标签: MECH3300

数学代写|有限元方法代写Finite Element Method代考|GENG5514

如果你也在 怎样代写有限元方法finite differences method 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。有限元方法finite differences method领域中所有的物理系统都可以用边界/初值问题来表示。有限元法属于变分法的一般范畴。

有限元方法finite differences method是一类通过近似有限差分导数来求解微分方程的数值技术。空间域和时间间隔(如果适用)都被离散化,或者被分解成有限数量的步骤,并且这些离散点的解的值通过求解包含有限差分和邻近点的值的代数方程来近似。

statistics-lab™ 为您的留学生涯保驾护航 在代写有限元方法Finite Element Method方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写有限元方法Finite Element Method代写方面经验极为丰富,各种代写有限元方法Finite Element Method相关的作业也就用不着说。

数学代写|有限元方法代写Finite Element Method代考|GENG5514

数学代写|有限元方法代写Finite Element Method代考|Generalized Hooke’s law for isotropic materials with symmetric stress and strain tensors

In case the material is elastically isotropic and the stress and strain tensors are symmetric the material behavior can be characterized with two material constants,
E: Elastic modulus or Young’s modulus
v: Poisson’s ratio
For a three-dimensional problem, it can be shown that the following relationships exist between the stresses and strains,
$$
\begin{aligned}
\varepsilon_{x x} & =\frac{1}{E}\left[\sigma_{x x}-v\left(\sigma_{y y}+\sigma_{z z}\right)\right] \
\varepsilon_{y y} & =\frac{1}{E}\left[\sigma_{y y}-v\left(\sigma_{z z}+\sigma_{x x}\right)\right] \
\varepsilon_{z z} & =\frac{1}{E}\left[\sigma_{z z}-v\left(\sigma_{x x}+\sigma_{y y}\right)\right] \
\tau_{x y} & =G \gamma_{x y} \
\tau_{y z} & =G \gamma_{y z} \
\tau_{z x} & =G \gamma_{z x}
\end{aligned}
$$
where shear modulus $G=E / 2(1+v)$.

Note that Eq. (2.61a) can be inverted and expressed as follows:
$$
\begin{aligned}
\sigma_{x x} & =\lambda\left(\varepsilon_{x x}+\varepsilon_{y y}+\varepsilon_{z z}\right)+2 \mu \varepsilon_{x x} \
\sigma_{y y} & =\lambda\left(\varepsilon_{x x}+\varepsilon_{y y}+\varepsilon_{z z}\right)+2 \mu \varepsilon_{y y} \
\sigma_{z z} & =\lambda\left(\varepsilon_{x x}+\varepsilon_{y y}+\varepsilon_{z z}\right)+2 \mu \varepsilon_{z z} \
\tau_{x y} & =\mu \gamma_{x y} \
\tau_{y z} & =\mu \gamma_{y z} \
\tau_{z x} & =\mu \gamma_{z x}
\end{aligned}
$$
where, the Lamé constants are defined as follows:
$$
\begin{aligned}
& \lambda=\frac{v E}{(1+v)(1-2 v)} \
& \mu=G
\end{aligned}
$$

数学代写|有限元方法代写Finite Element Method代考|Effects of initial stress/strain and thermal strain

Thermal stress in a one-dimensional problem: Consider a long and slender bar of length $L$ and initial temperature $T^{(0)}$. If the temperature of the bar is changed by $\Delta T$, material points in the bar would experience thermal strain proportional to the temperature change,
$$
\varepsilon^{(t h)}=\alpha \Delta T
$$
the proportionality constant $\alpha$ is a material property known as the coefficient of thermal expansion with units of $\mathrm{K}^{-1}$ or $\left({ }^{\circ} \mathrm{C}\right)^{-1}$. If the bar is not constrained on its ends, its length will change by an amount,
$$
\Delta L=\int_0^L \alpha \Delta T d x
$$
but no internal stress will develop.

