### 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|STAT4102

statistics-lab™ 为您的留学生涯保驾护航 在代写多元统计分析Multivariate Statistical Analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写多元统计分析Multivariate Statistical Analysis代写方面经验极为丰富，各种代写多元统计分析Multivariate Statistical Analysis相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Lasso in the Linear Regression Model

The linear regression model can be written as follows:
$$y=\mathcal{X} \beta+\varepsilon,$$
where $y$ is an $(n \times 1)$ vector of observations for the response variable, $\mathcal{X}=$ $\left(x_1^{\top}, \ldots, x_n^{\top}\right)^{\top}, x_i \in \mathbb{R}^p, i=1, \ldots, n$ is a data matrix of $p$ explanatory variables, and $\varepsilon=\left(\varepsilon_1, \ldots, \varepsilon_n\right)^{\top}$ is a vector of errors where $\mathrm{E}\left(\varepsilon_i\right)=0$ and $\operatorname{Var}\left(\varepsilon_i\right)=\sigma^2$, $i=1, \ldots, n$.

In this framework, $\mathrm{E}(y \mid \mathcal{X})=\mathcal{X} \beta$ with $\beta=\left(\beta_1, \ldots, \beta_p\right)^{\top}$. Further assume that the columns of $\mathcal{X}$ are standardised such that $n^{-1} \sum_{i=1}^n x_{i j}=0$ and $n^{-1} \sum_{i=1}^n x_{i j}^2=$ 1. The Lasso estimate $\hat{\beta}$ can then be defined as follows
$$\hat{\beta}=\arg \min \beta\left{\sum{i=1}^n\left(y_i-x_i^{\top} \beta\right)^2\right}, \text { subject to } \sum_{j=1}^p\left|\beta_j\right| \leq s,$$
where $s \geq 0$ is the tuning parameter which controls the amount of shrinkage. For the OLS estimate $\hat{\beta}^0=\left(\mathcal{X}^{\top} \mathcal{X}\right)^{-1} \mathcal{X}^{\top} y$ a choice of tuning parameter $s<s_0$, where $s_0=\sum_{j=1}^p\left|\hat{\beta}j^0\right|$, will cause shrinkage of the solutions towards 0 , and ultimately some coefficients may be exactly equal to 0 . For values $s \geq s_0$ the Lasso coefficients are equal to the unpenalised OLS coefficients. An alternative representation of $(9.1)$ is: $$\hat{\beta}=\arg \min \beta\left{\sum_{i=1}^n\left(y_i-x_i^{\top} \beta\right)^2+\lambda \sum_{j=1}^p\left|\beta_j\right|\right},$$ with a tuning parameter $\lambda \geq 0$. As $\lambda$ increases, the Lasso estimates are continuously shrunk toward zero. Then if $\lambda$ is quite large, some coefficients are exactly zero. For $\lambda=0$ the Lasso coefficients coincide with the OLS estimate. In fact, if the solution to (9.1) is denoted as $\hat{\beta}s$ and the solution to (9.2) as $\hat{\beta}\lambda$, then $\forall \lambda>0$ and the resulting solution $\hat{\beta}\lambda \exists s\lambda$ such that $\hat{\beta}\lambda=\hat{\beta}{s_\lambda}$ and vice versa which implies a one-toone correspondence between these parameters. However, this does not hold if it is required that $\lambda \geq 0$ only and not $\lambda>0$, because if, for instance, $\lambda=0$, then $\hat{\beta}_\lambda$ is the same for any $s \geq|\hat{\beta}|_1$ and the correspondence is no longer one-to-one.

## 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|The LAR Algorithm and Lasso Solution Paths

The LAR algorithm may be introduced in the simple three-dimensional case as follows (assume that the number of covariates $p=3$ ):

• first, standardise all the covariates to have mean 0 and unit length as well as make the response variable have mean zero;
• start with $\hat{\beta}=0$;
• initialise the algorithm with the first two covariates: let $\mathcal{X}=\left(x_1, x_2\right)$ and calculate the prediction vector $\hat{y}_0=\mathcal{X} \hat{\beta}=0$;
• calculate $\bar{y}_2$ the projection of $y$ onto $\mathcal{L}\left(x_1, x_2\right)$, the linear space spanned by $x_1$ and $x_2$
• compute the vector of current correlations between the covariates $\mathcal{X}$ and the two-dimensional current residual vector: $C^{\hat{y}_0}=\mathcal{X}^{\top}\left(\bar{y}_2-\hat{y}_0\right)=\left(c_1^{\hat{y}_0}, c_2^{\hat{y}_0}\right)^{\top}$. According to Fig.9.2, the current residual $\bar{y}_2-\hat{y}_0$ makes a smaller angle with $x_1$, than with $x_2$, therefore $c_1^{\hat{y}}>c_2^{\hat{y_0}}$;
• augment $\hat{y}_0$ in the direction of $x_1$ so that $\hat{y}_1=\hat{y}_0+\hat{\gamma}_1 x_1$ with $\hat{\gamma}_1$ chosen such that $c_1^{\hat{y}_0}=c_2^{\hat{y}_0}$ which means that the new current residual $\bar{y}_2-\hat{y}_1$ makes equal angles (is equiangular) with $x_1$ and $x_2$;
• suppose that another regressor $x_3$ enters the model: calculate a new projection $\bar{y}_3$ of $y$ onto $\mathcal{L}\left(x_1, x_2, x_3\right)$;
• recompute the current correlations vector $C^{\hat{y}_1}=\left(c_1^{\hat{y}_1}, c_2^{\hat{y}_1}, c_3^{\hat{y}_1}\right)^{\top}$ with $\mathcal{X}=$ $\left(x_1, x_2, x_3\right), \bar{y}_3$ and $\hat{y}_1$;
• augment $\hat{y}_1$ in the equiangular direction so that $\hat{y}_2=\hat{y}_1+\hat{\gamma}_2 u_2$ with $\hat{\gamma}_2$ chosen such that $c_1^{\hat{y_1}}=c_2^{\hat{y_1}}=c_3^{\hat{y_1}}$, then the new current residual $\bar{y}_3-\hat{y}_2$ goes
• equiangularly between $x_1, x_2$ and $x_3$ (here $u_2$ is the unit vector lying along the equiangular direction $\hat{y}_2$ );
• the three-dimensional algorithm is terminated with the calculation of the final prediction vector $\hat{y}_3=\hat{y}_2+\hat{\gamma}_3 u_3$ with $\hat{\gamma}_3$ chosen such that $\hat{y}_3=\bar{y}_3$.
• In the case of $p>3$ covariates, $\hat{y}_3$ would be smaller than $\bar{y}_3$ initiating another change of direction, as illustrated in Fig. 9.2.
• In this setup, it is important that the covariate vectors $x_1, x_2, x_3$ are linearly independent. The LAR algorithm “moves” the variable coefficients to their least squares values. So the Lasso adjustment necessary for the sparse solution is that if a nonzero coefficient happens to return to zero, it should be dropped from the current (“active”) set of variables and not be considered in further computations. The general LAR algorithm for $p$ predictors can be summarised as follows.

