物理代写|几何光学代写Geometrical Optics代考|OPTI502

如果你也在 怎样代写几何光学Geometrical Optics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

几何光学,或称射线光学,是一种用射线来描述光的传播的光学模型。几何光学中的射线是一个抽象的概念,有助于近似地描述在某些情况下光的传播路径。

statistics-lab™ 为您的留学生涯保驾护航 在代写几何光学Geometrical Optics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写几何光学Geometrical Optics代写方面经验极为丰富,各种代写几何光学Geometrical Optics相关的作业也就用不着说。

我们提供的几何光学Geometrical Optics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
物理代写|几何光学代写Geometrical Optics代考|OPTI502

物理代写|几何光学代写Geometrical Optics代考|Set of Maxwell Equations for Electrostatic Field

First, we introduce the set of Maxwell equations for the electrostatic field in free space. Using Gauss’s Law (see Chap. 2), we can write the electric flux of electric field created by continuous charge distribution in a volume $V$ enclosed by the surface $A$ as
$$
\oint_A \mathbf{E} \cdot d \mathbf{A}=\frac{Q_{i n}}{\epsilon_0}
$$
Note that in Eq. (4.65) $\mathbf{E}$ is the electrostatic field created by all charges in space, and $Q_{i n}$ is the electric charge inside the volume $V$ enclosed by the surface $A$. The left-hand side of Eq. (4.65) can be written in the following form using Gauss formula: $$
\oint_A \mathbf{E} \cdot d \mathbf{A}=\int_V \nabla \cdot \mathbf{E} d V
$$
where $V$ is the volume enclosed by the surface $A$. In addition, the right-hand side of Eq. (4.65) can be written as
$$
\frac{Q_{i n}}{\epsilon_0}=\int_V \frac{\rho(\mathbf{r})}{\epsilon_0} d V
$$
Combining Eqs. (4.65), (4.66) and (4.67), we get
$$
\int_V \nabla \cdot \mathbf{E} d V=\int_V \frac{\rho(\mathbf{r})}{\epsilon_0} d V
$$
where $\nabla \cdot \mathbf{E}$ is the divergence of the vector $\mathbf{E}$, which produces a scalar.
Comparing both sides of Eq. (4.68), we obtain the first Maxwell equation in free space:
$$
\nabla \cdot \mathbf{E}(\mathbf{r})=\frac{\rho(\mathbf{r})}{\epsilon_0}
$$
where both $\mathbf{E}$ and $\rho$ can be functions of the position $\mathbf{r}$.
Using the expression of the electrostatic potential difference in free space, Eq. (4.10) (Chap.3), we have
$$
\Delta \phi=-\int_A^B \mathbf{E} \cdot d \mathbf{s}
$$
where $A$ and $B$ are two points in free space, and $d \mathbf{s}$ is an infinitesimal displacement along the curve joining points $A$ and $B$. If we consider a closed path, that is, $A=B$, then $\Delta \phi=\phi_B-\phi_A=\phi_A-\phi_A=0$, and hence
$$
\oint_{\mathcal{L}} \mathbf{E} \cdot d \mathbf{s}=0
$$

物理代写|几何光学代写Geometrical Optics代考|Maxwell Equations for Dielectric Media Electrostatic Field

We mentioned that in the dielectric medium, an average over macroscopically small volumes, which are microscopically large, is necessary to obtain the Maxwell equations of the macroscopic phenomena.
The first observation is that Eq. (4.74) holds microscopically, that is
$$
\nabla \times \mathbf{E}_{\text {micro }}=0
$$
When averaging is made of the homogeneous Eq. (4.75), we obtain
$$
\nabla \times \mathbf{E}=0
$$
Equation (4.76) indicates that Eq. (4.74) holds for the averaged macroscopic electric field $\mathbf{E}$.

Using Eq. (4.57) for the effective charge density in the medium, Eq. (4.69) becomes
$$
\nabla \cdot \mathbf{E}(\mathbf{r})=\frac{\rho(\mathbf{r})-\nabla \cdot \mathbf{P}(\mathbf{r})}{\epsilon_0}
$$
Rearranging Eq. (4.77), we get
$$
\nabla \cdot\left(\epsilon_0 \mathbf{E}(\mathbf{r})+\mathbf{P}(\mathbf{r})\right)=\rho(\mathbf{r})
$$
Using the definition of the electric displacement vector given by Eq. (4.58), we write Eq. (4.78) as
$$
\nabla \cdot \mathbf{D}(\mathbf{r})=\rho(\mathbf{r})
$$
Note that Eqs. (4.76) and (4.79) are the macroscopic Maxwell equations in the dielectric medium, which are the counterparts of Eqs. (4.69) and (4.74).