On the other hand if both ends of the bar are constrained, internal forces and hence stress will develop in the bar. If such constraint conditions exist, the thermal stress in the bar can be found from Hooke’s law as follows:
$$
\sigma^{(t h)}=E \alpha \Delta T
$$
Next, consider a constrained bar subjected to external forces and change of temperature. The total strain in this bar can be found by using the superposition of the mechanical component of the strain and the thermal strain,
$$
\varepsilon=\frac{\sigma}{E}+\varepsilon^{(t h)}=\frac{\sigma}{E}+\alpha \Delta T
$$
The inverse of this relation gives the corresponding total stress,
$$
\sigma=E(\varepsilon-\alpha \Delta T)
$$
Generalized stress-strain relations with thermal effects: For materials with isotropic material properties temperature change only causes normal strain in the material. The stress-strain relations for a three-dimensional isotropic material subjected to a temperature change $\Delta T$ are expressed as follows [8]:
$$
\begin{aligned}
\varepsilon_{x x}-\alpha \Delta T & =\frac{1}{E}\left[\sigma_{x x}-v\left(\sigma_{y y}+\sigma_{z z}\right)\right] \
\varepsilon_{y y}-\alpha \Delta T & =\frac{1}{E}\left[\sigma_{y y}-v\left(\sigma_{z z}+\sigma_{x x}\right)\right] \
\varepsilon_{z z}-\alpha \Delta T & =\frac{1}{E}\left[\sigma_{z z}-v\left(\sigma_{x x}+\sigma_{y y}\right)\right] \
\gamma_{x y} & =\frac{\tau_{x y}}{G} \
\gamma_{y z} & =\frac{\tau_{y z}}{G} \
\gamma_{z x} & =\frac{\tau_{z x}}{G}
\end{aligned}
$$

数学代写|有限元方法代写Finite Element Method代考|GENG5514

有限元方法代考

数学代写|有限元方法代写Finite Element Method代考|Generalized Hooke’s law for isotropic materials with symmetric stress and strain tensors

如果材料是弹性各向同性的,并且应力和应变张量是对称的,则材料的行为可以用两个材料常数来表征:
E:弹性模量或杨氏模量
v:泊松比
对于三维问题,可以证明应力和应变之间存在如下关系:
$$
\begin{aligned}
\varepsilon_{x x} & =\frac{1}{E}\left[\sigma_{x x}-v\left(\sigma_{y y}+\sigma_{z z}\right)\right] \
\varepsilon_{y y} & =\frac{1}{E}\left[\sigma_{y y}-v\left(\sigma_{z z}+\sigma_{x x}\right)\right] \
\varepsilon_{z z} & =\frac{1}{E}\left[\sigma_{z z}-v\left(\sigma_{x x}+\sigma_{y y}\right)\right] \
\tau_{x y} & =G \gamma_{x y} \
\tau_{y z} & =G \gamma_{y z} \
\tau_{z x} & =G \gamma_{z x}
\end{aligned}
$$
式中剪切模量$G=E / 2(1+v)$。

注意,Eq. (2.61a)可以反向表示为:
$$
\begin{aligned}
\sigma_{x x} & =\lambda\left(\varepsilon_{x x}+\varepsilon_{y y}+\varepsilon_{z z}\right)+2 \mu \varepsilon_{x x} \
\sigma_{y y} & =\lambda\left(\varepsilon_{x x}+\varepsilon_{y y}+\varepsilon_{z z}\right)+2 \mu \varepsilon_{y y} \
\sigma_{z z} & =\lambda\left(\varepsilon_{x x}+\varepsilon_{y y}+\varepsilon_{z z}\right)+2 \mu \varepsilon_{z z} \
\tau_{x y} & =\mu \gamma_{x y} \
\tau_{y z} & =\mu \gamma_{y z} \
\tau_{z x} & =\mu \gamma_{z x}
\end{aligned}
$$
其中,lam常数定义如下:
$$
\begin{aligned}
& \lambda=\frac{v E}{(1+v)(1-2 v)} \
& \mu=G
\end{aligned}
$$

