标签: MENG3401

物理代写|热力学代写thermodynamics代考|MENG3401

如果你也在 怎样代写热力学Thermodynamics 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。热力学Thermodynamics和宇宙本身一样古老,宇宙是已知的最大的热力学系统。当宇宙在呜咽中结束,宇宙的总能量消散为虚无时,热力学也将结束。

热力学Thermodynamics广义地说,热力学就是关于能量的:能量如何被利用,以及能量如何从一种形式转变为另一种形式。在很多情况下,热力学包括利用热做功,就像你的汽车发动机,或者做功来传递热量,就像你的冰箱。有了热力学,你就能知道事物如何有效地将能量用于有用的目的,比如移动飞机、发电,甚至骑自行车。

statistics-lab™ 为您的留学生涯保驾护航 在代写热力学thermodynamics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写热力学thermodynamics代写方面经验极为丰富,各种代写热力学thermodynamics相关的作业也就用不着说。

物理代写|热力学代写thermodynamics代考|MENG3401

物理代写|热力学代写thermodynamics代考|The Postulates of Quantum Mechanics

Any scientific equation is useless if it cannot be interpreted properly when applied to physical problems. The Schrödinger wave equation was initially plagued by this impasse owing to difficulties in assigning a practical meaning to the wave function. Defining $\Psi(\boldsymbol{r}, t)$ as the amplitude of matter waves was just too vague and did not offer a clear link between model and experiment. While Schrödinger himself suggested various probabilistic interpretations, it was the German physicist Max Born (1882-1970) who ultimately realized that multiplication of the wave function by its complex conjugate defined a probability density function for particle behavior. From a more general perspective, we now know that the wave function itself offers no real insight and that physical meaning only comes when the wave function is operated on by various mathematical operators. This viewpoint coalesced to pragmatic orthodoxy during the 1930 s, thus paving the path for many robust applications of quantum mechanics.

The general procedures for identifying and assessing solutions to the Schrödinger wave equation are delineated most concisely by the following set of four basic postulates. As indicated previously, the efficacy of these postulates rests mainly on their continuing success in solving and interpreting many real-world problems in quantum mechanics since the 1930s. The four postulates are presented herewith in a form sufficient for our study of statistical thermodynamics.

I. The state of any quantum mechanical system can be specified by a function, $\Psi(\boldsymbol{r}, t)$, called the wave function of the system. The quantity $\Psi^* \Psi d \tau$ is the probability that the position vector $\boldsymbol{r}$ for a particle lies between $\boldsymbol{r}$ and $\boldsymbol{r}+d \boldsymbol{r}$ at time $t$ within the volume element $d \tau$.
II. For every dynamic variable, $A$, a linear Hermitian operator, $\hat{A}$, can be defined as follows:
(a) If $A$ is $r_i$ or $t$, the operator is multiplication by the variable itself;
(b) If $A$ is $p_i$, the operator is $-i \hbar \partial / \partial r_i$;
(c) If $A$ is a function of $r_i, t$, and $p_i$, the operator takes the same functional form as the dynamic variable, with the operators multiplication by $r_i$, multiplication by $t$, and $-i \hbar \partial / \partial r_i$ substituted for $r_i, t$, and $p_i$, respectively;
(d) The operator corresponding to the total energy is $i \hbar \partial / \partial t$.
III. If a system state is specified by the wave function, $\Psi(\boldsymbol{r}, t)$, the average observable value of the dynamic variable $A$ for this state is given by
$$
\langle A\rangle=\frac{\int \Psi^* \hat{A} \Psi d \tau}{\int \Psi^* \Psi d \tau} .
$$
IV. The wave function, $\Psi(\boldsymbol{r}, t)$, satisfies the time-dependent Schrödinger wave equation
$$
\hat{H} \Psi(\boldsymbol{r}, t)=i \hbar \frac{\partial \Psi(\boldsymbol{r}, t)}{\partial t},
$$
where the Hamiltonian operator, $\hat{H}$, corresponds to the classical Hamiltonian, $H=$ $T+V$, for which $T$ and $V$ are the kinetic and potential energies, respectively.