物理代写|几何光学代写Geometrical Optics代考|OPTI502

几何光学代考

物理代写|几何光学代写Geometrical Optics代考|Set of Maxwell Equations for Electrostatic Field

首先,我们介绍自由空间静电场的麦克斯韦方程组。使用高斯定律 (见第 2 章),我们可以写出体积中 连续电荷分布产生的电场的电通量 $V$ 被表面包围 $A$ 作为
$$
\oint_A \mathbf{E} \cdot d \mathbf{A}=\frac{Q_{i n}}{\epsilon_0}
$$
请注意,在等式中。(4.65)E是由空间中的所有电荷产生的静电场,并且 $Q_{i n}$ 是体积内的电荷 $V$ 被表面包 围 $A$. 等式的左侧。(4.65)式可以用高斯公式写成如下形式:
$$
\oint_A \mathbf{E} \cdot d \mathbf{A}=\int_V \nabla \cdot \mathbf{E} d V
$$
在哪里 $V$ 是曲面包围的体积 $A$. 此外,方程式的右侧。(4.65) 可以写成
$$
\frac{Q_{i n}}{\epsilon_0}=\int_V \frac{\rho(\mathbf{r})}{\epsilon_0} d V
$$
结合方程式。(4.65)、(4.66) 和 (4.67),我们得到
$$
\int_V \nabla \cdot \mathbf{E} d V=\int_V \frac{\rho(\mathbf{r})}{\epsilon_0} d V
$$
在哪里 $\nabla \cdot \mathbf{E}$ 是向量的散度 $\mathbf{E}$ ,它产生一个标量。
比较等式的两边。(4.68),我们得到自由空间中的第一个麦克斯韦方程:
$$
\nabla \cdot \mathbf{E}(\mathbf{r})=\frac{\rho(\mathbf{r})}{\epsilon_0}
$$
两者都在哪里 $\mathbf{E}$ 和 $\rho$ 可以是位置的函数 $\mathbf{r}$.
使用自由空间中静电势差的表达式,Eq。(4.10)(第 3 章),我们有
$$
\Delta \phi=-\int_A^B \mathbf{E} \cdot d \mathbf{s}
$$
在哪里 $A$ 和 $B$ 是自由空间中的两个点,并且 $d \mathbf{s}$ 是沿曲线连接点的无穷小位移 $A$ 和 $B$. 如果我们考虑一条封 闭路径,即 $A=B$ ,然后 $\Delta \phi=\phi_B-\phi_A=\phi_A-\phi_A=0$ , 因此
$$
\oint_{\mathcal{L}} \mathbf{E} \cdot d \mathbf{s}=0
$$

物理代写|几何光学代写Geometrical Optics代考|Maxwell Equations for Dielectric Media Electrostatic Field

我们提到,在介电介质中,需要对微观上较大的宏观小体积进行平均,才能获得宏观现象的麦克斯韦方 程组。
第一个观察结果是方程式。(4.74) 在微观上成立,即
$$
\nabla \times \mathbf{E}_{\text {micro }}=0
$$
当平均由齐次方程组成时。(4.75),我们得到
$$
\nabla \times \mathbf{E}=0
$$
等式 (4.76) 表明等式。(4.74) 对于平均宏观电场成立 $\mathbf{E}$.
使用方程式。(4.57) 对于介质中的有效电荷密度,Eq. (4.69) 变成
$$
\nabla \cdot \mathbf{E}(\mathbf{r})=\frac{\rho(\mathbf{r})-\nabla \cdot \mathbf{P}(\mathbf{r})}{\epsilon_0}
$$
重新排列方程式 (4.77),我们得到
$$
\nabla \cdot\left(\epsilon_0 \mathbf{E}(\mathbf{r})+\mathbf{P}(\mathbf{r})\right)=\rho(\mathbf{r})
$$
使用方程式给出的电位移矢量的定义。(4.58),我们写方程式。(4.78) 作为
$$
\nabla \cdot \mathbf{D}(\mathbf{r})=\rho(\mathbf{r})
$$
请注意,方程式。(4.76) 和 (4.79) 是介电介质中的宏观麦克斯韦方程,它们是方程的对应物。(4.69) 和 $(4.74)$ 。

物理代写|几何光学代写Geometrical Optics代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注