数学代写|有限元方法代写Finite Element Method代考|Effects of initial stress/strain and thermal strain

一维问题中的热应力:考虑一根长度为$L$,初始温度为$T^{(0)}$的细长杆。如果杆的温度变化$\Delta T$,则杆中的材料点将经历与温度变化成正比的热应变。
$$
\varepsilon^{(t h)}=\alpha \Delta T
$$
比例常数$\alpha$是一种材料性质,称为热膨胀系数,单位为$\mathrm{K}^{-1}$或$\left({ }^{\circ} \mathrm{C}\right)^{-1}$。如果棒材的两端不受约束,它的长度会发生一定的变化,
$$
\Delta L=\int_0^L \alpha \Delta T d x
$$
但不会产生内应力。

另一方面,如果杆的两端都受到约束,则内力和应力将在杆中产生。在此约束条件存在的情况下,由胡克定律可求出棒材内的热应力:
$$
\sigma^{(t h)}=E \alpha \Delta T
$$
接下来,考虑受外力和温度变化作用的约束杆。该杆的总应变可通过应变的机械分量和热应变的叠加得到。
$$
\varepsilon=\frac{\sigma}{E}+\varepsilon^{(t h)}=\frac{\sigma}{E}+\alpha \Delta T
$$
这个关系的倒数给出了相应的总应力,
$$
\sigma=E(\varepsilon-\alpha \Delta T)
$$
具有热效应的广义应力-应变关系:对于具有各向同性材料性质的材料,温度变化只会引起材料的正常应变。三维各向同性材料在温度变化$\Delta T$下的应力-应变关系表示为[8]:
$$
\begin{aligned}
\varepsilon_{x x}-\alpha \Delta T & =\frac{1}{E}\left[\sigma_{x x}-v\left(\sigma_{y y}+\sigma_{z z}\right)\right] \
\varepsilon_{y y}-\alpha \Delta T & =\frac{1}{E}\left[\sigma_{y y}-v\left(\sigma_{z z}+\sigma_{x x}\right)\right] \
\varepsilon_{z z}-\alpha \Delta T & =\frac{1}{E}\left[\sigma_{z z}-v\left(\sigma_{x x}+\sigma_{y y}\right)\right] \
\gamma_{x y} & =\frac{\tau_{x y}}{G} \
\gamma_{y z} & =\frac{\tau_{y z}}{G} \
\gamma_{z x} & =\frac{\tau_{z x}}{G}
\end{aligned}
$$

数学代写|有限元方法代写Finite Element Method代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|有限元方法代写Finite Element Method代考|ENGR7961

如果你也在 怎样代写有限元方法finite differences method 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。有限元方法finite differences method领域中所有的物理系统都可以用边界/初值问题来表示。有限元法属于变分法的一般范畴。

有限元方法finite differences method是一类通过近似有限差分导数来求解微分方程的数值技术。空间域和时间间隔(如果适用)都被离散化,或者被分解成有限数量的步骤,并且这些离散点的解的值通过求解包含有限差分和邻近点的值的代数方程来近似。

statistics-lab™ 为您的留学生涯保驾护航 在代写有限元方法Finite Element Method方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写有限元方法Finite Element Method代写方面经验极为丰富,各种代写有限元方法Finite Element Method相关的作业也就用不着说。

数学代写|有限元方法代写Finite Element Method代考|ENGR7961

数学代写|有限元方法代写Finite Element Method代考|Strain compatibility conditions

An elastic deformation should not cause holes in a deformable body that does not have any holes before deformation. Moreover, no material overlap should be predicted by the displacement field. The strain compatibility conditions ensure that these constraints are satisfied [7].