物理代写|热力学代写thermodynamics代考|The Steady-State Schrödinger Equation

We have shown that the Schrödinger wave equation can be cast as an eigenvalue problem for which the eigenfunctions constitute a complete orthonormal set of basis functions (Appendix $\mathrm{H}$ ) and the eigenvalues designate the discrete energies required for statistical thermodynamics. The prediction of energy levels using the Schrödinger wave equation suggests an affiliation with the classical principle of energy conservation. We may verify this conjecture by considering a conservative system, for which the potential energy is a function only of Cartesian position (Appendix G). From Eq. (5.24), the relevant Hamiltonian can be expressed as
$$
H=\frac{1}{2 m}\left(p_x^2+p_y^2+p_z^2\right)+V,
$$
so that, from postulate II, the analogous operator $\hat{H}$ becomes
$$
\hat{H}=(i \hbar)^2 \frac{1}{2 m}\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}\right)+V=-\frac{\hbar^2}{2 m} \nabla^2+V,
$$
thus confirming Eq. (5.30). Notice that because the potential energy is a function only of position, its operator is simply multiplication by $V$. Invoking the operational analog to the identity, $H=\varepsilon$, postulate II(d) produces the expected Schrödinger wave equation,
$$
-\frac{\hbar^2}{2 m} \nabla^2 \Psi(\boldsymbol{r}, t)+V(\boldsymbol{r}) \Psi(\boldsymbol{r}, t)=i \hbar \frac{\partial \Psi(\boldsymbol{r}, t)}{\partial t} .
$$
Therefore, we have shown that Eq. (5.35) embodies conservation of energy for a single particle in an atomic or molecular system.

物理代写|热力学代写thermodynamics代考|MENG3401

热力学代写

物理代写|热力学代写thermodynamics代考|The Postulates of Quantum Mechanics

应用于物理问题时,如果不能正确地解释任何科学方程,它都是无用的。由于难以给波函数赋予实际意义,Schrödinger波动方程最初受到了这种僵局的困扰。将$\Psi(\boldsymbol{r}, t)$定义为物质波的振幅太过模糊,也没有提供模型和实验之间的清晰联系。虽然Schrödinger自己提出了各种概率解释,但最终认识到波函数乘以其复共轭的概率密度函数定义了粒子行为的概率密度函数的是德国物理学家马克斯·玻恩(1882-1970)。从更一般的角度来看,我们现在知道,波函数本身并没有提供真正的洞察力,只有当波函数被各种数学算子操作时,物理意义才会出现。这种观点在20世纪30年代与实用主义的正统观点结合在一起,从而为量子力学的许多强大应用铺平了道路。

确定和评估Schrödinger波动方程解的一般程序由以下四个基本假设最简明地描述。如前所述,这些假设的有效性主要取决于它们自20世纪30年代以来在解决和解释量子力学中许多现实世界问题方面的持续成功。这四个公设在这里以一种足以供我们研究统计热力学的形式提出。

1 .任何量子力学系统的状态都可以用一个函数$\Psi(\boldsymbol{r}, t)$来表示,该函数称为该系统的波函数。量$\Psi^* \Psi d \tau$是粒子的位置矢量$\boldsymbol{r}$在时间$t$位于体积元$d \tau$内的$\boldsymbol{r}$和$\boldsymbol{r}+d \boldsymbol{r}$之间的概率。
2对于每一个动态变量$A$,一个线性厄米算子$\hat{A}$可以定义如下:
(a)如果$A$是$r_i$或$t$,则运算符是乘以变量本身;
(b)如果$A$为$p_i$,则经营者为$-i \hbar \partial / \partial r_i$;
(c)如果$A$是$r_i, t$和$p_i$的函数,则运算符采用与动态变量相同的函数形式,分别用运算符乘以$r_i$、乘以$t$和$-i \hbar \partial / \partial r_i$代替$r_i, t$和$p_i$;
(d)总能量对应的算子为$i \hbar \partial / \partial t$。
3如果系统状态由波函数$\Psi(\boldsymbol{r}, t)$指定,则该状态的动态变量$A$的平均可观测值由
$$
\langle A\rangle=\frac{\int \Psi^* \hat{A} \Psi d \tau}{\int \Psi^* \Psi d \tau} .
$$
四、波动函数$\Psi(\boldsymbol{r}, t)$满足时变Schrödinger波动方程
$$
\hat{H} \Psi(\boldsymbol{r}, t)=i \hbar \frac{\partial \Psi(\boldsymbol{r}, t)}{\partial t},
$$
其中哈密顿算符$\hat{H}$对应于经典哈密顿算符$H=$$T+V$,其中$T$和$V$分别是动能和势能。

