统计代写|线性回归分析代写linear regression analysis代考|Variable Selection

如果你也在 怎样代写线性回归分析linear regression analysis这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

回归分析是一种强大的统计方法,允许你检查两个或多个感兴趣的变量之间的关系。虽然有许多类型的回归分析,但它们的核心都是考察一个或多个自变量对因变量的影响。

statistics-lab™ 为您的留学生涯保驾护航 在代写线性回归分析linear regression analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写线性回归分析linear regression analysis代写方面经验极为丰富,各种代写线性回归分析linear regression analysis相关的作业也就用不着说。

我们提供的线性回归分析linear regression analysis及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础

统计代写|线性回归分析代写linear regression analysis代考|Variable Selection

Variable selection, also called subset or model selection, is the search for a subset of predictor variables that can be deleted without important loss of information. A model for variable selection in multiple linear regression can be described by
$$
Y=\boldsymbol{x}^T \boldsymbol{\beta}+e=\boldsymbol{\beta}^T \boldsymbol{x}+e=\boldsymbol{x}_S^T \boldsymbol{\beta}_S+\boldsymbol{x}_E^T \boldsymbol{\beta}_E+e=\boldsymbol{x}_S^T \boldsymbol{\beta}_S+e
$$
where $e$ is an error, $Y$ is the response variable, $\boldsymbol{x}=\left(\boldsymbol{x}_S^T, \boldsymbol{x}_E^T\right)^T$ is a $p \times 1$ vector of predictors, $\boldsymbol{x}_S$ is a $k_S \times 1$ vector, and $\boldsymbol{x}_E$ is a $\left(p-k_S\right) \times 1$ vector. Given that $\boldsymbol{x}_S$ is in the model, $\boldsymbol{\beta}_E=\mathbf{0}$ and $E$ denotes the subset of terms that can be eliminated given that the subset $S$ is in the model.

Since $S$ is unknown, candidate subsets will be examined. Let $x_I$ be the vector of $k$ terms from a candidate subset indexed by $I$, and let $\boldsymbol{x}_O$ be the vector of the remaining predictors (out of the candidate submodel). Then
$$
Y=\boldsymbol{x}_I^T \boldsymbol{\beta}_I+\boldsymbol{x}_O^T \boldsymbol{\beta}_O+e .
$$
Definition 3.7. The model $Y=\boldsymbol{x}^T \boldsymbol{\beta}+e$ that uses all of the predictors is called the full model. A model $Y=\boldsymbol{x}_I^T \boldsymbol{\beta}_I+e$ that only uses a subset $\boldsymbol{x}_I$ of the predictors is called a submodel. The full model is always a submodel. The sufficient predictor (SP) is the linear combination of the predictor variables used in the model. Hence the full model has $S P=\boldsymbol{x}^T \boldsymbol{\beta}$ and the submodel has $S P=\boldsymbol{x}_I^T \boldsymbol{\beta}_I$.

统计代写|线性回归分析代写linear regression analysis代考|Bootstrapping Variable Selection

The bootstrap will be described and then applied to variable selection. Suppose there is data $\boldsymbol{w}_1, \ldots, \boldsymbol{w}_n$ collected from a distribution with cdf $F$ into an $n \times p$ matrix $\boldsymbol{W}$. The empirical distribution, with cdf $F_n$, gives each observed data case $\boldsymbol{w}_i$ probability $1 / n$. Let the statistic $T_n=t(\boldsymbol{W})=t\left(F_n\right)$ be computed from the data. Suppose the statistic estimates $\boldsymbol{\mu}=t(F)$. Let $t\left(\boldsymbol{W}^\right)=t\left(F_n^\right)=T_n^*$ indicate that $t$ was computed from an iid sample from the empirical distribution $F_n$ : a sample of size $n$ was drawn with replacement from the observed sample $\boldsymbol{w}_1, \ldots, \boldsymbol{w}_n$.

