计算机代写|机器学习代写machine learning代考|COMP5318

如果你也在 怎样代写机器学习 machine learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

机器学习是一个致力于理解和建立 “学习 “方法的研究领域,也就是说,利用数据来提高某些任务的性能的方法。机器学习算法基于样本数据(称为训练数据)建立模型,以便在没有明确编程的情况下做出预测或决定。机器学习算法被广泛用于各种应用,如医学、电子邮件过滤、语音识别和计算机视觉,在这些应用中,开发传统算法来执行所需任务是困难的或不可行的。

statistics-lab™ 为您的留学生涯保驾护航 在代写机器学习 machine learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写机器学习 machine learning代写方面经验极为丰富,各种代写机器学习 machine learning相关的作业也就用不着说。

我们提供的机器学习 machine learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|机器学习代写machine learning代考|COMP5318

计算机代写|机器学习代写machine learning代考|Concluding Remarks

Before the present chapter, the first part of the book was mostly concerned with the sample covariance matrix model $\mathbf{X} \mathbf{X}^{\top} / n$ (and more marginally with the Wigner model $\mathbf{X} / \sqrt{n}$ for symmetric $\mathbf{X}$ ), where the columns of $\mathbf{X}$ are independent and the entries of each column are independent or linearly dependent. Historically, this model and its numerous variations (with a variance profile, with right-side correlation, summed up to other independent matrices of the same form, etc.) have covered most of the mathematical and applied interest of the first two decades (since the early nineties) of intense random matrix advances. The main drivers for these early developments were statistics, signal processing, and wireless communications. The present chapter leaped much further in considering now random matrix models with possibly highly correlated entries, with a specific focus on kernel matrices. When (moderately) largedimensional data are considered, the intuition and theoretical understanding of kernel matrices in small-dimensional setting being no longer accurate, random matrix theory provides accurate (and asymptotically exact) performance assessment along with the possibility to largely improve the performance of kernel-based machine learning methods. This, in effect, creates a small revolution in our understanding of machine learning on realistic large datasets.

A first important finding of the analysis of large-dimensional kernel statistics reported here is the ubiquitous character of the Marčenko-Pastur and the semi-circular laws. As a matter of fact, all random matrix models studied in this chapter, and in particular the kernel regimes $f\left(\mathbf{x}_i^{\top} \mathbf{x}_j / p\right)$ (which concentrate around $f(0)$ ) and $f\left(\mathbf{x}_i^{\top} \mathbf{x}_j / \sqrt{p}\right.$ ) (which tends to $f(\mathcal{N}(0,1))$ ), have a limiting eigenvalue distribution akin to a combination of the two laws. This combination may vary from case to case (compare for instance the results of Practical Lecture 3 to Theorem 4.4), but is often parametrized in a such way that the Marčenko-Pastur and semicircle laws appear as limiting cases (in the context of Practical Lecture 3, they correspond to the limiting cases of dense versus sparse kernels, and in Theorem $4.4$ to the limiting cases of linear versus “purely” nonlinear kernels).

计算机代写|机器学习代写machine learning代考|Practical Course Material

In this section, Practical Lecture 3 (that evaluates the spectral behavior of uniformly sparsified kernels) related to the present Chapter 4 is discussed, where we shall see, as for $\alpha-\beta$ and properly scaling kernels in Sections $4.2 .4$ and $4.3$ that, depending on the “level of sparsity,” a combination of Marčenko-Pastur and semicircle laws is observed.
Practical Lecture Material 3 (Complexity-performance trade-off in spectral clustering with sparse kernel, Zarrouk et al. [2020]). In this exercise, we study the spectrum of a “punctured” version $\mathbf{K}=\mathbf{B} \odot\left(\mathbf{X}^{\top} \mathbf{X} / p\right.$ ) (with the Hadamard product $[\mathbf{A} \odot \mathbf{B}]{i j}=[\mathbf{A}]{i j}[\mathbf{B}]{i j}$ of the linear kernel $\mathbf{X}^{\top} \mathbf{X} / p$, with data matrix $\mathbf{X} \in \mathbb{R}^{p \times n}$ and a symmetric random mask-matrix $\mathbf{B} \in{0,1}^{n \times n}$ having independent $[\mathbf{B}]{i j} \sim \operatorname{Bern}(\boldsymbol{\epsilon})$ entries for $i \neq j$ (up to symmetry) and $[\mathbf{B}]_{i i}=b \in{0,1}$ fixed, in the limit $p, n \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$. This matrix mimics the computation of only a proportion $\epsilon \in(0,1)$ of the entries of $\mathbf{X}^{\top} \mathbf{X} / n$, and its impact on spectral clustering. Letting $\mathbf{X}=\left[\mathbf{x}_1, \ldots, \mathbf{x}_n\right]$ with $\mathbf{x}_i$ independently and uniformly drawn from the following symmetric two-class Gaussian mixture
$$
\mathcal{C}_1: \mathbf{x}_i \sim \mathcal{N}\left(-\boldsymbol{\mu}, \mathbf{I}_p\right), \quad \mathcal{C}_2: \mathbf{x}_i \sim \mathcal{N}\left(+\boldsymbol{\mu}, \mathbf{I}_p\right)
$$
for $\boldsymbol{\mu} \in \mathbb{R}^p$ such that $|\boldsymbol{\mu}|=O(1)$ with respect to $n, p$, we wish to study the effect of a uniform “zeroing out” of the entries of $\mathbf{X}^{\top} \mathbf{X}$ on the presence of an isolated spike in the spectrum of $\mathbf{K}$, and thus on the spectral clustering performance.

