### 计算机代写|机器学习代写machine learning代考|COMP5318

statistics-lab™ 为您的留学生涯保驾护航 在代写机器学习 machine learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写机器学习 machine learning代写方面经验极为丰富，各种代写机器学习 machine learning相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 计算机代写|机器学习代写machine learning代考|Kernel Methods

In a broad sense, kernel methods are at the core of many, if not most, machine learning algorithms [Schölkopf and Smola, 2018]. Given a set of data $\mathbf{x}1, \ldots, \mathbf{x}_n \in \mathbb{R}^p$, most learning mechanisms rely on extracting the structural data information from direct or indirect pairwise comparisons $\kappa\left(\mathbf{x}_i, \mathbf{x}_j\right)$ for some affinity metric $\kappa(\cdot, \cdot)$. Gathered in an $n \times n$ matrix $$\mathbf{K}=\left{\kappa\left(\mathbf{x}_i, \mathbf{x}_j\right)\right}{i, j=1}^n$$
the “cumulative” effect of these comparisons for numerous $(n \gg 1)$ data is at the source of various supervised, semi-supervised, or unsupervised methods such as support vector machines, graph Laplacian-based learning, kernel spectral clustering, and has deep connections to neural networks.

These applications will be thoroughly discussed in Section 4.4. For the moment though, our main interest lies in the spectral characterization of the kernel matrix $\mathbf{K}$ itself for various (classical) choices of affinity functions $\kappa$ and for various statistical models of the data $\mathbf{x}_i$

Clearly, from a purely machine learning perspective, the choice of the affinity function $\kappa(\cdot, \cdot)$ is central to a good performance of the learning method under study. Since real data in general have highly complex structures, a typical viewpoint is to assume that the data points $\mathbf{x}_i$ and $\mathbf{x}_j$ are not directly comparable in their ambient space but that there exists a convenient feature extraction function $\phi: \mathbb{R}^p \rightarrow \mathbb{R}^q(q \in \mathbb{N} \cup{+\infty})$ such that $\phi\left(\mathbf{x}_i\right)$ and $\phi\left(\mathbf{x}_j\right)$ are more amenable to comparison. Otherwise stated, in the image of $\phi(\cdot)$, the data are more “linear” (or more “linearly separable” if one seeks to group the data in affinity classes). The simplest affinity function between $\mathbf{x}_i$ and $\mathbf{x}_j$ would in this case be $\kappa\left(\mathbf{x}_i, \mathbf{x}_j\right)=\phi\left(\mathbf{x}_i\right)^{\top} \phi\left(\mathbf{x}_j\right)$

Since $q$ may be larger (if not much larger) than $p$, the mere cost of evaluating $\phi\left(\mathbf{x}_i\right)^{\top} \phi\left(\mathbf{x}_j\right)$ can be deleterious to practical implementation. The so-called kernel trick is anchored in the remark that, for a certain class of such functions $\phi, \phi\left(\mathbf{x}_i\right)^{\top} \phi\left(\mathbf{x}_j\right)=$ $f\left(\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right)$ or $-f\left(\mathbf{x}_i^{\top} \mathbf{x}_j\right)$ for some function $f: \mathbb{R} \rightarrow \mathbb{R}$ and it thus suffices to evaluate $\left|\mathbf{x}_i-\mathbf{x}_j\right|^2$ or $\mathbf{x}_i^{\top} \mathbf{x}_j$ in the ambient space and then apply $f$ in an entrywise manner to evaluate all data affinities, leading to more practically convenient methods.

Although the class of such functions $f$ is inherently restricted by the need for a mapping $\phi$ to exist such that, say, $\phi\left(\mathbf{x}_i\right)^{\top} \phi\left(\mathbf{x}_j\right)=f\left(\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right)$ for all possible $\mathbf{x}_i, \mathbf{x}_j$ pairs (these are sometimes called Mercer kernel functions), ${ }^1$ with time, practitioners have started to use arbitrary functions $f$ and worked with generic kernel matrices of the form
$$\mathbf{K}=\left{f\left(\left|\mathbf{x}i-\mathbf{x}_j\right|^2\right)\right}{i, j=1}^n, \quad \text { or } \quad \mathbf{K}=\left{f\left(\mathbf{x}i^{\top} \mathbf{x}_j\right)\right}{i, j=1}^n,$$
irrespective of the actual form or even the existence of an underlying feature extraction function $\phi$. There are, in particular, empirical evidences showing that well-chosen “indefinite” (i.e., nonMercer type) kernels, being not associated with a mapping $\phi$, can sometimes outperform conventional nonnegative definite kernels that satisfy the Mercer’s condition [Haasdonk, 2005, Luss and D’Aspremont, 2008].

## 计算机代写|机器学习代写machine learning代考|Basic Setting

As pointed out in Remark $4.1$ and shall become evident from the coming analysis, the small-dimensional intuition according to which $f$ should be a nonincreasing “valid” Mercer function becomes rather meaningless when dealing with large-dimensional data, essentially due to the “curse of dimensionality” and the concentration phenomenon in high dimensions.

To fully capture this aspect, a first important consideration is, as already mentioned in Section 1.1.3, to deal with “nontrivial” relative growth rates of the statistical data parameters with respect to the dimensions $p, n$. By nontrivial, we mean that the underlying classification or regression problem for which the kernel method is designed should neither be impossible nor trivially easy to solve as $p, n \rightarrow \infty$. The reason behind this request is fundamental, and also disrupts from many research works in machine learning which, instead, seek to prove that the method under study performs perfectly in the limit of large $n$ (with $p$ fixed in general): Here, we rather wish to account for the fact that, at finite but large $p, n$, the machine learning methods of practical interest are those which have nontrivial performances; thus, in what follows, ” $n, p \rightarrow \infty$ in nontrivial growth rates” should really be understood as ” $n, p$ are both large and the problem at hand is non-trivially easy or hard to solve.”

In this section, we will mostly focus on the use of kernel methods for classification, and thus the nontrivial settings are given in terms of the growth rate of the “distance” between (the statistics of) data classes. It will particularly appear that the very definition of the appropriate growth rates to ensure the nontrivial character of a machine learning problem to be solved through kernel methods depends on the kernel design itself, and that flagship kernels such as the Gaussian kernel $\kappa\left(\mathbf{x}_i, \mathbf{x}_j\right)=\exp \left(-\left|\mathbf{x}_i-\mathbf{x}_j\right|^2 / 2 \sigma^2\right)$ are in general quite suboptimal.

# 机器学习代考

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。