业代写sampling theory of survey代考|Ratio Strategy

统计代写|抽样调查作业代写sampling theory of survey代考|Ratio Strategy

Utilizing the theory thus developed by RAO and VIJAYAN (1977) and RAO (1979), one may write down the exact MSE of the ratio estimator $t_1$ about $Y$ if $t_1$ is based on SRSWOR in $n$ draws as
$$
\begin{aligned}
M= & -\sum_{1 \leq i<j \leq N} \sum_{i \in j}\left[\frac{Y_i}{X_i}-\frac{Y_j}{X_j}\right]^2 \frac{X_i X_j}{\left(\begin{array}{c}
N \
n
\end{array}\right)} \
& \times\left[X^2 \sum_{s \ni i, j} \frac{1}{\left(\sum_{i \in s} X_i\right)^2}-X \sum_{s \ni i} \frac{1}{\left(\sum_{i \in s} X_i\right)}\right. \
& \left.-X \sum_{s \ni j} \frac{1}{\left(\sum_{i \in s} X_i\right)}+\left(\begin{array}{c}
N \
n
\end{array}\right)\right]
\end{aligned}
$$
because
$$
t_1=X\left[\sum_{i \in s} Y_i\right] /\left[\sum_{i \in s} X_i\right]=\sum_1^N Y_i b_{s i} I_{s i} \quad \text { with } \quad b_{s i}=\frac{X}{\sum_{i \in s} X_i}
$$
has
$$
\begin{aligned}
d_{i j}= & E_p\left(b_{s i} I_{s i}-1\right)\left(b_{s j} I_{s j}-1\right) \
= & \frac{1}{\left(\begin{array}{c}
N \
n
\end{array}\right)}\left[X^2 \sum_{s \ni i, j} \frac{1}{\left(\sum_{i \in s} X_i\right)^2}-X \sum_{s \ni i} \frac{1}{\left(\sum_{i \in s} X_i\right)}\right. \
& \left.-X \sum_{s \ni j} \frac{1}{\left(\sum_{i \in s} X_i\right)}+\left(\begin{array}{c}
N \
n
\end{array}\right)\right] \
= & B_{i j}, \text { say. }
\end{aligned}
$$
Writing
$$
a_{i j}=X_i X_j\left[\frac{Y_i}{X_i}-\frac{Y_j}{X_j}\right]^2
$$
we have
$$
M=-\sum_{i<j} a_{i j} B_{i j}
$$
Since for SRSWOR, $\pi_{i j}=\frac{n(n-1)}{N(N-1)}$ for every $i, j(i \neq j)$ an obvious uniformly non-negative quadratic unbiased estimator for $M$ is
$$
\hat{M}=-\frac{N(N-1)}{n(n-1)} \sum_{i<j} \sum_{i j} B_{i j} I_{s i j}
$$

统计代写|抽样调查作业代写sampling theory of survey代考|Hansen–Hurwitz Strategy

For the HANSEN-HURWITZ estimator $t_2$, which is unbiased for $Y$, when based on PPSWR sampling, the variance is well known to be
$$
\begin{aligned}
V_2=M & =\frac{1}{n}\left[\sum_1^N \frac{Y_i^2}{P_i}-Y^2\right] \
& =\frac{1}{n} \sum P_i\left[\frac{Y_i}{P_i}-Y\right]^2 \
& =\frac{1}{n} \sum_{i<j} \sum_i P_i P_j\left[\frac{Y_i}{P_i}-\frac{Y_j}{P_j}\right]^2
\end{aligned}
$$
admitting a well-known non-negative estimator
$$
\begin{aligned}
v_2 & =\frac{1}{n^2(n-1)} \sum_{r<r^{\prime}} \sum_{[}\left[\frac{y_r}{p_r}-\frac{y_{r^{\prime}}}{p_{r^{\prime}}}\right]^2 \
& =\frac{1}{n(n-1)} \sum_{r=1}^n\left[\frac{y_r}{p_r}-t_2\right]^2
\end{aligned}
$$
where $y_r$ is the $y$ value of the unit drawn in the $r$ th place, while $p_r$ is the probability of this unit to be drawn.

统计代写|抽样调查作业代写sampling theory of survey代考|Ratio Strategy

抽样调查代考

统计代写|抽样调查作业代写sampling theory of survey代考|Ratio Strategy

利用RAO和VIJAYAN(1977)和RAO(1979)提出的理论,我们可以写出关于$Y$的比率估计器$t_1$的精确MSE,如果$t_1$是基于$n$中的SRSWOR
$$
\begin{aligned}
M= & -\sum_{1 \leq i<j \leq N} \sum_{i \in j}\left[\frac{Y_i}{X_i}-\frac{Y_j}{X_j}\right]^2 \frac{X_i X_j}{\left(\begin{array}{c}
N \
n
\end{array}\right)} \
& \times\left[X^2 \sum_{s \ni i, j} \frac{1}{\left(\sum_{i \in s} X_i\right)^2}-X \sum_{s \ni i} \frac{1}{\left(\sum_{i \in s} X_i\right)}\right. \
& \left.-X \sum_{s \ni j} \frac{1}{\left(\sum_{i \in s} X_i\right)}+\left(\begin{array}{c}
N \
n
\end{array}\right)\right]
\end{aligned}
$$
因为
$$
t_1=X\left[\sum_{i \in s} Y_i\right] /\left[\sum_{i \in s} X_i\right]=\sum_1^N Y_i b_{s i} I_{s i} \quad \text { with } \quad b_{s i}=\frac{X}{\sum_{i \in s} X_i}
$$

$$
\begin{aligned}
d_{i j}= & E_p\left(b_{s i} I_{s i}-1\right)\left(b_{s j} I_{s j}-1\right) \
= & \frac{1}{\left(\begin{array}{c}
N \
n
\end{array}\right)}\left[X^2 \sum_{s \ni i, j} \frac{1}{\left(\sum_{i \in s} X_i\right)^2}-X \sum_{s \ni i} \frac{1}{\left(\sum_{i \in s} X_i\right)}\right. \
& \left.-X \sum_{s \ni j} \frac{1}{\left(\sum_{i \in s} X_i\right)}+\left(\begin{array}{c}
N \
n
\end{array}\right)\right] \
= & B_{i j}, \text { say. }
\end{aligned}
$$
写作
$$
a_{i j}=X_i X_j\left[\frac{Y_i}{X_i}-\frac{Y_j}{X_j}\right]^2
$$
我们有
$$
M=-\sum_{i<j} a_{i j} B_{i j}
$$
因为对于SRSWOR, $\pi_{i j}=\frac{n(n-1)}{N(N-1)}$对于每一个$i, j(i \neq j)$,都有一个明显的一致非负二次无偏估计量$M$
$$
\hat{M}=-\frac{N(N-1)}{n(n-1)} \sum_{i<j} \sum_{i j} B_{i j} I_{s i j}
$$

统计代写|抽样调查作业代写sampling theory of survey代考|Hansen–Hurwitz Strategy

对于对于$Y$无偏的HANSEN-HURWITZ估计器$t_2$,当基于PPSWR采样时,方差是众所周知的
$$
\begin{aligned}
V_2=M & =\frac{1}{n}\left[\sum_1^N \frac{Y_i^2}{P_i}-Y^2\right] \
& =\frac{1}{n} \sum P_i\left[\frac{Y_i}{P_i}-Y\right]^2 \
& =\frac{1}{n} \sum_{i<j} \sum_i P_i P_j\left[\frac{Y_i}{P_i}-\frac{Y_j}{P_j}\right]^2
\end{aligned}
$$
承认一个著名的非负估计量
$$
\begin{aligned}
v_2 & =\frac{1}{n^2(n-1)} \sum_{r<r^{\prime}} \sum_{[}\left[\frac{y_r}{p_r}-\frac{y_{r^{\prime}}}{p_{r^{\prime}}}\right]^2 \
& =\frac{1}{n(n-1)} \sum_{r=1}^n\left[\frac{y_r}{p_r}-t_2\right]^2
\end{aligned}
$$
其中$y_r$为第$r$位抽到的单位的$y$值,$p_r$为抽到该单位的概率。

统计代写|抽样调查作业代写sampling theory of survey代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。统计代写|python代写代考

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|数据结构作业代写data structure代考|CS166

如果你也在 怎样代写数据结构data structure这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数据结构是一种用于存储和组织数据的存储。它是一种在计算机上安排数据的方式,以便可以有效地访问和更新。根据你的要求和项目,为你的项目选择正确的数据结构很重要。

statistics-lab™ 为您的留学生涯保驾护航 在代写数据结构data structure方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数据结构data structure方面经验极为丰富,各种代写数据结构data structure相关的作业也就用不着说。

我们提供的数据结构data structure及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|数据结构作业代写data structure代考|CS166

统计代写|数据结构作业代写data structure代考|Clusters and Flat Clustering

Clusters are groups of points that are similar to each other and dissimilar to points from other clusters. In terms of the underlying distribution, a cluster constitutes a connected area of high density around a mode of the distribution. Clusters may be determined automatically by clustering algorithms providing a flat clustering, or visually relying on the ability of human cognition to identify groups (see Gestalt laws of proximity and continuity detailed Sect. 1.3.2). Indeed, by looking at Fig. 1.7a, the reader gets an intuitive idea of what the clusters are for this dataset (a priori close to the automatic clustering of Fig. 1.8b).