We will study the spectrum of $\mathbf{K}$ using Stein’s lemma and the Gaussian method discussed in Section 2.2.2. Let $\mathbf{Z}=\left[\mathbf{z}1, \ldots, \mathbf{z}_n\right] \in \mathbb{R}^{p \times n}$ for $\mathbf{z}_i=\mathbf{x}_i-(-1)^a \boldsymbol{\mu} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_p\right)$ with $\mathbf{x}_i \in \mathcal{C}_a$ and $\mathbf{M}=\mu \mathbf{j}^{\top}$ with $\mathbf{j}=\left[-\mathbf{1}{n / 2}, \mathbf{1}_{n / 2}\right]^{\top} \in \mathbb{R}^n$ so that $\mathbf{X}=\mathbf{M}+\mathbf{Z}$. First show that, for $\mathbf{Q} \equiv \mathbf{Q}(z)=\left(\mathbf{K}-z \mathbf{I}_n\right)^{-1}$,
$$
\begin{aligned}
\mathbf{Q}= & -\frac{1}{z} \mathbf{I}_n+\frac{1}{z}\left(\frac{\mathbf{Z}^{\boldsymbol{}} \mathbf{Z}}{p} \odot \mathbf{B}\right) \mathbf{Q}+\frac{1}{z}\left(\frac{\mathbf{Z}^{\boldsymbol{T}} \mathbf{M}}{p} \odot \mathbf{B}\right) \mathbf{Q} \
& +\frac{1}{z}\left(\frac{\mathbf{M}^{\boldsymbol{\top}} \mathbf{Z}}{p} \odot \mathbf{B}\right) \mathbf{Q}+\frac{1}{z}\left(\frac{\mathbf{M}^{\boldsymbol{T}} \mathbf{M}}{p} \odot \mathbf{B}\right) \mathbf{Q} .
\end{aligned}
$$
To proceed, we need to go slightly beyond the study of these four terms.

计算机代写|机器学习代写machine learning代考|COMP5318

机器学习代考

计算机代写|机器学习代写machine learning代考|Concluding Remarks

在本章之前,本书的第一部分主要关注样本协方差矩阵模型 $\mathbf{X} \mathbf{X}^{\top} / n$ (以及更边缘的 Wigner 模型 $\mathbf{X} / \sqrt{n}$ 对于对称 $\mathbf{X}$ ), 其中列 $\mathbf{X}$ 是独立的,每列的条目是独立的或线性相关的。从历史上看,这个模型及 其众多变体 (具有方差曲线、右侧相关、总结为相同形式的其他独立矩阵等) 已经涵盖了头二十年的大部 分数学和应用兴趣 (自九十年代初期) 的强烈随机矩阵进步。这些早期发展的主要驱动力是统计、信号处 理和无线通信。本章更进一步地考虑了现在可能具有高度相关条目的随机矩阵模型,并特别关注核矩阵。 当考虑 (适度) 大维数据时,对小维设置中核矩阵的直觉和理论理解不再准确,随机矩阵理论提供了准确 (和渐近精确) 的性能评估,并有可能大大提高基于内核的机器学习方法的性能。实际上,这在我们对现 实大型数据集上的机器学习的理解方面产生了一场小革命。
此处报告的大维核统计分析的第一个重要发现是 Marčenko-Pastur 和半圆定律的普遍特征。事实上,本 章研究的所有随机矩阵模型,尤其是内核状态 $f\left(\mathbf{x}_i^{\top} \mathbf{x}_j / p\right)$ (集中在 $\left.f(0)\right)$ 和 $f\left(\mathbf{x}_i^{\top} \mathbf{x}_j / \sqrt{p}\right.$ ) (倾向 于 $f(\mathcal{N}(0,1))$ ), 具有类似于这两个定律的组合的特征值极限分布。这种组合可能因情况而异 (例如比较 实践讲座 3 与定理 $4.4$ 的结果) ,但通常以 Marčenko-Pastur 和半圆定律作为极限情况出现的方式进行 参数化(在实践讲座的上下文中3,它们对应于密集核与稀疏核的极限情况,并且在定理中 $4.4$ 线性与”纯” 非线性内核的极限情况)。