In a planar deformation, where $u_x=u_x(x, y), u_y=u_y(x, y)$ and $u_z=0$, consider the following combination of the strains,
$$
\frac{\partial^2 \varepsilon_{y y}}{\partial x^2}+\frac{\partial^2 \varepsilon_{x x}}{\partial y^2}-\frac{\partial^2 \gamma_{x y}}{\partial x \partial y}
$$

Using the definitions given in Eq. (2.47) we will find,
$$
\frac{\partial^3 u_y}{\partial x^2 \partial y}+\frac{\partial^3 u_x}{\partial y^2 \partial x}-\frac{\partial^2}{\partial x \partial y}\left(\frac{\partial u_y}{\partial x}+\frac{\partial u_x}{\partial y}\right)=0
$$
Thus we see that the relationship (a) must be equal to zero. This is the strain compatibility equation for a two-dimensional deformation in the $x, y$ plane, which imposes a specific relationship between the strains and the strain-displacement relationships.

For three-dimensional deformations where $u_x=u_x(x, y, z), u_y=u_y(x, y, z)$ and $u_z=u_z(x, y, z)$ there are a total of six strain compatibility conditions. These can be found as follows:
$$
\begin{aligned}
& \frac{\partial^2 \varepsilon_{y y}}{\partial x^2}+\frac{\partial^2 \varepsilon_{x x}}{\partial y^2}-\frac{\partial^2 \gamma_{x y}}{\partial x \partial y}=0 \
& \frac{\partial^2 \varepsilon_{y y}}{\partial z^2}+\frac{\partial^2 \varepsilon_{z z}}{\partial y^2}-\frac{\partial^2 \gamma_{y z}}{\partial z \partial y}=0 \
& \frac{\partial^2 \varepsilon_{z z}}{\partial x^2}+\frac{\partial^2 \varepsilon_{x x}}{\partial z^2}-\frac{\partial^2 \gamma_{z y}}{\partial x \partial z}=0 \
& 2 \frac{\partial^2 \varepsilon_{x x}}{\partial y \partial z}=\frac{\partial}{\partial x}\left(-\frac{\partial \gamma_{y z}}{\partial x}+\frac{\partial \gamma_{z x}}{\partial y}+\frac{\partial \gamma_{x y}}{\partial z}\right) \
& 2 \frac{\partial^2 \varepsilon_{y y}}{\partial z \partial x}=\frac{\partial}{\partial y}\left(-\frac{\partial \gamma_{z x}}{\partial y}+\frac{\partial \gamma_{x y}}{\partial z}+\frac{\partial \gamma_{y z}}{\partial x}\right) \
& 2 \frac{\partial^2 \varepsilon_{z z}}{\partial x \partial y}=\frac{\partial}{\partial z}\left(-\frac{\partial \gamma_{x y}}{\partial z}+\frac{\partial \gamma_{y z}}{\partial x}+\frac{\partial \gamma_{z x}}{\partial y}\right)
\end{aligned}
$$

数学代写|有限元方法代写Finite Element Method代考|Generalized Hooke’s law

In previous sections it was indicated that, in general, the stress and strain tensors at a point have nine independent components each, if we do not take into account the symmetries. Therefore, the possibility exists for all of these 18 components to be interrelated. In it most general form, the linear elastic constitutive law, also known as generalized Hooke’s law, can be expressed as follows:
$$
\sigma_{i j}=c_{i j r s} \varepsilon_{r s}
$$
where the subscripts $i, j, r, s=x, y, z$ and the coefficients $c_{i j r s}$ are empirically determined. Note that the tensor notation is used in expressing Eq. (2.57) where $\sigma$ and $\varepsilon$ are second order tensors and $c_{i j r s}$ is a fourth order tensor [7]. Repeated indices imply summation, such that for $\sigma_{x x}$ the most general form of the Hooke’s law would be,
$$
\begin{aligned}
\sigma_{x x}= & c_{x x x x} \varepsilon_{x x}+c_{x x x y} \gamma_{x y}+c_{x x x z} \gamma_{x z}+c_{x x y x} \gamma_{y x}+c_{x x y y} \varepsilon_{y y}+c_{x x y z} \gamma_{y z}+c_{x x z x} \gamma_{z x} \
& +c_{x x z y} \gamma_{z y}+c_{x x z z} \varepsilon_{z z}
\end{aligned}
$$

It can easily be deduced that 81 material properties would be required in case of an anisotropic material with no-symmetries in the strain and stress tensors. In matrix notation, Eq. (2.57) can be expressed as follows:
$$
{\sigma}=[E]{\varepsilon}
$$
where $[E]$ is an $81 \times 81$ elasticity matrix and ${\sigma}$ and ${\varepsilon}$ are $9 \times 1$ vectors.