Clustering algorithms identify a latent categorical variable indicating the cluster to which a given point belongs. Namely, they determine a mapping $\Omega: \mathcal{D} \longrightarrow \mathcal{L}$ assigning each data point $\xi_i$ to a category with a label $L_i=\Omega\left(\xi_i\right)$. The number of clusters, that is the number of possible values of that categorical variable, is a key parameter for a flat clustering. We may distinguish two main approaches for clustering of multidimensional data: the parametric approach used by partitioning algorithms and the density-based approach. For network data, the equivalent of clustering is community detection. In terms of graphs, communities (i.e. clusters) may be defined as groups of vertices linked together by many edges and linked to their surroundings by less edges [19].
Parametric Clustering
Partitioning algorithms, such as $k$-means [118] and $k$-medoids [96] split the space into $k$ convex regions parametrized by associated prototypes. Indeed, they assign each point of the datase to one of the clusters, so as to minimize the distances separating points from their clusters prototype. This prototype, which is respectively a centroid for $k$-means and a medoid for the $k$-medoids, provides a central tendency of the cluster. Formally, those algorithms seek the clustering that minimizes the cumulated Fréchet variance of all clusters, measured around their respective Fréchet means, which is the aforementioned prototype.

统计代写|数据结构作业代写data structure代考|Latent Variables Extraction and Manifold Learning

In the i.i.d hypothesis, the support of the theoretical probability distribution generating data points $\left{\xi_i\right}$ is considered as a manifold $\mathcal{M}$ immersed in the ambient data space $\mathcal{D}[9,81]$. The repartition of points along a manifold may be explained by the strong dependency between data space variables. In addition, one may assume that all these variables are local functions of a few independent latent variables with an additional noise [176], thus constituting a low-dimensional structure. That noise may induce small variations around the smooth structure of that manifold. Note that the manifold hypothesis may extend to datasets that are not generated by random processes. For instance, for the two open boxes and COIL-20 datasets (see Sect. 1.1.7), data lie on a low-dimensional manifold which is regularly sampled, and not randomly sampled.

Dimensionality Reduction (DR) in general aim at finding a mapping $\Phi: \mathcal{D} \longrightarrow$ $\mathcal{E}$, that associates each data point $\xi_i$ to a point $x_i=\Phi\left(\xi_i\right)$ in a low dimensional embedding space $\mathcal{E}$. A key parameter of dimensionality reduction is the embedding dimensionality $d$ (i.e. the dimensionality of $\mathcal{E}$ ). We distinguish here two sub-cases of $\mathrm{DK}$ : manifold learning and spatialization. The ideal goal of manifold learning is to extract latent variables parametrizing the manifold, which explain the variability of data. Those hypothetical variables may also be referred to as curvilinear components of the manifold [54]. In that case, the embedding dimensionality defines the number of variables to extract. A possible value for that parameter is the intrinsic dimensionality, which corresponds locally to the number of curvilinear components require to parametrize the manifold (see Sect. 2.2). Manifold learning may be used as a pre-processing step for other machine learning applications (e.g., classification or clustering), in order to mitigate the curse of dimensionality [155], to compress the data [179], or to filter out the noise [176]. Inversely, spatialization aims at providing a visual representation of high-dimensional data (see Sect. 1.3.2). As a result, the embedding dimensionality is constrained by the perceptual capabilities of the data analyst, limiting the number of dimensions to at most three for visualization with only one scatter plot. Satisfying this strong constraint on dimensionality often requires distortions of the underlying data structure. Note that the equivalent of DR for network data is graph embedding (also called graph layout).

统计代写|数据结构作业代写data structure代考|CS166

数据结构代写

统计代写|数据结构作业代写data structure代考|Clusters and Flat Clustering

聚类是一组彼此相似但与其他聚类中的点不同的点。就底层分布而言,集群构成了围绕分布模式的高密度连接区域。聚类可以通过提供平面聚类的聚类算法自动确定,或者在视觉上依赖于人类认知能力来识别组(参见格式塔法则的邻近性和连续性详述第 1.3.2 节)。事实上,通过查看图 1.7a,读者可以直观地了解该数据集的聚类(先验接近图 1.8b 的自动聚类)。

聚类算法识别潜在分类变量,指示给定点所属的聚类。即,他们确定一个映射哦:丁⟶大号分配每个数据点X我到带有标签的类别大号我=哦(X我). 聚类的数量,即该分类变量的可能值的数量,是扁平聚类的关键参数。我们可以区分多维数据聚类的两种主要方法:分区算法使用的参数方法和基于密度的方法。对于网络数据,聚类相当于社区检测。在图方面,社区(即集群)可以定义为由许多边连接在一起并通过较少边连接到周围环境的顶点组 [19]。
参数聚类
分区算法,例如k-表示 [118] 和k-medoids [96] 将空间分割成k由相关原型参数化的凸区域。事实上,他们将数据集的每个点分配给其中一个集群,以最小化点与集群原型之间的距离。这个原型,分别是k-means 和 medoid 的k-medoids,提供集群的集中趋势。形式上,这些算法寻求最小化所有聚类的累积 Fréchet 方差的聚类,围绕它们各自的 Fréchet 均值测量,即上述原型。

统计代写|数据结构作业代写data structure代考|Latent Variables Extraction and Manifold Learning

在独立同分布假设下,生成数据点的理论概率分布的支持\左{\xi_i\右}\左{\xi_i\右}被认为是流形米沉浸在环境数据空间中丁[9,81]. 点沿流形的重新划分可以用数据空间变量之间的强依赖性来解释。此外,可以假设所有这些变量都是一些独立潜在变量的局部函数,带有额外的噪声[176],从而构成一个低维结构。该噪声可能会在该流形的光滑结构周围引起微小的变化。请注意,流形假设可能会扩展到不是由随机过程生成的数据集。例如,对于两个开箱和 COIL-20 数据集(参见第 1.1.7 节),数据位于低维流形上,该流形是定期采样的,而不是随机采样的。

降维(DR)一般旨在寻找映射披:丁⟶ 和, 关联每个数据点X我到一点X我=披(X我)在低维嵌入空间和. 降维的一个关键参数是嵌入维数d(即维度和). 我们在这里区分两种子情况丁钾:流形学习和空间化。流形学习的理想目标是提取参数化流形的潜在变量,这解释了数据的可变性。这些假设变量也可以称为流形的曲线分量 [54]。在这种情况下,嵌入维度定义了要提取的变量数。该参数的一个可能值是固有维度,它局部对应于参数化流形所需的曲线分量的数量(参见第 2.2 节)。流形学习可用作其他机器学习应用程序(例如,分类或聚类)的预处理步骤,以减轻维数灾难 [155]、压缩数据 [179] 或滤除噪声[176]。反之,空间化旨在提供高维数据的可视化表示(参见第 1.3.2 节)。因此,嵌入维度受到数据分析师感知能力的限制,将维度的数量限制为最多三个,以便仅使用一个散点图进行可视化。满足这种对维度的强约束通常需要扭曲底层数据结构。请注意,网络数据的 DR 等效于图形嵌入(也称为图形布局)。满足这种对维度的强约束通常需要扭曲底层数据结构。请注意,网络数据的 DR 等效于图形嵌入(也称为图形布局)。满足这种对维度的强约束通常需要扭曲底层数据结构。请注意,网络数据的 DR 等效于图形嵌入(也称为图形布局)。

统计代写|数据结构作业代写data structure代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。统计代写|python代写代考

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|数据结构作业代写data structure代考|COS241

如果你也在 怎样代写数据结构data structure这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数据结构是一种用于存储和组织数据的存储。它是一种在计算机上安排数据的方式,以便可以有效地访问和更新。根据你的要求和项目,为你的项目选择正确的数据结构很重要。

statistics-lab™ 为您的留学生涯保驾护航 在代写数据结构data structure方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数据结构data structure方面经验极为丰富,各种代写数据结构data structure相关的作业也就用不着说。

我们提供的数据结构data structure及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|数据结构作业代写data structure代考|COS241

统计代写|数据结构作业代写data structure代考|Multidimensional Data

Multidimensional data (also called feature data or tabular data) correspond to a set of $N$ data points (or feature vectors) $\xi_i$ in a high dimensional vector space $\mathcal{D}$. This data space (or feature space) $\mathcal{D}$ of dimensionality $\delta$ often corresponds to $\mathbb{R}^\delta$. A multidimensional dataset may be stored in a data matrix $\Xi$ of size $N \times \delta$. The element $(i, k)$ of that matrix, denoted $\xi_{i k}$, contains the value of the $k$ th variable for the $i$ th data point $\xi_i$.

Multidimensional data is thus the natural format for treating data tables, which are the basic element of relational databases (e.g., SQL databases). Indeed, those tables are organized by rows and columns, each row corresponding to an instance, and each column being associated with an attribute (or feature) of that instance. In statistics, those instances are also called individuals or observations.

The features are either quantitative, such as numerical or ordinal variables, or qualitative, as for categorical or boolean variables. Yet, all these types of variables may be stored in a common numerical matrix with, for example, ordinal variables represented by successive integers, boolean variables by 0 and 1 values and categorical variables represented by several boolean variables (one by category), each indicating whether the observation belongs to that category [179].