Some notation is needed to give the Olive (2013a) prediction region used to bootstrap a hypothesis test. Suppose $\boldsymbol{w}1, \ldots, \boldsymbol{w}_n$ are iid $p \times 1$ random vectors with mean $\boldsymbol{\mu}$ and nonsingular covariance matrix $\boldsymbol{\Sigma}{\boldsymbol{w}}$. Let a future test observation $\boldsymbol{w}f$ be independent of the $\boldsymbol{w}_i$ but from the same distribution. Let $(\overline{\boldsymbol{w}}, \boldsymbol{S})$ be the sample mean and sample covariance matrix where $$ \overline{\boldsymbol{w}}=\frac{1}{n} \sum{i=1}^n \boldsymbol{w}i \text { and } \boldsymbol{S}=\boldsymbol{S}{\boldsymbol{w}}=\frac{1}{\mathrm{n}-1} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\boldsymbol{w}{\mathrm{i}}-\overline{\boldsymbol{w}}\right)\left(\boldsymbol{w}{\mathrm{i}}-\overline{\boldsymbol{w}}\right)^{\mathrm{T}}
$$
Then the $i$ th squared sample Mahalanobis distance is the scalar
$$
D_{\boldsymbol{w}}^2=D_{\boldsymbol{w}}^2(\overline{\boldsymbol{w}}, \boldsymbol{S})=(\boldsymbol{w}-\overline{\boldsymbol{w}})^T \boldsymbol{S}^{-1}(\boldsymbol{w}-\overline{\boldsymbol{w}})
$$
Let $D_i^2=D_{\boldsymbol{w}i}^2$ for each observation $\boldsymbol{w}_i$. Let $D{(c)}$ be the $c$ th order statistic of $D_1, \ldots, D_n$. Consider the hyperellipsoid
$$
\mathcal{A}n=\left{\boldsymbol{w}: D{\boldsymbol{w}}^2(\overline{\boldsymbol{w}}, \boldsymbol{S}) \leq D_{(c)}^2\right}=\left{\boldsymbol{w}: D_{\boldsymbol{w}}(\overline{\boldsymbol{w}}, \boldsymbol{S}) \leq D_{(c)}\right}
$$
If $n$ is large, we can use $c=k_n=\lceil n(1-\delta)\rceil$. If $n$ is not large, using $c=$ $U_n$ where $U_n$ decreases to $k_n$, can improve small sample performance. Olive (2013a) showed that $(3.10)$ is a large sample $100(1-\delta) \%$ prediction region for a large class of distributions, although regions with smaller volumes may exist. Note that the result follows since if $\boldsymbol{\Sigma} \boldsymbol{w}$ and $\boldsymbol{S}$ are nonsingular, then the Mahalanobis distance is a continuous function of $(\overline{\boldsymbol{w}}, \boldsymbol{S})$. Let $D=D(\boldsymbol{\mu}, \boldsymbol{\Sigma} \boldsymbol{w})$. Then $D_i \stackrel{D}{\rightarrow} D$ and $D_i^2 \stackrel{D}{\rightarrow} D^2$. Hence the sample percentiles of the $D_i$ are consistent estimators of the population percentiles of $D$ at continuity points of the cumulative distribution function (cdf) of $D$. Prediction region (3.10) estimates the highest density region for a large class of elliptically contoured distributions. Some of the above terms appear in Chapter 10.

线性回归代写

统计代写|线性回归分析代写linear regression analysis代考|Variable Selection

变量选择,也称为子集或模型选择,是搜索可以删除而不会丢失重要信息的预测变量的子集。多元线性回 归中的变量选择模型可以描述为
$$
Y=\boldsymbol{x}^T \boldsymbol{\beta}+e=\boldsymbol{\beta}^T \boldsymbol{x}+e=\boldsymbol{x}_S^T \boldsymbol{\beta}_S+\boldsymbol{x}_E^T \boldsymbol{\beta}_E+e=\boldsymbol{x}_S^T \boldsymbol{\beta}_S+e
$$
在哪里 $e$ 是一个错误, $Y$ 是响应变量, $\boldsymbol{x}=\left(\boldsymbol{x}_S^T, \boldsymbol{x}_E^T\right)^T$ 是一个 $p \times 1$ 预测变量的向量, $\boldsymbol{x}_S$ 是一个 $k_S \times 1$ 矢量,和 $\boldsymbol{x}_E$ 是一个 $\left(p-k_S\right) \times 1$ 向量。鉴于 $\boldsymbol{x}_S$ 在模型中, $\boldsymbol{\beta}_E=\mathbf{0}$ 和 $E$ 表示在给定子集的情况 下可以消除的项的子集 $S$ 在模型中。
自从 $S$ 末知,将检查候选子集。让 $x_I$ 是向量 $k$ 来自由索引的候选子集的术语 $I ,$ 然后让 $x_O$ 是剩余预测变 量的向量(来自候选子模型)。然后
$$
Y=\boldsymbol{x}_I^T \boldsymbol{\beta}_I+\boldsymbol{x}_O^T \boldsymbol{\beta}_O+e
$$
定义 3.7。该模型 $Y=\boldsymbol{x}^T \boldsymbol{\beta}+e$ 使用所有预测变量的模型称为完整模型。一个模型 $Y=\boldsymbol{x}_I^T \boldsymbol{\beta}_I+e$ 只 使用一个子集 $\boldsymbol{x}_I$ 的预测变量称为子模型。完整模型始终是子模型。充分预测变量 (SP) 是模型中使用的预 测变量的线性组合。因此完整模型有 $S P=\boldsymbol{x}^T \boldsymbol{\beta}$ 子模型有 $S P=\boldsymbol{x}_I^T \boldsymbol{\beta}_I$.

