物理代写|几何光学代写Geometrical Optics代考|PHYSICS134A

如果你也在 怎样代写几何光学Geometrical Optics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

几何光学,或称射线光学,是一种用射线来描述光的传播的光学模型。几何光学中的射线是一个抽象的概念,有助于近似地描述在某些情况下光的传播路径。

statistics-lab™ 为您的留学生涯保驾护航 在代写几何光学Geometrical Optics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写几何光学Geometrical Optics代写方面经验极为丰富,各种代写几何光学Geometrical Optics相关的作业也就用不着说。

我们提供的几何光学Geometrical Optics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
物理代写|几何光学代写Geometrical Optics代考|PHYSICS134A

物理代写|几何光学代写Geometrical Optics代考|Energy Stored in Capacitor

The energy stored in the absence of the dielectric is
$$
U_0=\frac{Q_0^2}{2 C_0}
$$
After the battery is removed and the dielectric inserted, the charge on the capacitor remains the same. Hence, the energy stored in the presence of the dielectric is
$$
U=\frac{Q_0^2}{2 C}
$$
Using the relation $C=\varepsilon C_0$, then
$$
U=\frac{Q_0^2}{2 \varepsilon C_0}
$$
or
$$
U=\frac{U_0}{\varepsilon}
$$
Because $\varepsilon>1$, the final energy is less than the initial energy (see also Eq. (4.48)) $\Delta U=U-U_0<0$. We can account for the “missing” energy by noting that the dielectric, when inserted, gets pulled into the device. An external agent must do negative work to keep the dielectric from accelerating.
This work is simply the difference
$$
W_a=U-U_0
$$
Alternatively, the positive work done on the external agent by the system is
$$
W=-W_a=U_0-U
$$

物理代写|几何光学代写Geometrical Optics代考|Electric Polarization

Consider an electric field applied to a medium made up of a large number of particles, such as atoms or molecules. The charges bound in molecules will then respond to the external electric field, and they will follow the perturbed motion to align with the external field. Thus, the charge density within the molecules will be distorted. The dipole moments ${ }^3$ of each molecule will be different in comparison to the dipole moments in the absence of the applied electric field. That is, in the absence of the external field, the average dipole moments over all molecules of the substance are zero because the dipole vectors are oriented randomly. In contrast, in the presence of the applied electric field, the net dipole moment of the substance is different from zero. Therefore, in the medium, there is an average dipole moment per unit volume, which is called electric polarization $\mathbf{P}$, given as
$$
\mathbf{P}(\mathbf{r})=\sum_i n_i\left\langle\mathbf{p}_i\right\rangle
$$
In Eq. (4.51), $\mathbf{p}_i$ is the dipole moment of the molecule type $i$ in the medium, $\langle\cdots\rangle$ denotes the average over a small volume around $\mathbf{r}$, and $n_i$ is the average number per unit volume of the molecule type $i$ at the position $\mathbf{r}$.

If the net charge of the molecule $i$ is $Q_i$, and there is a macroscopic excess or free charge, the charge density at the macroscopic level is
$$
\rho(\mathbf{r})=\sum_i n_i\left\langle Q_i\right\rangle+\rho_{\text {free }}
$$
Note that, in general, average charge of a molecule $i$ is zero, $\left\langle Q_i\right\rangle=0$, and hence, the charge density $\rho$ is equal to the macroscopic excess or free charge, $\rho_{\text {free }}$.