For a data matrix $\boldsymbol{\Xi}$, an associated distance matrix $\boldsymbol{\Delta} \boldsymbol{\Xi}$ may be obtained by choosing a specific metric $\Delta$ on the data space. Dimensionality reduction seeks to convert metric data into multidimensional data in a low dimensional space, thus leading to a set of $N$ embedded points $x_i$ in a low dimensional embedding space $\mathcal{E}$ of dimensionality $d$.

统计代写|数据结构作业代写data structure代考|Network Data

Networks data characterize relations between instances, as can be stored in a relation table in relational databases. As such, they can be modelled by a graph (as formally defined by Definition 1.4). They may either be hierarchical data (tree structures) or relational data (graph structures).

Definition 1.4 A weighted directed graph (or digraph) $G=(V, E, W)$ is composed of:

  • $V$ the set of $N$ vertices,
  • $E \subseteq V \times V$ the set of directed edges with cardinal $|E| \leqslant N^2$,
  • $W$ the set of weights associated to the edges.
    The vertices $i \in V$ of that graph correspond to instances and edges $(i, j) \in E$ to the relations existing between the instances $i$ and $j$. The associated weights $w_{i j}$ characterize those relations. They may, for example, be measures of similarity $\gamma_{i j}$ or measures of dissimilarity $\Delta_{i j}$. A graph weighted by similarities may be represented by its adjacency matrix whose element $(i, j)$ contains the weight $w_{i j}$ if the edge $(i, j)$ exists and 0 otherwise. For non-complete graph, that matrix is sparse. This representation could be adapted to graphs weighted by dissimilarities by denoting non-existing edges with elements equal to $+\infty$.
    Graph Distances
    Weights of a graph often define similarities or dissimilarities between some pairs of vertices. Graph distances rely on this sparse information to define a full distance matrix $\Delta$ measuring dissimilarity between all pairs of vertices.

Shortest path distances [175] find the path of minimum length between two vertices in the graph weighted by dissimilarities. Conversely, in graphs weighted by similarities, distances tend to rely on random walks. Those random walks take a random path resulting from successive random transitions, where the probability of transitioning from a vertex $i$ to any other vertex $j$ is proportional to the weight $w_{i j}$.

统计代写|数据结构作业代写data structure代考|COS241

数据结构代写

统计代写|数据结构作业代写data structure代考|Multidimensional Data

多维数据 (也称为特征数据或表格数据) 对应于一组 $N$ 数据点 (或特征向量) $\xi_i$ 在高维向量空 间 D. 这个数据空间 (或特征空间) $\mathcal{D}$ 维度的 $\delta$ 通常对应于䄳 . 多维数据集可以存储在数据矩阵
因此,多维数据是处理数据表的自然格式,而数据表是关系数据库 (例如,SQL 数据库) 的基 本元素。事实上,这些表是按行和列组织的,每一行对应一个实例,每一列与该实例的一个属 性(或特征) 相关联。在统计学中,这些实例也称为个体或观察值。
这些特征要么是定量的,例如数值或有序变量,要么是定性的,例如分类或布尔变量。然而, 所有这些类型的变量都可以存储在一个公共数值矩阵中,例如,序数变量由连续的整数表示, 布尔变量由 0 和 1 值表示,分类变量由几个布尔变量 (一个按类别) 表示,每个表示观察是否 属于该类别[179]。
对于数据矩阵 $\Xi$,一个相关的距离矩阵 $\Delta \Xi$ 可以通过选择特定指标获得 $\Delta$ 在数据空间上。降维 寻求将度量数据转换为低维空间中的多维数据,从而导致一组 $N$ 嵌入点 $x_i$ 在低维嵌入空间 $\mathcal{E}$ 维 度的 $d$.

统计代写|数据结构作业代写data structure代考|Network Data

网络数据表征实例之间的关系,可以存储在关系数据库的关系表中。因此,它们可以用图来建 模 (如定义 $1.4$ 中正式定义的那样)。它们可以是分层数据(树结构) 或关系数据(图形结 构) 。
定义 $1.4$ 加权有向图 (或有向图) $G=(V, E, W)$ 由…组成:

  • $V$ 的集合 $N$ 顶点,
  • $E \subseteq V \times V$ 有基数的有向边集 $|E| \leqslant N^2$,
  • $W$ 与边关联的一组权重。
    顶点 $i \in V$ 该图对应于实例和边缘 $(i, j) \in E$ 实例之间存在的关系 $i$ 和 $j$. 相关权重 $w_{i j}$ 表征 这些关系。例如,它们可能是相似性的度量 $\gamma_{i j}$ 或不同的措施 $\Delta_{i j}$. 由相似性加权的图可以 由其元素的邻接矩阵表示 $(i, j)$ 包含重量 $w_{i j}$ 如果边缘 $(i, j)$ 存在,否则为 0 。对于非完全 图,该矩阵是稀疏的。这种表示可以通过用等于 $+\infty$.
    图形距离图形
    的权重通常定义某些顶点对之间的相似性或不同性。图距离依赖于这种稀疏信息来定义一 个完整的距离矩阵 $\Delta$ 测量所有顶点对之间的差异性。
    最短路径距离 [175] 找到图中两个顶点之间由差异加权的最小长度路径。相反,在由相似性加 权的图中,距离往往依赖于随机游走。这些随机斿走采用由连续随机转换产生的随机路径,其 中从顶点转换的概率 $i$ 到任何其他顶点 $j$ 与重量成正比 $w_{i j}$.
统计代写|数据结构作业代写data structure代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。统计代写|python代写代考

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|数据结构作业代写data structure代考|RU101

如果你也在 怎样代写数据结构data structure这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数据结构是一种用于存储和组织数据的存储。它是一种在计算机上安排数据的方式,以便可以有效地访问和更新。根据你的要求和项目,为你的项目选择正确的数据结构很重要。

statistics-lab™ 为您的留学生涯保驾护航 在代写数据结构data structure方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数据结构data structure方面经验极为丰富,各种代写数据结构data structure相关的作业也就用不着说。

我们提供的数据结构data structure及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|数据结构作业代写data structure代考|RU101

统计代写|数据结构作业代写data structure代考|Measuring Dissimilarities and Similarities

Data instances of any type may be considered as points in a metric space as long as one may define a metric or distance function to measure the dissimilarity between two instances. This metric space $(\mathcal{D}, \Delta)$ is a topological space equipped with a distance $\Delta$, which provides for each pair of elements of that space a numerical score of their dissimilarity. This proper notion of distance is defined by:

Definition 1.1 A function $\Delta: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}^{+}$is a distance (or metric) over the space $\mathcal{D}$ if and only if it satisfies the following conditions for all $\xi_i, \xi_j, \xi_k \in \mathcal{D}$ :

  • $\Delta\left(\xi_i, \xi_j\right) \geqslant 0$ (non-negativity),
  • $\Delta\left(\xi_i, \xi_j\right)=0$ iff $\xi_i=\xi_j$ (identity of indiscernibles),
  • $\Delta\left(\xi_i, \xi_j\right)=\Delta\left(\xi_j, \xi_i\right)$ (symmetry)
  • $\Delta\left(\xi_l, \xi_j\right) \leqslant \Delta\left(\xi_l, \xi_k\right)+\Delta\left(\xi_k, \xi_j\right)$ (triangle inequality or sub-additivity).
    Those distances extend to abstract spaces the spatial notion of distance in our three-dimensional physical space, measured using the Euclidean distance (see Sect. 1.1.4). As a tool for measuring dissimilarities, one may also consider pseudometrics which do not satisfy all properties of the Definition 1.1. When not otherwise stated dissimilarities between data are computed with the Euclidean distance.

Metric spaces are a more general case of normed vector spaces, that is spaces equipped with a norm $|\cdot|$ measuring the size of a vector, defined as follows:

Definition 1.2 A function $|\cdot|: \mathcal{D} \longrightarrow \mathbb{R}^{+}$is a norm if and only if it satisfies the properties for all $\xi_i, \xi_j \in \mathcal{D}$ and $\alpha \in \mathbb{R}$ :

  • $\left|\alpha \xi_i\right|=|\alpha|\left|\xi_i\right|$ (homogeneity),
  • $\left|\xi_i\right|=0 \Rightarrow \xi_i=0$ (separation),
  • $\left|\xi_i+\xi_j\right| \leqslant\left|\xi_i\right|+\left|\xi_j\right|$ (triangle inequality).
    In a normed vector space, a distance is naturally defined between all pairs of point by computing the norm of their difference:
    $$
    \Delta\left(\xi_i, \xi_j\right)=\left|\xi_i-\xi_j\right| .
    $$
    Normed vector spaces include the subcase of inner product spaces (equipped with an inner product $\langle\cdot, \cdot\rangle$. An inner product must satisfy the following definition.

统计代写|数据结构作业代写data structure代考|Neighbourhood Ranks

Neighbourhood ranks reduce the information of distances for a given dataset to an ordering, considering independently each row of the distance matrix. The rank $\rho_{i j}$ describes the position of point $\xi_j$ in the neighbourhood of point $\xi_i$, that is its place in the sorting of data points by their distance to point $\xi_i$. Replacing distances values by their ranks ensures more robustness to the phenomenon of norm concentration detailed in Sect. 2.1. Formally, a rank $\rho_{i j}$ indicates that point $\xi_j$ is the $\rho_{i j}$ th nearest neighbour of point $\xi_i$. By convention, we set $\rho_{i i} \triangleq 0$.