## 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|Lasso in the Linear Regression Model

$$y=\mathcal{X} \beta+\varepsilon,$$

## 统计代写|多元统计分析代写Multivariate Statistical Analysis代考|The LAR Algorithm and Lasso Solution Paths

LAR算法可以在简单的三维情况下引入如下 (假设协变量的数量 $p=3$ ):

• 首先，将所有协变量标准化为均值为 0 和单位长度，并使响应变量的均值为零；
• 从…开始 $\hat{\beta}=0$;
• 用前两个协变量初始化算法: 让 $\mathcal{X}=\left(x_1, x_2\right)$ 并计算预测向量 $\hat{y}_0=\mathcal{X} \hat{\beta}=0$;
• 计算 $\bar{y}_2$ 的投射 $y$ 到 $\mathcal{L}\left(x_1, x_2\right)$ ，线性空间跨越 $x_1$ 和 $x_2$
• 计算协变量之间当前相关性的向量 $\mathcal{X}$ 和二维当前残差向量:
$C^{\hat{y}_0}=\mathcal{X}^{\top}\left(\bar{y}_2-\hat{y}_0\right)=\left(c_1^{\hat{y}_0}, c_2^{\hat{y}_0}\right)^{\top}$. 根据图 9.2，当前残差 $\bar{y}_2-\hat{y}_0$ 与 $x_1$ ，比与 $x_2$ ，所以 $c_1^{\hat{y}}>c_2^{\hat{y_0}}$;
• 增加 $\hat{y}_0$ 在…方向 $x_1$ 以便 $\hat{y}_1=\hat{y}_0+\hat{\gamma}_1 x_1$ 和 $\hat{\gamma}_1$ 选择这样的 $c_1^{\hat{y}_0}=c_2^{\hat{y}_0}$ 这意味着新的当前残差 $\bar{y}_2-\hat{y}_1$ 使角相等 (等角) 与 $x_1$ 和 $x_2$ ；
• 假设另一个回归量 $x_3$ 进入模型: 计算一个新的投影 $\bar{y}_3$ 的 $y$ 到 $\mathcal{L}\left(x_1, x_2, x_3\right)$;
• 重新计算当前相关向量 $C^{\hat{y}_1}=\left(c_1^{\hat{y}_1}, c_2^{\hat{y}_1}, c_3^{\hat{y}_1}\right)^{\top}$ 和 $\mathcal{X}=\left(x_1, x_2, x_3\right), \bar{y}_3$ 和 $\hat{y}_1$ ；
• 增加 $\hat{y}_1$ 在等角方向，使得 $\hat{y}_2=\hat{y}_1+\hat{\gamma}_2 u_2$ 和 $\hat{\gamma}_2$ 选择这样的 $c_1^{\hat{y}_1}=c_2^{\hat{y_1}}=c_3^{\hat{y_1}}$ ，那么新的当前残差 $\bar{y}_3-\hat{y}_2$ 去
• 之间等角 $x_1, x_2$ 和 $x_3$ (这里 $u_2$ 是沿等角方向的单位向量 $\hat{y}_2$ )；
• 三维算法以最终预测向量的计算结束 $\hat{y}_3=\hat{y}_2+\hat{\gamma}_3 u_3$ 和 $\hat{\gamma}_3$ 选择这样的 $\hat{y}_3=\bar{y}_3$.
• 如果是 $p>3$ 协变量， $\hat{y}_3$ 会小于 $\bar{y}_3$ 开始另一个方向改变，如图 $9.2$ 所示。
• 在此设置中，重要的是协变量向量 $x_1, x_2, x_3$ 是线性独立的。LAR 算法将可变系数“移动”到它们的最 小二乘值。因此，稀疏解决方案所需的套索调整是，如果非零系数恰好返回零，则应将其从当前
(“活动”) 变量集中删除，并且在进一步的计算中不予考虑。一般的 LAR 算法为 $p$ 预测因素可以总结 如下。

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。