计算机代写|机器学习代写machine learning代考|Practical Course Material

在本节中,将讨论与当前第 4 章相关的实践讲座 3 (评估均匀稀疏核的光谱行为),我们将在其中看到, 至于 $\alpha-\beta$ 并在部分中适当缩放内核 $4.2 .4$ 和 $4.3$ 也就是说,根据“稀疏程度”,观察到 Marčenko-Pastur 和半圆定律的组合。
实用讲座材料 3 (Complexity-performance trade-off in spectral clustering with sparse kernel, Zarrouk 等人 [2020])。在本练习中,我们研究了“打孔”版本的频谱 $\mathbf{K}=\mathbf{B} \odot\left(\mathbf{X}^{\top} \mathbf{X} / p\right)$ (与阿达玛产 品 $[\mathbf{A} \odot \mathbf{B}] i j=[\mathbf{A}] i j[\mathbf{B}] i j$ 线性内核 $\mathbf{X}^{\top} \mathbf{X} / p$ ,有数据矩阵 $\mathbf{X} \in \mathbb{R}^{p \times n}$ 和一个对称的随机掩码矩阵 $\mathbf{B} \in 0,1^{n \times n}$ 有独立的 $[\mathbf{B}] i j \sim \operatorname{Bern}(\boldsymbol{\epsilon})$ 条目 $i \neq j$ (直到对称) 和 $[\mathbf{B}]{i i}=b \in 0,1$ 固定的,在极限 $p, n \rightarrow \infty$ 和 $p / n \rightarrow c \in(0, \infty)$. 该矩阵模拟仅计算一个比例 $\epsilon \in(0,1)$ 条目的 $\mathbf{X}^{\top} \mathbf{X} / n$ ,及其对谱 聚类的影响。出租 $\mathbf{X}=\left[\mathbf{x}_1, \ldots, \mathbf{x}_n\right]$ 和 $\mathbf{x}_i$ 从以下对称二类高斯混合中独立均匀地抽取 $$ \mathcal{C}_1: \mathbf{x}_i \sim \mathcal{N}\left(-\boldsymbol{\mu}, \mathbf{I}_p\right), \quad \mathcal{C}_2: \mathbf{x}_i \sim \mathcal{N}\left(+\boldsymbol{\mu}, \mathbf{I}_p\right) $$ 为了 $\boldsymbol{\mu} \in \mathbb{R}^p$ 这样 $|\boldsymbol{\mu}|=O(1)$ 关于 $n, p$ ,我们布望研究统一”归零”条目的效果 $\mathbf{X}^{\top} \mathbf{X}{\text {在频谱中存在孤立 }}$ 的尖峰K,从而影响谱聚类性能。
我们将研究频谱K使用 Stein 引理和 $2.2 .2$ 节中讨论的高斯方法。让 $\mathbf{Z}=\left[\mathbf{z} 1, \ldots, \mathbf{z}n\right] \in \mathbb{R}^{p \times n}$ 为了 $\mathbf{z}_i=\mathbf{x}_i-(-1)^a \boldsymbol{\mu} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_p\right)$ 和 $\mathbf{x}_i \in \mathcal{C}_a$ 和 $\mathbf{M}=\mu \mathbf{j}^{\top}$ 和 $\mathbf{j}=\left[-\mathbf{1} n / 2, \mathbf{1}{n / 2}\right]^{\top} \in \mathbb{R}^n$ 以便 $\mathbf{X}=\mathbf{M}+\mathbf{Z}$. 首先表明,对于 $\mathbf{Q} \equiv \mathbf{Q}(z)=\left(\mathbf{K}-z \mathbf{I}_n\right)^{-1}$ ,
$$
\mathbf{Q}=-\frac{1}{z} \mathbf{I}_n+\frac{1}{z}\left(\frac{\mathbf{Z Z}}{p} \odot \mathbf{B}\right) \mathbf{Q}+\frac{1}{z}\left(\frac{\mathbf{Z}^T \mathbf{M}}{p} \odot \mathbf{B}\right) \mathbf{Q} \quad+\frac{1}{z}\left(\frac{\mathbf{M}^{\top} \mathbf{Z}}{p} \odot \mathbf{B}\right) \mathbf{Q}+\frac{1}{z}\left(\frac{\mathbf{M}^T}{p}\right.
$$
为了继续,我们需要略微超出对这四个术语的研究。

计算机代写|机器学习代写machine learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注