For each data point $\xi_i$, we define the neighbourhood permutation $\tilde{v}i: \llbracket 0, N-1 \rrbracket \longrightarrow \llbracket 1 ; N \rrbracket$ as the mapping returning for a given rank $\kappa$, the index $j$ of the $\kappa$ th nearest neighbour of $\xi_i$ in that space. Namely, $\tilde{v}_i(\kappa)$ is the index so that $\xi{\tilde{v}i(\kappa)}$ is the $\kappa$ th nearest neighbour of $\xi_i$. We may note that $\tilde{v}_i\left(\rho{i j}\right)=j$ and that, using the bijectivity of the permutation, $\rho_{i j}=\tilde{v}_i^{-1}(j)$ (which may be an alternative definition of ranks).

We also define $\kappa$-neighbourhoods $v_i(\kappa)$ as the set of indices of the $\kappa$ nearest neighbours of $i$. This may be formally defined based on ranks as $v_i(\kappa)={j \neq i \mid$ $\left.\rho_{i j} \leqslant \kappa\right}$, or as the image by the neighbourhood permutation $\tilde{v}_i$ of the set $\llbracket 1 ; \kappa \rrbracket$, namely $v_i(\kappa)=\tilde{v}_i(\llbracket 1 ; \kappa \rrbracket)$. The link between distances, neighbourhood ranks and neighbourhood permutations is illustrated Fig. 1.1, for an abstract metric dataset.

统计代写|数据结构作业代写data structure代考|RU101

数据结构代写

统计代写|数据结构作业代写data structure代考|Measuring Dissimilarities and Similarities

任何类型的数据实例都可以被视为度量空间中的点,只要可以定义度量或距离函数来衡量两个 实例之间的差异即可。这个度量空间 $(\mathcal{D}, \Delta)$ 是一个带有距离的拓扑空间 $\Delta$ ,它为该空间的每对 元素提供了它们相异性的数值分数。这个距离的正确概念定义为:
定义 $1.1$ 函数 $\Delta: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}^{+}$是空间上的距离 (或度量) $\mathcal{D}$ 当且仅当它满足以下所有条件 $\xi_i, \xi_j, \xi_k \in \mathcal{D}$ :

  • $\Delta\left(\xi_i, \xi_j\right) \geqslant 0$ (非负性),
  • $\Delta\left(\xi_i, \xi_j\right)=0$ 当且仅当 $\xi_i=\xi_j$ (不可辨认者的身份),
  • $\Delta\left(\xi_i, \xi_j\right)=\Delta\left(\xi_j, \xi_i\right)$ (对称)
  • $\Delta\left(\xi_l, \xi_j\right) \leqslant \Delta\left(\xi_l, \xi_k\right)+\Delta\left(\xi_k, \xi_j\right)$ (三角不等式或子可加性) 。
    这些距离将我们的三维物理空间中距离的空间概念扩展到抽象空间,使用欧几里德距离测 量 (参见第 1.1.4 节) 。作为一种测量差异的工具,人们还可以考虑不满足定义 $1.1$ 的所 有属性的伪度量。如果没有另外说明,数据之间的差异是用欧氏距离计算的。
    度量空间是赋范向量空间的更一般情况,即配备范数的空间 |·|测量向量的大小,定义如下:
    定义 $1.2$ 函数 $|\cdot|: \mathcal{D} \longrightarrow \mathbb{R}^{+}$是一个规范当且仅当它满足所有的属性 $\xi_i, \xi_j \in \mathcal{D}$ 和 $\alpha \in \mathbb{R}$ :
  • $\left|\alpha \xi_i\right|=|\alpha|\left|\xi_i\right|$ (同质性),
  • $\left|\xi_i\right|=0 \Rightarrow \xi_i=0$ (分离) ,
  • $\left|\xi_i+\xi_j\right| \leqslant\left|\xi_i\right|+\left|\xi_j\right|$ (三角不等式) 。 在陚范向量空间中,通过计算点对差的范数自然地定义了所有点对之间的距离:
    $$
    \Delta\left(\xi_i, \xi_j\right)=\left|\xi_i-\xi_j\right| .
    $$
    赋范向量空间包括内积空间的子情况 (配备内积 $\langle\cdot, \cdot\rangle$. 内积必须满足以下定义。

统计代写|数据结构作业代写data structure代考|Neighbourhood Ranks

邻域等级将给定数据集的距离信息减少为排序,独立考虑距离矩阵的每一行。排名 $\rho_{i j}$ 描述点的 位置 $\xi_j$ 在点附近 $\xi_i$ ,这是它在按点到点的距离对数据点进行排序时的位置 $\xi_i$. 用等级替换距离值 可确保对第 1 节中详述的范数集中现象具有更强的鲁棒性。2.1. 正式地,等级 $\rho_{i j}$ 表示那一点 $\xi_j$ 是个 $\rho_{i j}$ 点的第 th 个最近邻点 $\xi_i$. 按昭惯例,我们设 $\rho_{i i} \triangleq 0$.
对于每个数据点 $\xi_i$ ,我们定义邻域置换
$\tilde{v} i: \backslash$ llbracket $0, N-1 \backslash$ rrbracket $\longrightarrow \backslash$ llbracket $1 ; N \backslash$ rrbracket作为给定等级的 $\kappa$ 的第 th 个最近邻 $\xi_i$. 我们可能注意到 $\tilde{v}i(\rho i j)=j$ 并且,使用排列的双射性, $\rho{i j}=\tilde{v}i^{-1}(j)$ (这可能是等级的另一种定义) 。 我们还定义 $\kappa$-社区 $v_i(\kappa)$ 作为指数的集合 $\kappa$ 最近的邻居 $i$. 这可以根据等级正式定义为 V_i(lkappa)={j Ineq i mid\$ \$Vleft.Irho{i j} leqslant Ikappalright}},或者作为邻域非列的图像 $\tilde{v}_i$ 集 合的 $\backslash$ llbracket $1 ; \kappa \backslash$ rrbracket, 即 $v_i(\kappa)=\tilde{v}_i(\backslash$ llbracket $1 ; \kappa \backslash$ rrbracket). 对于抽象度 量数据集,距离、邻域等级和邻域排列之间的联系如图 $1.1$ 所示。

统计代写|数据结构作业代写data structure代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。统计代写|python代写代考

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|R语言代写R language代考|SOW-BS086

如果你也在 怎样代写R语言这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

R是一种用于统计计算和图形的编程语言,由R核心团队和R统计计算基金会支持。R由统计学家Ross Ihaka和Robert Gentleman创建,在数据挖掘者和统计学家中被用于数据分析和开发统计软件。用户已经创建了软件包来增强R语言的功能。

根据用户调查和对学术文献数据库的研究,R是数据挖掘中最常用的编程语言之一。[6] 截至2022年3月,R在衡量编程语言普及程度的TIOBE指数中排名第11位。

官方的R软件环境是GNU软件包中的一个开源自由软件环境,在GNU通用公共许可证下提供。它主要是用C、Fortran和R本身(部分自我托管)编写的。预编译的可执行文件提供给各种操作系统。R有一个命令行界面。[8] 也有多个第三方图形用户界面,如RStudio,一个集成开发环境,和Jupyter,一个笔记本界面。

statistics-lab™ 为您的留学生涯保驾护航 在代写R语言方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写R语言代写方面经验极为丰富,各种代写R语言相关的作业也就用不着说。

我们提供的R语言及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|R语言代写R language代考|SOW-BS086

统计代写|R语言代写R language代考|Loading data into R

Thus far, we’ve only been entering data directly into the interactive R console. For any data set of non-trivial size this is, obviously, an intractable solution. Fortunately for us, $\mathrm{R}$ has a robust suite of functions for reading data directly from external files.
Go ahead, and create a file on your hard disk called favorites . txt that looks like this:
flavor, number
pistachio, 6
mint chocolate chip, 7
vanilla,5
chocolate, 10
strawberry, 2
neopolitan, 4
This data represents the number of students in a class that prefer a particular flavor of soy ice cream. We can read the file into a variable called favs as follows:

favs <- read.table (“favorites.txt”, sep=”,”, header=TRUE)
If you get an error that there is no such file or directory, give $\mathrm{R}$ the full path name to your data set or, alternatively, run the following command:
favs <- read.table (file.choose(), sep=”,”, header=TRUE)
The preceding command brings up an open file dialog for letting you navigate to the file you’ve just created.
The argument sep $=$ “, ” tells $\mathrm{R}$ that each data element in a row is separated by a comma. Other common data formats have values separated by tabs and pipes (“|”). The value of sep should then be ” $\backslash t “$ and ” $\mid$ “, respectively.

The argument header=TRUE tells $\mathrm{R}$ that the first row of the file should be interpreted as the names of the columns. Remember, you can enter ?read. table at the console to learn more about these options.

Reading from files in this comma-separated-values format (usually with the .csv file extension) is so common that $\mathrm{R}$ has a more specific function just for it. The preceding data import expression can be best written simply as: Now, we have all the data in the file held in a variable of class data. frame. A data frame can be thought of as a rectangular array of data that you might see in a spreadsheet application. In this way, a data frame can also be thought of as a matrix; indeed, we can use matrix-style indexing to extract elements from it. A data frame differs from a matrix, though, in that a data frame may have columns of differing types. For example, whereas a matrix would only allow one of these types, the data set we just loaded contains character data in its first column, and numeric data in its second column.