In the following, we will consider the case of a continuous charge distribution, as in Fig. $3.6$ (Chap. 3), and see the medium from a macroscopic viewpoint. The potential at some point $P$ at the position $\mathbf{r}$ from a macroscopic small volume element $d V$ at the position $\mathbf{r}^{\prime}$ is the sum of the potential created by the charge of $d V, d q-\rho\left(\mathbf{r}^{\prime}\right) d V$ and the dipole moment of $d V$ is $\mathbf{P}\left(\mathbf{r}^{\prime}\right) d V$, assuming that there are no higher macroscopic multipole moment densities:
$$
d \phi\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=k_e\left(\frac{\rho\left(\mathbf{r}^{\prime}\right) d V}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}+\frac{\mathbf{P}\left(\mathbf{r}^{\prime}\right) \cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right) d V}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^3}\right)
$$

物理代写|几何光学代写Geometrical Optics代考|PHYSICS134A

几何光学代考

物理代写|几何光学代写Geometrical Optics代考|Energy Stored in Capacitor

在没有电介质的情况下存储的能量是
$$
U_0=\frac{Q_0^2}{2 C_0}
$$
取出电池并揷入电介质后,电容器上的电荷保持不变。因此,存在电介质时存储的能量为
$$
U=\frac{Q_0^2}{2 C}
$$
使用关系 $C=\varepsilon C_0$ , 然后
$$
U=\frac{Q_0^2}{2 \varepsilon C_0}
$$
要么
$$
U=\frac{U_0}{\varepsilon}
$$
因为 $\varepsilon>1$ ,最终能量小于初始能量 (另见方程式 (4.48) ) $\Delta U=U-U_0<0$. 我们可以通过注意 到电介质在揷入时被拉入设备来解释”去失”的能量。外部代理必须做负功以防止电介质加速。 这部作品简直就是与众不同
$$
W_a=U-U_0
$$
或者,系统对外部代理所做的正功是
$$
W=-W_a=U_0-U
$$

物理代写|几何光学代写Geometrical Optics代考|Electric Polarization

考虑施加到由大量粒子 (例如原子或分子) 组成的介质的电场。束缚在分子中的电荷会对外部电场作出 反应,它们会跟随扰动运动与外部电场对齐。因此,分子内的电荷密度将被括曲。偶极矩 ${ }^3$ 在没有施加电 场的情况下,每个分子的偶极矩将不同。也就是说,在没有外场的情况下,物质所有分子的平均偶极矩 为零,因为偶极矢量的方向是随机的。相反,在施加电场的情况下,物质的净偶极矩不为零。因此,在 介质中,单位体积内存在一个平均偶极矩,称为电极化 $\mathbf{P}$ ,给出为
$$
\mathbf{P}(\mathbf{r})=\sum_i n_i\left\langle\mathbf{p}i\right\rangle $$ 在等式中。(4.51), $\mathbf{p}_i$ 是分子类型的偶极矩 $i$ 在媒体中, $\langle\cdots\rangle$ 表示周围小体积的平均值 $\mathbf{r}$ ,和 $n_i$ 是分子类型 每单位体积的平均数 $i$ 在那个位置r. 如果分子的净电荷 $i$ 是 $Q_i$ ,并且存在宏观过剩或自由电荷,宏观层面的电荷密度为 $$ \rho(\mathbf{r})=\sum_i n_i\left\langle Q_i\right\rangle+\rho{\text {free }}
$$
请注意,一般来说,分子的平均电荷 $i$ 为零, $\left\langle Q_i\right\rangle=0$ ,因此,电荷密度 $\rho$ 等于宏观过剩或免费费用, $\rho_{\text {free }}$.
下面,我们将考虑连续电荷分布的情况,如图 1 所示。 $3.6$ (第 3 章),从宏观的角度看媒体。某个时候 的潜力 $P$ 在那个位置 $\mathbf{r}$ 从宏观小体积元素 $d V$ 在那个位置 $\mathbf{r}^{\prime}$ 是由电荷产生的电势之和 $d V, d q-\rho\left(\mathbf{r}^{\prime}\right) d V$ 和偶极矩 $d V$ 是 $\mathbf{P}\left(\mathbf{r}^{\prime}\right) d V$ ,假设没有更高的宏观多极矩密度:
$$
d \phi\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=k_e\left(\frac{\rho\left(\mathbf{r}^{\prime}\right) d V}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}+\frac{\mathbf{P}\left(\mathbf{r}^{\prime}\right) \cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right) d V}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^3}\right)
$$

物理代写|几何光学代写Geometrical Optics代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注