物理代写|热力学代写thermodynamics代考|The Steady-State Schrödinger Equation

我们已经表明,Schrödinger波动方程可以被转换为特征值问题,其中特征函数构成一个完整的标准正交基函数集(附录$\mathrm{H}$),特征值指定统计热力学所需的离散能量。利用Schrödinger波动方程对能级的预测表明它与经典的能量守恒原理有关。我们可以通过考虑一个保守系统来验证这一猜想,该系统的势能仅是笛卡尔位置的函数(附录G)。从式(5.24)中,相关的哈密顿量可以表示为
$$
H=\frac{1}{2 m}\left(p_x^2+p_y^2+p_z^2\right)+V,
$$
因此,由公设II,类似算子$\hat{H}$变成
$$
\hat{H}=(i \hbar)^2 \frac{1}{2 m}\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}\right)+V=-\frac{\hbar^2}{2 m} \nabla^2+V,
$$
从而证实了式(5.30)。注意,因为势能只是位置的函数,它的算符就是乘以$V$。调用对恒等式的操作模拟,$H=\varepsilon$,假设II(d)产生预期的Schrödinger波动方程,
$$
-\frac{\hbar^2}{2 m} \nabla^2 \Psi(\boldsymbol{r}, t)+V(\boldsymbol{r}) \Psi(\boldsymbol{r}, t)=i \hbar \frac{\partial \Psi(\boldsymbol{r}, t)}{\partial t} .
$$
因此,我们已经证明,式(5.35)体现了原子或分子系统中单个粒子的能量守恒。

物理代写|热力学代写thermodynamics代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

物理代写|热力学代写thermodynamics代考|ENGR130

如果你也在 怎样代写热力学Thermodynamics 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。热力学Thermodynamics和宇宙本身一样古老,宇宙是已知的最大的热力学系统。当宇宙在呜咽中结束,宇宙的总能量消散为虚无时,热力学也将结束。

热力学Thermodynamics广义地说,热力学就是关于能量的:能量如何被利用,以及能量如何从一种形式转变为另一种形式。在很多情况下,热力学包括利用热做功,就像你的汽车发动机,或者做功来传递热量,就像你的冰箱。有了热力学,你就能知道事物如何有效地将能量用于有用的目的,比如移动飞机、发电,甚至骑自行车。

statistics-lab™ 为您的留学生涯保驾护航 在代写热力学thermodynamics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写热力学thermodynamics代写方面经验极为丰富,各种代写热力学thermodynamics相关的作业也就用不着说。

物理代写|热力学代写thermodynamics代考|ENGR130

物理代写|热力学代写thermodynamics代考|Historical Survey of Quantum Mechanics

In most branches of physics, we explore the early work of various researchers to become familiar with those inductive processes leading to a final elegant theory. For example, studying the various laws of electricity and magnetism primes us for the acceptance of Maxwell’s equations; similarly, applying the first and second laws of thermodynamics to heat engines prepares us for a postulatory approach to classical thermodynamics (Appendix F). Unfortunately, for quantum mechanics, the final postulates are so abstract that little relation apparently exists between them and those experimental results which eventually led to their formulation during the first quarter of the twentieth century. Nonetheless, given proper perspective, the development of quantum mechanics actually followed a path typical of the evolution of any fundamental scientific theory. The following is a summary of some of these developments.