统计代写|R语言代写R language代考|Working with packages

Robust, performant, and numerous though base R’s functions are, we are by no means limited to them! Additional functionality is available in the form of packages. In fact, what makes $\mathrm{R}$ such a formidable statistics platform is the astonishing wealth of packages available (well over 7,000 at the time of writing). R’s ecosystem is second to none!
Most of these myriad packages exist on the Comprehensive R Archive Network (CRAN). CRAN is the primary repository for user-created packages.

One package that we are going to start using right away is the ggplot2 package. ggplot2 is a plotting system for $R$. Base $R$ has sophisticated and advanced mechanisms to plot data, but many find ggplot2 more consistent and easier to use. Further, the plots are often more aesthetically pleasing by default.
Let’s install it!
# downloads and installs from CRAN

install.packages (“ggplot2”)
Now that we have the package downloaded, let’s load it into the R session, and test it out by plotting our data from the last section:

You’re all wrong, Mint Chocolate Chip is way better!
Don’t worry about the syntax of the ggplot function, yet. We’ll get to it in good time.
You will be installing some more packages as you work through this text. In the meantime, if you want to play around with a few more packages, you can install the gdata and foreign packages that allow you to directly import Excel spreadsheets and SPSS data files respectively directly into $R$.

统计代写|R语言代写R language代考|SOW-BS086

R语言代写

统计代写|R语言代写R language代考|Loading data into R

到目前为止,我们只是将数据直接输入交互式 $R$ 控制台。对于任何非平凡大小的数据集,这显然是一个 赖手的解决方案。对我们来说幸运的是, R有一套强大的功能,可以直接从外部文件读取数据。 继续,在您的硬盘上创建一个名为 favorites 的文件。txt 看起来像这样:
味道,数字
开心果,6
薄荷巧克力片,7
香草,5
巧克力,10
草莓,2
neopolitan, 4
该数据代表一个班级中喜欢特定口味大豆冰淇淋的学生人数。我们可以将文件读入名为 favs 的变量,如 下所示:
favs <- read.table (“favorites.txt”, sep $=$ “,”, header=TRUE)
如果你得到一个没有这样的文件或目录的错误,给R数据集的完整路径名,或者运行以下命
令: favs <- read.table ( file.choose
(), sep $=$ “,”, header=TRUE)
让您导航到刚刚创建的文件。
论点 $\operatorname{sep}={ }^”$ ,”告诉R一行中的每个数据元素由逗号分隔。其他常见数据格式的值由制表符和竖 线 (“I”) 分隔。sep 的值应该是” $\backslash t t^{\prime \prime}$ 和”|“,分别。
参数 header=TRUE 告诉R文件的第一行应该被解释为列名。请记住,您可以输入 ?read。控制台上的表 格以了解有关这些选项的更多信息。
以这种逗号分隔值格式(通常带有 .csv 文件扩展名)读取文件非常普遍,以至于R具有更具体的功能。 前面的数据导入表达式最好简单地写成:现在,我们将文件中的所有数据保存在类数据的变量中。框 架。数据框可以被认为是您可能会在电子表格应用程序中看到的矩形数据数组。这样,数据框也可以看做 是一个矩阵;实际上,我们可以使用矩阵式索引从中提取元素。但是,数据框与矩阵的不同之处在于,数 据框可能具有不同类型的列。例如,虽然矩阵只允许其中一种类型,但我们刚刚加载的数据集在其第一列 中包含字符数据,在第二列中包含数字数据。

统计代写|R语言代写R language代考|Working with packages

尽管 $R$ 的基本功能是强大的、高性能的和众多的,但我们绝不仅限于它们!附加功能以包的形式提供。 事实上,是什么让R如此强大的统计平台是可用软件包的惊人财富(在撰写本文时已超过 7,000 个)。R 的生态系统是首屈一指的!
这些无数的包中的大多数都存在于 Comprehensive R Archive Network (CRAN) 上。CRAN 是用户创建的 包的主要存储库。
我们将立即开始使用的一个包是 ggplot2 包。ggplot2 是一个绘图系统 $R$. 根据 $R$ 具有复杂和先进的数据 绘图机制,但许多人发现 ggplot2 更一致且更易于使用。此外,默认情况下,情节通常更美观。 让我们安装它!
#从 CRAN 下载和安装
install.packages (“ggplot2”)
现在我们已经下载了包,让我们将它加载到 $R$ 会话中,并通过绘制上一节的数据来测试它:
你都错了,薄荷巧克力片更好吃!
暂时不要担心 ggplot 函数的语法。我们会及时处理的。
在阅读本文时,您将安装更多的包。同时,如果你想多玩几个包,你可以安装 gdata 和 foreign 包,它们可以让你直接将 Excel 电子表格和 SPSS 数据文件分别直接导入到 $R$.

统计代写|R语言代写R language代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|R语言代写R language代考|NTRES6100

如果你也在 怎样代写R语言这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

R是一种用于统计计算和图形的编程语言,由R核心团队和R统计计算基金会支持。R由统计学家Ross Ihaka和Robert Gentleman创建,在数据挖掘者和统计学家中被用于数据分析和开发统计软件。用户已经创建了软件包来增强R语言的功能。

根据用户调查和对学术文献数据库的研究,R是数据挖掘中最常用的编程语言之一。[6] 截至2022年3月,R在衡量编程语言普及程度的TIOBE指数中排名第11位。

官方的R软件环境是GNU软件包中的一个开源自由软件环境,在GNU通用公共许可证下提供。它主要是用C、Fortran和R本身(部分自我托管)编写的。预编译的可执行文件提供给各种操作系统。R有一个命令行界面。[8] 也有多个第三方图形用户界面,如RStudio,一个集成开发环境,和Jupyter,一个笔记本界面。

statistics-lab™ 为您的留学生涯保驾护航 在代写R语言方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写R语言代写方面经验极为丰富,各种代写R语言相关的作业也就用不着说。

我们提供的R语言及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|R语言代写R language代考|NTRES6100

统计代写|R语言代写R language代考|Subsetting

It is very common to want to extract one or more elements from a vector. For this, we use a technique called indexing or subsetting. After the vector, we put an integer in square brackets ( [] ) called the subscript operator. This instructs $\mathrm{R}$ to return the element at that index. The indices (plural for index, in case you were wondering!) for vectors in $\mathrm{R}$ start at 1 , and stop at the length of the vector.
$>$ our.vect[1] $\quad #$ to get the first value
[1] 8

$>$ # the function length() returns the length of a vector
$>$ length (our.vect)
[1] 7
$>$ our.vect [length (our.vect)] # get the last element of a vector
[1] 9
Note that in the preceding code, we used a function in the subscript operator. In cases like these, R evaluates the expression in the subscript operator, and uses the number it returns as the index to extract.

If we get greedy, and try to extract an element at an index that doesn’t exist, $\mathrm{R}$ will respond with NA, meaning, not available. We see this special value cropping up from time to time throughout this text.
$>$ our.vect [10]
[1] NA
One of the most powerful ideas in $\mathrm{R}$ is that you can use vectors to subset other vectors:
$>$ # extract the first, third, fifth, and
$>$ # seventh element from our vector
$>$ our.vect $[c(1,3,5,7)]$
The ability to use vectors to index other vectors may not seem like much now, but its usefulness will become clear soon.
Another way to create vectors is by using sequences.
Above, the $1: 10$ statement creates a vector from 1 to 10 . $10: 1$ would have created the same 10 element vector, but in reverse. The seq () function is more general in that it allows sequences to be made using steps (among many other things).

统计代写|R语言代写R language代考|Advanced subsetting

Did I mention that we can use vectors to subset other vectors? When we subset vectors using logical vectors of the same length, only the elements corresponding to the TRUE values are extracted. Hopefully, sparks are starting to go off in your head. If we wanted to extract only the legitimate non-NA digits from Jenny’s number, we can do it as follows:
$>$ messy.vector[1is.na (messy.vector)]
This is a very critical trait of $\mathrm{R}$, so let’s take our time understanding it; this idiom will come up again and again throughout this book.

The logical vector that yields TRUE when an NA value occurs in messy .vector (from is . na ()) is then negated (the whole thing) by the negation operator !. The resultant vector is TRUE whenever the corresponding value in messy. vector is not NA.
When this logical vector is used to subset the original messy vector, it only extracts the non-NA values from it.