数学代写|有限元方法代写Finite Element Method代考|ENGR7961

有限元方法代考

数学代写|有限元方法代写Finite Element Method代考|Strain compatibility conditions

在变形前没有孔洞的可变形体中,弹性变形不应造成孔洞。此外,位移场不应预测材料重叠。应变相容性条件保证了这些约束条件的满足[7]。

在平面变形中,$u_x=u_x(x, y), u_y=u_y(x, y)$和$u_z=0$,考虑以下应变组合:
$$
\frac{\partial^2 \varepsilon_{y y}}{\partial x^2}+\frac{\partial^2 \varepsilon_{x x}}{\partial y^2}-\frac{\partial^2 \gamma_{x y}}{\partial x \partial y}
$$

利用式(2.47)给出的定义,我们会发现,
$$
\frac{\partial^3 u_y}{\partial x^2 \partial y}+\frac{\partial^3 u_x}{\partial y^2 \partial x}-\frac{\partial^2}{\partial x \partial y}\left(\frac{\partial u_y}{\partial x}+\frac{\partial u_x}{\partial y}\right)=0
$$
因此,我们看到关系(a)必须等于零。这是$x, y$平面上二维变形的应变兼容方程,它规定了应变与应变-位移关系之间的特定关系。

对于三维变形,$u_x=u_x(x, y, z), u_y=u_y(x, y, z)$和$u_z=u_z(x, y, z)$共有六种应变兼容条件。这些可以找到如下:
$$
\begin{aligned}
& \frac{\partial^2 \varepsilon_{y y}}{\partial x^2}+\frac{\partial^2 \varepsilon_{x x}}{\partial y^2}-\frac{\partial^2 \gamma_{x y}}{\partial x \partial y}=0 \
& \frac{\partial^2 \varepsilon_{y y}}{\partial z^2}+\frac{\partial^2 \varepsilon_{z z}}{\partial y^2}-\frac{\partial^2 \gamma_{y z}}{\partial z \partial y}=0 \
& \frac{\partial^2 \varepsilon_{z z}}{\partial x^2}+\frac{\partial^2 \varepsilon_{x x}}{\partial z^2}-\frac{\partial^2 \gamma_{z y}}{\partial x \partial z}=0 \
& 2 \frac{\partial^2 \varepsilon_{x x}}{\partial y \partial z}=\frac{\partial}{\partial x}\left(-\frac{\partial \gamma_{y z}}{\partial x}+\frac{\partial \gamma_{z x}}{\partial y}+\frac{\partial \gamma_{x y}}{\partial z}\right) \
& 2 \frac{\partial^2 \varepsilon_{y y}}{\partial z \partial x}=\frac{\partial}{\partial y}\left(-\frac{\partial \gamma_{z x}}{\partial y}+\frac{\partial \gamma_{x y}}{\partial z}+\frac{\partial \gamma_{y z}}{\partial x}\right) \
& 2 \frac{\partial^2 \varepsilon_{z z}}{\partial x \partial y}=\frac{\partial}{\partial z}\left(-\frac{\partial \gamma_{x y}}{\partial z}+\frac{\partial \gamma_{y z}}{\partial x}+\frac{\partial \gamma_{z x}}{\partial y}\right)
\end{aligned}
$$