In 1900, the German physicist Max Planck (1858-1947) showed that the classical theory of oscillating electrons could not explain the behavior of blackbody radiation. Performing a thermodynamic analysis of available results at low and high wavelengths, Planck developed a general expression for emissive power that conformed to experimental data at both wavelength limits. Upon further investigation, he found that quantization of energy was required to derive his empirical relation between the emissive power of a blackbody and the frequency of its emitted radiation. In particular, he postulated that the microscopic energy, $\varepsilon$, emitted at a given frequency, $v$, was proportional to that frequency, so that
$$
\varepsilon=n h v,
$$
where $n$ is an integer and the proportionality constant, $h(\mathrm{~J} \cdot \mathrm{s})$, is now known as Planck’s constant.

In 1905, Albert Einstein (1879-1955) published an explanation of the photoelectric effect, which occurs when electrons are ejected from a metallic surface as a result of being bombarded with ultraviolet radiation. Following Planck’s lead, Einstein suggested that the incident radiation behaves, not as a classical electromagnetic wave, but as distinct entities or photons, with each photon having energy
$$
\varepsilon=h \nu .
$$

物理代写|热力学代写thermodynamics代考|The Bohr Model for the Spectrum of Atomic Hydrogen

We now investigate the failure of classical mechanics and the success of quantum mechanics by specifically considering in some detail Bohr’s model for the hydrogen atom. At the turn of the last century, much experimental work had been completed on the spectroscopy of atomic hydrogen. Typically, an emission spectrum was obtained on a photographic plate by using a hydrogen discharge lamp as the source of radiation. The resulting spectrograph of Fig. 5.1 was the forerunner of today’s modern spectrometer, which employs a grating rather than a prism and a photomultiplier tube or photodiode array rather than a photographic plate. A schematic representation of the resulting spectrum for atomic hydrogen is shown in Fig. 5.2. Three series of lines can be observed, one each in the ultraviolet, visible, and infrared regions of the electromagnetic spectrum. Each series of lines displays a characteristic reduction in line spacing and thus a denser spectral region at lower wavelengths. The lower and upper limits for each spectral family range from 912 to $1216 \AA$ for the Lyman series, from 3647 to $6563 \AA$ for the Balmer series, and from 8206 to $18,760 \AA$ for the Paschen series.

At this juncture, we introduce a convenient spectral definition delineating relative energy differences called the wave number, i.e.,
$$
\tilde{v} \equiv \frac{\Delta \varepsilon}{h c}=\frac{v}{c}=\frac{1}{\lambda},
$$
where we have made use of Eq. (5.2) and recognized that the wavelength $\lambda=c / v$. The utility of wave number units $\left(\mathrm{cm}^{-1}\right)$, which indicates the number of vacuum wavelengths in one centimeter, is obvious from Eq. (5.3), in that discrete energy changes are directly related to the inverse of the measured spectral wavelength. Employing this definition, the discrete wavelengths of all spectral lines in Fig. 5.2 can be empirically correlated via the Rydberg formula,
$$
\tilde{v}_{n m}=R_H\left(\frac{1}{m^2}-\frac{1}{n^2}\right),
$$
where $m=1,2,3, \ldots$ is an index representing the Lyman, Balmer, and Paschen series, respectively, while $n=m+1, m+2, m+3, \ldots$ identifies the spectral lines for each series. An adequate theory for the spectrum of atomic hydrogen must reproduce Eq. (5.4), including the Rydberg constant, $R_H=109,678 \mathrm{~cm}^{-1}$, which is one of the most precise physical constants in all of science. Indeed, the accurate reproduction of $R_H$ accounts for the success of the Bohr model, which ultimately invoked energy quantization because of the two integers, $m$ and $n$, in Eq. (5.4).