Similarly, we can show all the digits in Jenny’s phone number that are greater than five as follows:
$>$ our.vect [our.vect $>$ 5]
Thus far, we’ve only been displaying elements that have been extracted from a vector. However, just as we’ve been assigning and re-assigning variables, we can assign values to various indices of a vector, and change the vector as a result. For example, if Jenny tells us that we have the first digit of her phone number wrong (it’s really 9), we can reassign just that element without modifying the others.
$>$ our.vect
[1] $8 \begin{array}{llllllll} & 6 & 7 & 5 & 3 & 0 & 9\end{array}$
$>$ our.vect [1] $<-9$ $>$ our.vect
Sometimes, it may be required to replace all the NA values in a vector with the value o. To do that with our messy vector, we can execute the following command:
$>$ messy.vector [is.na (messy.vector)] $<-0$

messy.vector
[1] $8 \begin{array}{llllllllll} & 8 & 0 & 7 & 5 & 0 & 3 & 0 & 9\end{array}$

统计代写|R语言代写R language代考|NTRES6100

R语言代写

统计代写|R语言代写R language代考|Subsetting

想要从向量中提取一个或多个元素是很常见的。为此,我们使用一种称为索引或子集的技术。在向量之 后,我们将一个整数放在方括号 ( [] ) 中,称为下标运算符。这指示R返回该索引处的元素。索引(复数 表示索引,如果你想知道的话!)R从 1 开始,到向量的长度停止。
$>$ 我们的.vect[1] 四#得到第一个值
[1] 8
$>$ #函数 length() 返回向量的长度
$>$ 长度 (our.vect)
[1] 7
$>$ our.vect [length (our.vect)] # 获取向量的最后一个元素
[1] 9
注意,在前面的代码中,我们在下标运算符中使用了一个函数。在这些情况下,R计算下标运算符中的表 达式,并使用它返回的数字作为要提取的索引。
如果我们变得贪婪,并尝试在不存在的索引处提取元素,R将以 NA 响应,意思是不可用。在本文中,我 们不时看到这种特殊的价值。
$>$ our.vect [10]
[1] NA
最强大的想法之一 $\mathrm{R}$ 是您可以使用向量对其他向量进行子集化:
$>$ #提取第一、第三、第五和
$>$ #向量中的第七个元素
$>$ 我们的.vect $[c(1,3,5,7)]$
使用向量索引其他向量的能力现在可能看起来不多,但它的用处很快就会变得清晰。
另一种创建向量的方法是使用序列。
以上,1:10语句创建一个从 1 到 10 的向量。 $10: 1$ 会创建相同的 10 元素向量,但相反。seq () 函数更 通用,因为它允许使用步骤 (以及许多其他东西) 来制作序列。

统计代写|R语言代写R language代考|Advanced subsetting

我有没有提到我们可以使用向量来对其他向量进行子集化? 当我们使用相同长度的逻辑向量对向量进行子 集化时,只会提取对应于 TRUE 值的元素。布望,火花开始在你的脑海中熄灭。如果我们只想从Jenny 的 号码中提取合法的非 NA 数字,我们可以按如下方式进行:
$>$ messy.vector[1is.na (messy.vector)]
这是一个非常关键的特征R,所以让我们花点时间了解它;这个成语将在本书中一再出现。
当 NA 值出现在杂乱的 .vector 中时产生 TRUE 的逻辑向量 (from is .na ()) 然后被否定运算符! 否定 (整个事情)。每当相应的值混乱时,结果向量为 TRUE。向量不是 NA。 当此逻辑向量用于对原始混乱向量进行子集化时,它仅从中提取非 NA 值。
同样,我们可以显示 Jenny 的电话号码中所有大于五的数字,如下所示:
$>$ 我们的.vect [我们的.vect $>5$ ]
到目前为止,我们只显示了从向量中提取的元素。然而,就像我们一直在分配和重新分配变量一样,我们 可以将值分配给向量的各种索引,并因此改变向量。例如,如果 Jenny 告诉我们她的电话号码的第一位 数字有误(实际上是 9),我们可以只重新分配该元素而不修改其他元素。
$>$ 我们的.vect
$>$ 我们的.vect $[1]<-9>$ our.vect
有时,可能需要用值 0 替换向量中的所有 NA 值。要用我们凌乱的向量做到这一点,我们可以执行以下命 令:
$>$ messy.vector $[$ is.na (messy.vector) $]<-0$
凌乱的矢量
$\left[\begin{array}{lllllllll}{[1] 8} & 8 & 0 & 7 & 5 & 0 & 3 & 0 & 9\end{array}\right.$

统计代写|R语言代写R language代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|R语言代写R language代考|STA518

如果你也在 怎样代写R语言这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

R是一种用于统计计算和图形的编程语言,由R核心团队和R统计计算基金会支持。R由统计学家Ross Ihaka和Robert Gentleman创建,在数据挖掘者和统计学家中被用于数据分析和开发统计软件。用户已经创建了软件包来增强R语言的功能。

根据用户调查和对学术文献数据库的研究,R是数据挖掘中最常用的编程语言之一。[6] 截至2022年3月,R在衡量编程语言普及程度的TIOBE指数中排名第11位。

官方的R软件环境是GNU软件包中的一个开源自由软件环境,在GNU通用公共许可证下提供。它主要是用C、Fortran和R本身(部分自我托管)编写的。预编译的可执行文件提供给各种操作系统。R有一个命令行界面。[8] 也有多个第三方图形用户界面,如RStudio,一个集成开发环境,和Jupyter,一个笔记本界面。

statistics-lab™ 为您的留学生涯保驾护航 在代写R语言方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写R语言代写方面经验极为丰富,各种代写R语言相关的作业也就用不着说。

我们提供的R语言及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|R语言代写R language代考|STA518

统计代写|R语言代写R language代考|Getting help in R

Before we go further, it would serve us well to have a brief section detailing how to get help in R. Most R tutorials leave this for one of the last sections-if it is even included at all! In my own personal experience, though, getting help is going to be one of the first things you will want to do as you add more bricks to your $\mathrm{R}$ knowledge castle. Learning R doesn’t have to be difficult; just take it slowly, ask questions, and get help early. Go you!
It is easy to get help with $\mathrm{R}$ right at the console. Running the help.start () function at the prompt will start a manual browser. From here, you can do anything from going over the basics of $\mathrm{R}$ to reading the nitty-gritty details on how $\mathrm{R}$ works internally.

You can get help on a particular function in $\mathrm{R}$ if you know its name, by supplying that name as an argument to the help function. For example, let’s say you want to know more about the gsub () function that I sprang on you before. Running the following code:
$$
\begin{aligned}
& >\text { help (“gsub”) } \
& >\text { # or simply } \
& >\text { ?gsub }
\end{aligned}
$$
will display a manual page documenting what the function is, how to use it, and examples of its usage.

This rapid accessibility to documentation means that I’m never hopelessly lost when I encounter a function which I haven’t seen before. The downside to this extraordinarily convenient help mechanism is that I rarely bother to remember the order of arguments, since looking them up is just seconds away.
Occasionally, you won’t quite remember the exact name of the function you’re looking for, but you’ll have an idea about what the name should be. For this, you can use the help.search () function.
For tougher, more semantic queries, nothing beats a good old fashioned web search engine. If you don’t get relevant results the first time, try adding the term programming or statistics in there for good measure.

统计代写|R语言代写R language代考|Vectors

Vectors are the most basic data structures in R, and they are ubiquitous indeed. In fact, even the single values that we’ve been working with thus far were actually vectors of length 1 . That’s why the interactive $\mathrm{R}$ console has been printing [1] along with all of our output.

Vectors are essentially an ordered collection of values of the same atomic data type. Vectors can be arbitrarily large (with some limitations), or they can be just one single value.
The canonical way of building vectors manually is by using the c() function (which stands for combine).

In the preceding example, we created a numeric vector of length 7 (namely, Jenny’s telephone number).
Note that if we tried to put character data types into this vector as follows:
$>$ another.vect $<-c(” 8 n, 6,7, “-n, 3, ” 0 “, 9)$ $>$ another.vect
[1] “8” 6 ” “7” $-“$ ” 3 ” “0” “9”
$\mathrm{R}$ would convert all the items in the vector (called elements) into character data types to satisfy the condition that all elements of a vector must be of the same type. A similar thing happens when you try to use logical values in a vector with numbers; the logical values would be converted into 1 and 0 (for TRUE and FALSE, respectively). These logicals will turn into TRUE and FALSE (note the quotation marks) when used in a vector that contains characters.

统计代写|R语言代写R language代考|STA518

R语言代写

统计代写|R语言代写R language代考|Getting help in R

在我们继续之前,有一个简短的部分详细说明如何在 R 中获得帮助对我们很有帮助。大多数 R 教程将它 留到最后部分之一- 如果它甚至包含在内! 不过,根据我个人的经验,获得帮助将是您在为自己的生活添 砖加瓦时首先要做的事情之一。R知识城堡。学习 R不一定很困难;慢慢来,提出问题,尽早获得帮助。 去你的!
很容易获得帮助R就在控制台。在提示符处运行 help.start() 函数将启动手动浏览器。从这里开始,您可 以做任何事情,从复习R阅读有关如何操作的详细信息 $R$ 在内部工作。
您可以在以下位置获得有关特定功能的帮助 $R$ 如果您知道它的名称,则将该名称作为参数提供给帮助函 数。例如,假设您想进一步了解我之前向您提出的 gsub () 函数。运行以下代码:
$$

\operatorname{help}(\text { “gsub”) }>\text { # or simply }>\text { ?gsub }
$$
将显示一个手册页,记录该功能是什么、如何使用它以及它的用法示例。
这种对文档的快速访问意味着当我遇到以前从末见过的功能时,我永远不会绝望地迷失方向。这种非常方 便的帮助机制的缺点是我很少费心去记住参数的顺序,因为查找它们只需几秒钟。
有时,您不太记得要查找的函数的确切名称,但您会对名称应该是什么有所了解。为此,您可以使用 help.search() 函数。
对于更严格、更语义化的查询,没有什么比一个好的老式网络搜索引擎更好的了。如果您第一次没有获得 相关结果,请尝试在其中添加术语编程或统计作为衡量标准。