统计代写|线性回归分析代写linear regression analysis代考|Bootstrapping Variable Selection

引导程序将被描述,然后应用于变量选择。假设有数据 $\boldsymbol{w}1, \ldots, \boldsymbol{w}_n$ 使用 cdf 从分布中收集 $F$ 进入一个 $n \times p$ 矩阵 $\boldsymbol{W}$. 经验分布, $\mathrm{cdf} F_n$ ,给出每个观察到的数据案例 $\boldsymbol{w}_i$ 可能性 $1 / n$. 让统计 $T_n=t(\boldsymbol{W})=t\left(F_n\right)$ 从数据中计算出来。假设统计估计 $\boldsymbol{\mu}=t(F)$. 令 $\$ t \backslash \backslash e f t(\backslash b o l d s y m b o \mid{\mathrm{W}} \wedge$ |right) $=t 1$ left $\left(F{-} n^{\wedge} \backslash r i g h t\right)=T_{-} n^{\wedge *}$ indicatethat 吨
wascomputed fromaniidsamplefromtheempiricaldistribution $\mathrm{F}{-} \mathrm{n}$ : asampleofsizen lboldsymbol ${w} _n \$$ 需要一些符号来给出用于引导假设检验的 Olive (2013a) 预测区域。认为 $\boldsymbol{w} 1, \ldots, \boldsymbol{w}_n$ 是同龄人 $p \times 1$ 具 有均值的随机向量 $\boldsymbol{\mu}$ 和非奇异协方差矩阵 $\boldsymbol{\Sigma} \boldsymbol{w}$. 让末来的测试观察 $\boldsymbol{w} f$ 独立于 $\boldsymbol{w}_i$ 但来自相同的分布。让 $(\overline{\boldsymbol{w}}, \boldsymbol{S})$ 是样本均值和样本协方差矩阵,其中 $$ \overline{\boldsymbol{w}}=\frac{1}{n} \sum i=1^n \boldsymbol{w} i \text { and } \boldsymbol{S}=\boldsymbol{S} \boldsymbol{w}=\frac{1}{\mathrm{n}-1} \sum{\mathrm{i}=1}^{\mathrm{n}}(\boldsymbol{w} \mathrm{i}-\overline{\boldsymbol{w}})(\boldsymbol{w} \mathrm{i}-\overline{\boldsymbol{w}})^{\mathrm{T}}
$$
然后 $i$ th 平方样本马氏距离是标量
$$
D_{\boldsymbol{w}}^2=D_{\boldsymbol{w}}^2(\overline{\boldsymbol{w}}, \boldsymbol{S})=(\boldsymbol{w}-\overline{\boldsymbol{w}})^T \boldsymbol{S}^{-1}(\boldsymbol{w}-\overline{\boldsymbol{w}})
$$
让 $D_i^2=D_{w i}^2$ 对于每个观察 $\boldsymbol{w}_i$. 让 $D(c)$ 成为 $c$ 的阶次统计量 $D_1, \ldots, D_n$. 考虑超椭圆体
如果 $n$ 很大,我们可以用 $c=k_n=\lceil n(1-\delta)\rceil$. 如果 $n$ 不大,用 $c=U_n$ 在哪里 $U_n$ 减少到 $k_n$ ,可以提高 小样本性能。Olive (2013a) 表明 $(3.10)$ 是大样本 $100(1-\delta) \%$ 大类分布的预测区域,尽管可能存在体积 较小的区域。请注意,结果如下,因为如果 $\boldsymbol{\Sigma} \boldsymbol{w}$ 和 $\boldsymbol{S}$ 是非奇异的,则马氏距离是以下的连续函数 $(\overline{\boldsymbol{w}}, \boldsymbol{S})$. 让 $D=D(\boldsymbol{\mu}, \boldsymbol{\Sigma} \boldsymbol{w})$. 然后 $D_i \stackrel{D}{\rightarrow} D$ 和 $D_i^2 \stackrel{D}{\rightarrow} D^2$. 因此,样本百分位数 $D_i$ 是人口百分位数的一致估计 量 $D$ 在㽧积分布函数 (cdf) 的连续点处 $D$. 预测区域 (3.10) 估计一大类椭圆轮廓分布的最高密度区域。上 面的一些术语出现在第 10 章中。

统计代写|线性回归分析代写linear regression analysis代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注