物理代写|热力学代写thermodynamics代考|ENGR130

热力学代写

物理代写|热力学代写thermodynamics代考|Historical Survey of Quantum Mechanics

在物理学的大多数分支中,我们探索各种研究人员的早期工作,以熟悉那些导致最终优雅理论的归纳过程。例如,研究电和磁的各种定律使我们能够接受麦克斯韦方程组;同样,将热力学第一定律和第二定律应用于热机,为我们准备了一种对经典热力学的假设方法(附录F)。不幸的是,对于量子力学来说,最终的假设是如此抽象,以至于它们与那些最终导致它们在20世纪前25年形成的实验结果之间显然没有什么关系。尽管如此,从正确的角度来看,量子力学的发展实际上遵循了任何基础科学理论演变的典型路径。以下是其中一些发展的摘要。

1900年,德国物理学家马克斯·普朗克(1858-1947)表明,经典的电子振荡理论不能解释黑体辐射的行为。普朗克对低波长和高波长的可用结果进行了热力学分析,得出了与两个波长极限下的实验数据一致的发射功率的一般表达式。经过进一步的研究,他发现需要能量的量子化来推导黑体发射功率与其发射辐射频率之间的经验关系。特别地,他假设微观能量$\varepsilon$,在给定频率$v$发射,与该频率成正比,因此
$$
\varepsilon=n h v,
$$
其中$n$是一个整数,比例常数$h(\mathrm{~J} \cdot \mathrm{s})$现在被称为普朗克常数。

1905年,阿尔伯特·爱因斯坦(1879-1955)发表了一篇关于光电效应的解释,这种效应发生在电子受到紫外线辐射轰击而从金属表面射出时。在普朗克的领导下,爱因斯坦提出,入射辐射的行为,不是作为经典的电磁波,而是作为不同的实体或光子,每个光子都有能量
$$
\varepsilon=h \nu .
$$

物理代写|热力学代写thermodynamics代考|The Bohr Model for the Spectrum of Atomic Hydrogen

我们现在研究经典力学的失败和量子力学的成功,特别详细地考虑玻尔的氢原子模型。在上个世纪之交,关于原子氢的光谱学已经完成了许多实验工作。通常,利用氢放电灯作为辐射源,在照相板上获得发射光谱。图5.1所示的光谱仪是今天现代光谱仪的前身,它使用光栅而不是棱镜,使用光电倍增管或光电二极管阵列而不是照相板。得到的氢原子光谱示意图如图5.2所示。可以观察到三个系列的线,分别在电磁波谱的紫外、可见光和红外区域。每一串线都显示出线间距的特征减小,因此在较低波长处具有较密集的光谱区域。每个光谱族的下限和上限范围从912到$1216 \AA$为莱曼系列,从3647到$6563 \AA$为巴尔默系列,从8206到$18,760 \AA$为Paschen系列。

在这个关键时刻,我们引入一个方便的光谱定义来描述相对能量差,称为波数,即:
$$
\tilde{v} \equiv \frac{\Delta \varepsilon}{h c}=\frac{v}{c}=\frac{1}{\lambda},
$$
其中我们利用式(5.2),并认识到波长$\lambda=c / v$。波数单位$\left(\mathrm{cm}^{-1}\right)$(表示一厘米内真空波长的数量)的效用从式(5.3)中可以明显看出,因为离散的能量变化与所测光谱波长的倒数直接相关。利用这一定义,图5.2中所有光谱线的离散波长可以通过Rydberg公式进行经验关联,
$$
\tilde{v}_{n m}=R_H\left(\frac{1}{m^2}-\frac{1}{n^2}\right),
$$
其中$m=1,2,3, \ldots$是分别表示Lyman、Balmer和Paschen系列的索引,而$n=m+1, m+2, m+3, \ldots$表示每个系列的光谱线。氢原子光谱的适当理论必须重现式(5.4),包括里德伯常数$R_H=109,678 \mathrm{~cm}^{-1}$,这是所有科学中最精确的物理常数之一。的确,$R_H$的精确再现说明了玻尔模型的成功,由于公式(5.4)中的两个整数$m$和$n$,玻尔模型最终调用了能量量子化。

物理代写|热力学代写thermodynamics代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

物理代写|热力学代写thermodynamics代考|EGM-3211

如果你也在 怎样代写热力学Thermodynamics 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。热力学Thermodynamics和宇宙本身一样古老,宇宙是已知的最大的热力学系统。当宇宙在呜咽中结束,宇宙的总能量消散为虚无时,热力学也将结束。