数学代写|有限元方法代写Finite Element Method代考|Generalized Hooke’s law

在前面的章节中指出,一般来说,如果我们不考虑对称性,一点上的应力和应变张量各有9个独立分量。因此,这18个成分存在相互关联的可能性。在最一般的形式下,线弹性本构律,也称为广义胡克定律,可以表示为:
$$
\sigma_{i j}=c_{i j r s} \varepsilon_{r s}
$$
其中下标$i, j, r, s=x, y, z$和系数$c_{i j r s}$是经验确定的。注意,在表达式Eq.(2.57)中使用了张量表示法,其中$\sigma$和$\varepsilon$是二阶张量,$c_{i j r s}$是四阶张量[7]。重复的指标意味着求和,对于$\sigma_{x x}$,胡克定律的最一般形式是,
$$
\begin{aligned}
\sigma_{x x}= & c_{x x x x} \varepsilon_{x x}+c_{x x x y} \gamma_{x y}+c_{x x x z} \gamma_{x z}+c_{x x y x} \gamma_{y x}+c_{x x y y} \varepsilon_{y y}+c_{x x y z} \gamma_{y z}+c_{x x z x} \gamma_{z x} \
& +c_{x x z y} \gamma_{z y}+c_{x x z z} \varepsilon_{z z}
\end{aligned}
$$

可以很容易地推断出,在应变张量和应力张量不对称的各向异性材料中,需要81种材料性能。在矩阵表示法中,Eq.(2.57)可以表示为:
$$
{\sigma}=[E]{\varepsilon}
$$
其中$[E]$为$81 \times 81$弹性矩阵,${\sigma}$和${\varepsilon}$为$9 \times 1$向量。

数学代写|有限元方法代写Finite Element Method代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|有限元方法代写Finite Element Method代考|MECH3300

如果你也在 怎样代写有限元方法finite differences method 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。有限元方法finite differences method领域中所有的物理系统都可以用边界/初值问题来表示。有限元法属于变分法的一般范畴。

有限元方法finite differences method是一类通过近似有限差分导数来求解微分方程的数值技术。空间域和时间间隔(如果适用)都被离散化,或者被分解成有限数量的步骤,并且这些离散点的解的值通过求解包含有限差分和邻近点的值的代数方程来近似。

statistics-lab™ 为您的留学生涯保驾护航 在代写有限元方法Finite Element Method方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写有限元方法Finite Element Method代写方面经验极为丰富,各种代写有限元方法Finite Element Method相关的作业也就用不着说。

数学代写|有限元方法代写Finite Element Method代考|MECH3300

数学代写|有限元方法代写Finite Element Method代考|Strain compatibility conditions

An elastic deformation should not cause holes in a deformable body that does not have any holes before deformation. Moreover, no material overlap should be predicted by the displacement field. The strain compatibility conditions ensure that these constraints are satisfied [7].

In a planar deformation, where $u_x=u_x(x, y), u_y=u_y(x, y)$ and $u_z=0$, consider the following combination of the strains,
$$
\frac{\partial^2 \varepsilon_{y y}}{\partial x^2}+\frac{\partial^2 \varepsilon_{x x}}{\partial y^2}-\frac{\partial^2 \gamma_{x y}}{\partial x \partial y}
$$

Using the definitions given in Eq. (2.47) we will find,
$$
\frac{\partial^3 u_y}{\partial x^2 \partial y}+\frac{\partial^3 u_x}{\partial y^2 \partial x}-\frac{\partial^2}{\partial x \partial y}\left(\frac{\partial u_y}{\partial x}+\frac{\partial u_x}{\partial y}\right)=0
$$
Thus we see that the relationship (a) must be equal to zero. This is the strain compatibility equation for a two-dimensional deformation in the $x, y$ plane, which imposes a specific relationship between the strains and the strain-displacement relationships.