统计代写|R语言代写R language代考|Vectors

向量是 R 中最基本的数据结构,它们确实无处不在。事实上,即使是迄今为止我们一直使用的单个值实 际上也是长度为 1 的向量。这就是为什么互动R控制台一直在打印 [1] 以及我们所有的输出。
向量本质上是相同原子数据类型的值的有序集合。向量可以任意大(有一些限制),也可以只是一个值。 手动构建向量的规范方法是使用 $c()$ 函数 (代表组合)。
在前面的示例中,我们创建了一个长度为 7 的数值向量(即Jenny 的电话号码)。
请注意,如果我们尝试将字符数据类型放入此向量中,如下所示:
$>$ 另一个.vect $<-c(” 8 n, 6,7, “-n, 3, ” 0$ “, 9$)>$ 另一个.vect
[1] “8” 6″ “7”-” ” 3 ” “0” “9”
$\mathrm{R}$ 会将向量中的所有项(称为元素)转换为字符数据类型,以满足向量的所有元素必须属于同一类型的条 件。当您尝试在带有数字的向量中使用逻辑值时,也会发生类似的事情;逻辑值将被转换为 1 和 0 (分别 代表 TRUE 和 FALSE) 。当在包含字符的向量中使用时,这些逻辑将变成 TRUE 和 FALSE (注意引号) 。

统计代写|R语言代写R language代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|R语言代写R language代考|SOW-BS086

如果你也在 怎样代写R语言这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

R是一种用于统计计算和图形的编程语言,由R核心团队和R统计计算基金会支持。R由统计学家Ross Ihaka和Robert Gentleman创建,在数据挖掘者和统计学家中被用于数据分析和开发统计软件。用户已经创建了软件包来增强R语言的功能。

根据用户调查和对学术文献数据库的研究,R是数据挖掘中最常用的编程语言之一。[6] 截至2022年3月,R在衡量编程语言普及程度的TIOBE指数中排名第11位。

官方的R软件环境是GNU软件包中的一个开源自由软件环境,在GNU通用公共许可证下提供。它主要是用C、Fortran和R本身(部分自我托管)编写的。预编译的可执行文件提供给各种操作系统。R有一个命令行界面。[8] 也有多个第三方图形用户界面,如RStudio,一个集成开发环境,和Jupyter,一个笔记本界面。

statistics-lab™ 为您的留学生涯保驾护航 在代写R语言方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写R语言代写方面经验极为丰富,各种代写R语言相关的作业也就用不着说。

我们提供的R语言及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|R语言代写R language代考|SOW-BS086

统计代写|R语言代写R language代考|Reproducible data analysis

Reproducible data analysis is much more than a fashionable buzzword. Under any situation where accountability is important, from scientific research to decision making in commercial enterprises, industrial quality control and safety and environmental impact assessments, being able to reproduce a data analysis reaching the same conclusions from the same data is crucial. Most approaches to reproducible data analysis are based on automating report generation and including, as part of the report, all the computer commands used to generate the results presented.

A fundamental requirement for reproducibility is a reliable record of what commands have been run on which data. Such a record is especially difficult to keep when issuing commands through menus and dialogue boxes in a graphical user interface or interactively at a console. Even working interactively at the R console using copy and paste to include commands and results in a report is error prone, and laborious.

A further requirement is to be able to match the output of the R commands to the input. If the script saves the output to separate files, then the user will need to take care that the script saved or shared as a record of the data analysis was the one actually used for obtaining the reported results and conclusions. This is another error-prone stage in the reporting of data analysis. To solve this problem an approach was developed, inspired in what is called literate programming (Knuth 1984). The idea is that running the script will produce a document that includes the listing of the $\mathrm{R}$ code used, the results of running this code and any explanatory text needed to understand and interpret the analysis.

Although a system capable of producing such reports with R, called ‘Sweave’ (Leisch 2002), has been available for a couple decades, it was rather limited and not supported by an IDE, making its use rather tedious. A more recently developed system called ‘knitr’ (Xie 2013) together with its integration into RStudio has made the use of this type of reports very easy. The most recent development is what has been called R notebooks produced within RStudio. This new feature, can produce the readable report of running the script as an HTML file, displaying the code used interspersed with the results within the viewable file as in earlier approaches. However, this newer approach goes even further: the actual source script used to generate the report is embedded in the HTML file of the report and can be extracted and run very easily and consequently re-used. This means that anyone who gets access to the output of the analysis in human readable form also gets access to the code used to generate the report, in computer executable format.

统计代写|R语言代写R language代考|Finding additional information

When searching for answers, asking for advice or reading books, you will be confronted with different ways of approaching the same tasks. Do not allow this to overwhelm you; in most cases it will not matter as many computations can be done in R, as in any language, in several different ways, still obtaining the same result. The different approaches may differ mainly in two aspects: 1) how readable to humans are the instructions given to the computer as part of a script or program, and 2) how fast the code runs. Unless computation time is an important bottleneck in your work, just concentrate on writing code that is easy to understand to you and to others, and consequently easy to check and reuse. Of course, do always check any code you write for mistakes, preferably using actual numerical test cases for any complex calculation or even relatively simple scripts. Testing and validation are extremely important steps in data analysis, so get into this habit while reading this book. Testing how every function works, as I will challenge you to do in this book, is at the core of any robust data analysis or computing programming.

To access help pages through the command prompt we use function help( () or a question mark. Every object exported by an $\mathrm{R}$ package (functions, methods, classes, data) is documented. Sometimes a single help page documents several R objects. Usually at the end of the help pages, some examples are given, which tend to help very much in learning how to use the functions described. For example, one can search for a help page at the $\mathrm{R}$ console.

统计代写|R语言代写R language代考|SOW-BS086

R语言代写

统计代写|R语言代写R language代考|Reproducible data analysis

可重现的数据分析不仅仅是一个时髦的流行语。在问责制很重要的任何情况下,从科学研究到商业企业的决策、工业质量控制以及安全和环境影响评估,能够重现从相同数据得出相同结论的数据分析是至关重要的。大多数可重复数据分析的方法都基于自动生成报告,并且作为报告的一部分,包括用于生成所显示结果的所有计算机命令。

再现性的一个基本要求是对哪些数据运行了哪些命令的可靠记录。当通过图形用户界面中的菜单和对话框或在控制台交互地发出命令时,这样的记录尤其难以保存。即使在 R 控制台上使用复制和粘贴以将命令和结果包含在报告中进行交互式工作,也容易出错且费力。

进一步的要求是能够将 R 命令的输出与输入相匹配。如果脚本将输出保存到单独的文件中,则用户需要注意作为数据分析记录保存或共享的脚本是实际用于获取报告结果和结论的脚本。这是数据分析报告中另一个容易出错的阶段。为了解决这个问题,开发了一种方法,其灵感来自所谓的文学编程 (Knuth 1984)。这个想法是运行脚本将生成一个文档,其中包含R使用的代码、运行此代码的结果以及理解和解释分析所需的任何解释性文本。

尽管能够使用 R 生成此类报告的系统称为“Sweave”(Leisch 2002),已经存在了几十年,但它相当有限且不受 IDE 支持,因此使用起来相当乏味。最近开发的名为“knitr”(Xie 2013)的系统及其与 RStudio 的集成使得此类报告的使用变得非常容易。最近的开发是在 RStudio 中生成的所谓的 R 笔记本。这个新功能可以生成将脚本作为 HTML 文件运行的可读报告,与早期方法一样,在可查看文件中显示使用的代码和结果。然而,这种较新的方法更进一步:用于生成报告的实际源脚本嵌入在报告的 HTML 文件中,可以很容易地提取和运行,从而重新使用。这意味着任何能够访问人类可读形式的分析输出的人也可以访问用于生成报告的计算机可执行格式的代码。

统计代写|R语言代写R language代考|Finding additional information

在寻找答案、寻求建议或阅读书籍时,您将面临处理相同任务的不同方法。不要让这压倒你;在大多数情况下,这并不重要,因为可以在 R 中完成许多计算,就像在任何语言中一样,以几种不同的方式,仍然可以获得相同的结果。不同的方法可能主要在两个方面有所不同:1) 作为脚本或程序的一部分提供给计算机的指令对人类的可读性如何,以及 2) 代码运行的速度有多快。除非计算时间是您工作中的重要瓶颈,否则只需专注于编写易于您和他人理解的代码,从而易于检查和重用。当然,请务必检查您编写的任何代码是否有错误,最好使用实际的数值测试用例进行任何复杂的计算,甚至是相对简单的脚本。测试和验证是数据分析中极其重要的步骤,所以在阅读本书时养成这个习惯。正如我将在本书中挑战你所做的那样,测试每个函数的工作原理是任何稳健的数据分析或计算编程的核心。

要通过命令提示符访问帮助页面,我们使用函数 help( () 或问号。每个对象由一个R包(函数、方法、类、数据)被记录在案。有时,单个帮助页面会记录多个 R 对象。通常在帮助页面的末尾,会给出一些示例,这对学习如何使用所描述的功能很有帮助。例如,可以在以下位置搜索帮助页面R安慰。

统计代写|R语言代写R language代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

统计代写|R语言代写R language代考|NTRES6100

如果你也在 怎样代写R语言这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

R是一种用于统计计算和图形的编程语言,由R核心团队和R统计计算基金会支持。R由统计学家Ross Ihaka和Robert Gentleman创建,在数据挖掘者和统计学家中被用于数据分析和开发统计软件。用户已经创建了软件包来增强R语言的功能。

根据用户调查和对学术文献数据库的研究,R是数据挖掘中最常用的编程语言之一。[6] 截至2022年3月,R在衡量编程语言普及程度的TIOBE指数中排名第11位。

官方的R软件环境是GNU软件包中的一个开源自由软件环境,在GNU通用公共许可证下提供。它主要是用C、Fortran和R本身(部分自我托管)编写的。预编译的可执行文件提供给各种操作系统。R有一个命令行界面。[8] 也有多个第三方图形用户界面,如RStudio,一个集成开发环境,和Jupyter,一个笔记本界面。

statistics-lab™ 为您的留学生涯保驾护航 在代写R语言方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写R语言代写方面经验极为丰富,各种代写R语言相关的作业也就用不着说。

我们提供的R语言及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
统计代写|R语言代写R language代考|NTRES6100

统计代写|R语言代写R language代考|Using R interactively

A physical terminal (keyboard plus text-only screen) decades ago was how users communicated with computers, and was frequently called a console. Nowadays, a text-only interface to a computer, in most cases a window or a pane within a graphical user interface, is still called a console. In our case, the R console (Figure 1.1). This is the native user interface of $R$.