For three-dimensional deformations where $u_x=u_x(x, y, z), u_y=u_y(x, y, z)$ and $u_z=u_z(x, y, z)$ there are a total of six strain compatibility conditions. These can be found as follows:
$$
\begin{aligned}
& \frac{\partial^2 \varepsilon_{y y}}{\partial x^2}+\frac{\partial^2 \varepsilon_{x x}}{\partial y^2}-\frac{\partial^2 \gamma_{x y}}{\partial x \partial y}=0 \
& \frac{\partial^2 \varepsilon_{y y}}{\partial z^2}+\frac{\partial^2 \varepsilon_{z z}}{\partial y^2}-\frac{\partial^2 \gamma_{y z}}{\partial z \partial y}=0 \
& \frac{\partial^2 \varepsilon_{z z}}{\partial x^2}+\frac{\partial^2 \varepsilon_{x x}}{\partial z^2}-\frac{\partial^2 \gamma_{z y}}{\partial x \partial z}=0 \
& 2 \frac{\partial^2 \varepsilon_{x x}}{\partial y \partial z}=\frac{\partial}{\partial x}\left(-\frac{\partial \gamma_{y z}}{\partial x}+\frac{\partial \gamma_{z x}}{\partial y}+\frac{\partial \gamma_{x y}}{\partial z}\right) \
& 2 \frac{\partial^2 \varepsilon_{y y}}{\partial z \partial x}=\frac{\partial}{\partial y}\left(-\frac{\partial \gamma_{z x}}{\partial y}+\frac{\partial \gamma_{x y}}{\partial z}+\frac{\partial \gamma_{y z}}{\partial x}\right) \
& 2 \frac{\partial^2 \varepsilon_{z z}}{\partial x \partial y}=\frac{\partial}{\partial z}\left(-\frac{\partial \gamma_{x y}}{\partial z}+\frac{\partial \gamma_{y z}}{\partial x}+\frac{\partial \gamma_{z x}}{\partial y}\right)
\end{aligned}
$$

数学代写|有限元方法代写Finite Element Method代考|Generalized Hooke’s law

As stated in the introduction to Section 2.2, when a deformable body is subjected to external effects such as external forces and/or imposed displacements on its boundary, its shape will change and internal forces will develop throughout its volume. The level of deformation for given external effects depends on the material of the deformable body. Constitutive relations are empirically obtained, material specific relationships between the stress and the strain in the body. Here we are primarily interested in linear elastic relationships.

The deformation behavior of a specific material is determined experimentally. These experiments are designed such that only one of the stress components and the corresponding strain dominates the problem. This state is known as a simpleloading state.

For linear, isotropic materials tensile loading of a slender test specimen, i.e., the simple-tension test, reveals two fundamental material properties. The relationship between the normal stress and the normal strain is found by conducting a simple-tension test, as follows:
$$
\sigma_{i i}=E \varepsilon_{i i} \quad \text { for } \quad i=x, y, z
$$
where $E$ is the elastic modulus of the material, also referred to as the Young’s modulus. The relationship between the longitudinal strain $\varepsilon_l$ and the transverse strain $\varepsilon_t$ represents the Poisson’s ratio, the second material property,
$$
v=-\frac{\varepsilon_t}{\varepsilon_l}
$$
The simple-shear test reveals the relationship between the shear strain and the shear stress,
$$
\tau_{i j}=G \gamma_{i j} \quad \text { for } \quad i, j=x, y, z \quad \text { and } \quad i \neq j
$$
where $G$ is the shear modulus, or modulus of rigidity. For a linear, elastic, isotropic material the following relationship holds:
$$
G=\frac{E}{2(1+v)}
$$

数学代写|有限元方法代写Finite Element Method代考|MECH3300

有限元方法代考

数学代写|有限元方法代写Finite Element Method代考|Strain compatibility conditions

在变形前没有孔洞的可变形体中,弹性变形不应造成孔洞。此外,位移场不应预测材料重叠。应变相容性条件保证了这些约束条件的满足[7]。

在平面变形中,$u_x=u_x(x, y), u_y=u_y(x, y)$和$u_z=0$,考虑以下应变组合:
$$
\frac{\partial^2 \varepsilon_{y y}}{\partial x^2}+\frac{\partial^2 \varepsilon_{x x}}{\partial y^2}-\frac{\partial^2 \gamma_{x y}}{\partial x \partial y}
$$