Typing commands at the $\mathrm{R}$ console is useful when one is playing around, rather aimlessly exploring things, or trying to understand how an R function or operator we are not familiar with works. Once we want to keep track of what we are doing, there are better ways of using $\mathrm{R}$, which allow us to keep a record of how an analysis has been carried out. The different ways of using R are not exclusive of each other, so most users will use the $\mathrm{R}$ console to test individual commands and plot data during the first stages of exploration. As soon as we decide how we want to plot or analyze the data, it is best to start using scripts. This is not enforced in any way by $\mathrm{R}$, but scripts are what really brings to light the most important advantages of using a programming language for data analysis. In Figure $1.1$ we can see how the $\mathrm{R}$ console looks. The text in red has been typed in by the user, except for the prompt $>$, and the text in blue is what $\mathrm{R}$ has displayed in response. It is essentially a dialogue between user and $\mathrm{R}$. The console can look different when displayed within an IDE like RStudio, but the only difference is in the appearance of the text rather than in the text itself (cf. Figures $1.1$ and 1.2).

The two previous figures showed the result of entering a single command. Figure $1.3$ shows how the console looks after the user has entered several commands, each as a separate line of text.

The examples in this book require only the console window for user input. Menu-driven programs are not necessarily bad, they are just unsuitable when there is a need to set very many options and choose from many different actions. They are also difficult to maintain when extensibility is desired, and when independently developed modules of very different characteristics need to be integrated. Textual languages also have the advantage, to be addressed in later chapters, that command sequences can be stored in human- and computer-readable text files. Such files constitute a record of all the steps used, and in most cases, makes it trivial to reproduce the same steps at a later time. Scripts are a very simple and handy way of communicating to other users how to do a given data analysis.

统计代写|R语言代写R language代考|Using R in a “batch job”

To run a script we need first to prepare a script in a text editor. Figure $1.4$ shows the console immediately after running the script file shown in the text editor. As before, red text, the command source(“my-script.R”), was typed by the user, and the blue text in the console is what was displayed by $\mathrm{R}$ as a result of this action. The title bar of the console, shows “R-console,” while the title bar of the editor shows the path to the script file that is open and ready to be edited followed by “R-editor.”

A true “batch job” is not run at the R console but at the operating system command prompt, or shell. The shell is the console of the operating system-Linux, Unix, OS X, or MS-Windows. Figure $1.5$ shows how running a script at the Windows command prompt looks. A script can be run at the operating system prompt to do time-consuming calculations with the output saved to a file. One may use this approach on a server, say, to leave a large data analysis job running overnight or even for several days.

Integrated Development Environments (IDEs) are used when developing computer programs. IDEs provide a centralized user interface from within which the different tools used to create and test a computer program can be accessed and used in coordination. Most IDEs include a dedicated editor capable of syntax highlighting, and even report some mistakes, related to the programming language in use. One could describe such an editor as the equivalent of a word processor with spelling and grammar checking, that can alert about spelling and syntax errors for a computer language like $R$ instead of for a natural language like English. In the case of RStudio, the main, but not only language supported is $\mathrm{R}$. The main window of IDEs usually displays more than one pane simultaneously. From within the RStudio IDF, one has access to the R console, a text editor, a file-system hrowser, a pane for graphical output, and access to several additional tools such as for installing and updating extension packages. Although RStudio supports very well the development of large scripts and packages, it is currently, in my opinion, also the hest possihle way of using $\mathrm{R}$ at the console as it has the $\mathrm{R}$ help system very well integrated both in the editor and $\mathrm{R}$ console. Figure $1.6$ shows the main window displayed by RStudio after running the same script as shown above at the $\mathrm{R}$ console (Figure 1.4) and at the operating system command prompt (Figure 1.5). We can see by comparing these three figures how RStudio is really a layer between the user and an unmodified R executable. The script was sourced by pressing the “Source” button at the top of the editor pane. RStudio, in response to this, generated the code needed to source the file and “entered” it at the console, the same console, where we would type any $\mathrm{R}$ commands.

统计代写|R语言代写R language代考|NTRES6100

R语言代写

统计代写|R语言代写R language代考|Using R interactively

几十年前,物理终端(键盘加纯文本屏幕)是用户与计算机通信的方式,通常被称为控制台。如今,计算机的纯文本界面(在大多数情况下是图形用户界面中的窗口或窗格)仍称为控制台。在我们的例子中,R 控制台(图 1.1)。这是本机用户界面R.

在R当一个人在玩耍、漫无目的地探索事物,或者试图理解我们不熟悉的 R 函数或运算符如何工作时,控制台很有用。一旦我们想跟踪我们在做什么,就有更好的方法使用R,这使我们能够记录分析是如何进行的。使用 R 的不同方式并不相互排斥,因此大多数用户会使用R在探索的第一阶段测试单个命令和绘制数据的控制台。一旦我们决定要如何绘制或分析数据,最好开始使用脚本。这不是以任何方式强制执行的R,但脚本才是真正揭示使用编程语言进行数据分析的最重要优势的东西。在图中1.1我们可以看到R控制台看起来。红色文字为用户输入,提示除外>, 蓝色文字是什么R已显示响应。它本质上是用户和用户之间的对话R. 在像 RStudio 这样的 IDE 中显示时,控制台看起来可能有所不同,但唯一的区别在于文本的外观而不是文本本身(参见图1.1和 1.2)。

前两个图显示了输入单个命令的结果。数字1.3显示用户输入多个命令后控制台的外观,每个命令作为单独的文本行。

本书中的示例只需要用于用户输入的控制台窗口。菜单驱动的程序不一定不好,它们只是不适合需要设置很多选项并从许多不同的操作中进行选择的情况。当需要可扩展性时,以及当需要集成具有非常不同特性的独立开发模块时,它们也难以维护。文本语言还有一个优势,将在后面的章节中介绍,即命令序列可以存储在人类和计算机可读的文本文件中。这些文件构成了所有使用步骤的记录,并且在大多数情况下,使得以后重现相同的步骤变得微不足道。脚本是与其他用户交流如何进行给定数据分析的一种非常简单方便的方式。

统计代写|R语言代写R language代考|Using R in a “batch job”

要运行脚本,我们首先需要在文本编辑器中准备脚本。数字1.4运行文本编辑器中显示的脚本文件后立即显示控制台。和以前一样,红色文本,命令源(“my-script.R”),由用户输入,控制台中的蓝色文本是显示的内容R作为此操作的结果。控制台的标题栏显示“R-console”,而编辑器的标题栏显示打开并准备好编辑的脚本文件的路径,后跟“R-editor”。

真正的“批处理作业”不是在 R 控制台上运行,而是在操作系统命令提示符或 shell 上运行。shell 是操作系统(Linux、Unix、OS X 或 MS-Windows)的控制台。数字1.5展示了在 Windows 命令提示符下运行脚本的样子。可以在操作系统提示符下运行脚本来执行耗时的计算,并将输出保存到文件中。人们可以在服务器上使用这种方法,例如,让大型数据分析作业在一夜之间甚至几天内运行。

开发计算机程序时使用集成开发环境 (IDE)。IDE 提供了一个集中的用户界面,从中可以访问和协调使用用于创建和测试计算机程序的不同工具。大多数 IDE 都包含一个专用的编辑器,能够突出显示语法,甚至可以报告一些与所使用的编程语言相关的错误。人们可以将这样的编辑器描述为相当于具有拼写和语法检查功能的文字处理器,它可以警告计算机语言的拼写和语法错误,例如R而不是像英语这样的自然语言。在 RStudio 的情况下,主要但不仅仅是支持的语言是R. IDE 的主窗口通常同时显示多个窗格。在 RStudio IDF 中,可以访问 R 控制台、文本编辑器、文件系统浏览器、图形输出面板,还可以访问多个附加工具,例如用于安装和更新扩展包的工具。尽管 RStudio 非常支持大型脚本和包的开发,但在我看来,它也是目前最可能的使用方式R在控制台,因为它有R帮助系统很好地集成在编辑器和R安慰。数字1.6显示在运行与上面所示相同的脚本后 RStudio 显示的主窗口R控制台(图 1.4)和操作系统命令提示符(图 1.5)。通过比较这三个图,我们可以看出 RStudio 如何真正成为用户和未修改的 R 可执行文件之间的一个层。通过按编辑器窗格顶部的“来源”按钮获取脚本。RStudio 作为对此的回应,生成了源文件所需的代码,并在控制台“输入”它,同一个控制台,我们可以在其中键入任何内容R命令。

统计代写|R语言代写R language代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写