利用式(2.47)给出的定义,我们会发现,
$$
\frac{\partial^3 u_y}{\partial x^2 \partial y}+\frac{\partial^3 u_x}{\partial y^2 \partial x}-\frac{\partial^2}{\partial x \partial y}\left(\frac{\partial u_y}{\partial x}+\frac{\partial u_x}{\partial y}\right)=0
$$
因此,我们看到关系(a)必须等于零。这是$x, y$平面上二维变形的应变兼容方程,它规定了应变与应变-位移关系之间的特定关系。

对于三维变形,$u_x=u_x(x, y, z), u_y=u_y(x, y, z)$和$u_z=u_z(x, y, z)$共有六种应变兼容条件。这些可以找到如下:
$$
\begin{aligned}
& \frac{\partial^2 \varepsilon_{y y}}{\partial x^2}+\frac{\partial^2 \varepsilon_{x x}}{\partial y^2}-\frac{\partial^2 \gamma_{x y}}{\partial x \partial y}=0 \
& \frac{\partial^2 \varepsilon_{y y}}{\partial z^2}+\frac{\partial^2 \varepsilon_{z z}}{\partial y^2}-\frac{\partial^2 \gamma_{y z}}{\partial z \partial y}=0 \
& \frac{\partial^2 \varepsilon_{z z}}{\partial x^2}+\frac{\partial^2 \varepsilon_{x x}}{\partial z^2}-\frac{\partial^2 \gamma_{z y}}{\partial x \partial z}=0 \
& 2 \frac{\partial^2 \varepsilon_{x x}}{\partial y \partial z}=\frac{\partial}{\partial x}\left(-\frac{\partial \gamma_{y z}}{\partial x}+\frac{\partial \gamma_{z x}}{\partial y}+\frac{\partial \gamma_{x y}}{\partial z}\right) \
& 2 \frac{\partial^2 \varepsilon_{y y}}{\partial z \partial x}=\frac{\partial}{\partial y}\left(-\frac{\partial \gamma_{z x}}{\partial y}+\frac{\partial \gamma_{x y}}{\partial z}+\frac{\partial \gamma_{y z}}{\partial x}\right) \
& 2 \frac{\partial^2 \varepsilon_{z z}}{\partial x \partial y}=\frac{\partial}{\partial z}\left(-\frac{\partial \gamma_{x y}}{\partial z}+\frac{\partial \gamma_{y z}}{\partial x}+\frac{\partial \gamma_{z x}}{\partial y}\right)
\end{aligned}
$$

数学代写|有限元方法代写Finite Element Method代考|Generalized Hooke’s law

如第2.2节介绍中所述,当一个可变形的物体受到外力和/或施加在其边界上的位移等外部影响时,其形状将发生变化,内力将在其整个体积中发展。给定外力作用的变形程度取决于可变形物体的材料。本构关系是经验得到的,是材料中应力和应变之间的具体关系。这里我们主要对线性弹性关系感兴趣。

特定材料的变形行为是通过实验确定的。这些实验是这样设计的,只有一个应力分量和相应的应变占主导地位。这种状态被称为简单加载状态。

对于线性、各向同性材料,细长试件的拉伸加载,即简单拉伸试验,揭示了材料的两个基本特性。通过简单拉伸试验得到法向应力与法向应变的关系如下:
$$
\sigma_{i i}=E \varepsilon_{i i} \quad \text { for } \quad i=x, y, z
$$
其中$E$为材料的弹性模量,也称为杨氏模量。纵向应变$\varepsilon_l$与横向应变$\varepsilon_t$之间的关系表示泊松比,即材料的第二大特性;
$$
v=-\frac{\varepsilon_t}{\varepsilon_l}
$$
单剪试验揭示了剪切应变与剪应力之间的关系;
$$
\tau_{i j}=G \gamma_{i j} \quad \text { for } \quad i, j=x, y, z \quad \text { and } \quad i \neq j
$$
其中$G$为剪切模量,或刚度模量。对于线性的、弹性的、各向同性的材料,下列关系成立:
$$
G=\frac{E}{2(1+v)}
$$

数学代写|有限元方法代写Finite Element Method代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写