热力学Thermodynamics广义地说,热力学就是关于能量的:能量如何被利用,以及能量如何从一种形式转变为另一种形式。在很多情况下,热力学包括利用热做功,就像你的汽车发动机,或者做功来传递热量,就像你的冰箱。有了热力学,你就能知道事物如何有效地将能量用于有用的目的,比如移动飞机、发电,甚至骑自行车。

statistics-lab™ 为您的留学生涯保驾护航 在代写热力学thermodynamics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写热力学thermodynamics代写方面经验极为丰富,各种代写热力学thermodynamics相关的作业也就用不着说。

物理代写|热力学代写thermodynamics代考|EGM-3211

物理代写|热力学代写thermodynamics代考|Additional Thermodynamic Properties in the Dilute Limit

Having established Eqs. (4.21) and (4.23) for the internal energy and entropy, respectively, we may now derive additional expressions in terms of $Z(T, V)$ for all other thermodynamic properties by invoking standard relations from classical thermodynamics (Appendix F). Beginning with Eq. (4.11), we can express the chemical potential in the dilute limit as
$$
\mu=-k T \ln \left(\frac{Z}{N}\right) .
$$
From classical thermodynamics, $G=\mu N$, so that the Gibbs free energy becomes
$$
G=-N k T \ln \left(\frac{Z}{N}\right) .
$$
Recall that the Helmholtz free energy is defined as $A=U-T S$; thus, from Eq. (4.22),
$$
A=-N k T\left[\ln \left(\frac{Z}{N}\right)+1\right] .
$$
From classical thermodynamics, $G=H-T S$; hence, from Eqs. (4.22) and (4.27),
$$
H=U+N k T \text {. }
$$
Substituting Eq. (4.21) into Eq. (4.29), the enthalpy can then be expressed as
$$
H=N k T\left[T\left(\frac{\partial \ln Z}{\partial T}\right)_V+1\right] .
$$
We, of course, also recall that $H=U+P V$, and thus, from Eq. (4.29),
$$
P V=N k T,
$$

which is just a molecular version of the ideal gas equation of state! We obtained this remarkable result because the ideal gas is the prototype for independent but indistinguishable particles in the dilute limit. Furthermore, we anticipated this outcome when we previously commented that ideal gases typically bear large negative chemical potentials, thus automatically satisfying our criterion for the dilute limit, i.e., Eq. (4.18). We conclude, therefore, that all expressions derived for thermodynamic properties in the dilute limit must apply to ideal gases.

物理代写|热力学代写thermodynamics代考|The Zero of Energy and Thermodynamic Properties

We have previously indicated that thermodynamic properties are normally calculated by presuming that the energy of the ground state $\varepsilon_0=0$. However, it is of interest to ascertain if any of our property expressions are in actuality independent of this arbitrary choice for $\varepsilon_0$. Such properties would then become a robust test of the predictive value of statistical thermodynamics.

As we will learn in Chapter 7, we can always measure via spectroscopy the difference in energy between two energy levels; thus, we invariably know
$$
\varepsilon_j^{\prime}=\varepsilon_j-\varepsilon_0 .
$$
Therefore, employing Eq. (4.12), we may now define an alternative partition function,
$$
Z^{\prime}=\sum_j g_j \exp \left(-\varepsilon_j^{\prime} / k T\right)=Z \exp \left(\varepsilon_{\circ} / k T\right) .
$$
Using Eqs. (4.19) and (4.31), we find that for the internal energy,
$$
U=N k T^2\left[\left(\frac{\partial \ln Z^{\prime}}{\partial T}\right)V+\frac{\varepsilon{\circ}}{k T^2}\right]
$$
or
$$
U-N \varepsilon_{\circ}=N k T^2\left(\frac{\partial \ln Z^{\prime}}{\partial T}\right)_V .
$$
Hence, we have shown that any calculation of the internal energy produces a ground-state energy, $N \varepsilon_0$, which we must arbitrarily set to zero to generate thermodynamic property tables.

In comparison to the internal energy, some special properties might exist that are not affected by our arbitrary choice of a zero of energy. Consider, for example, the specific heat at constant volume, which we may investigate by substituting Eq. (4.35) into Eq. (4.23). In this case, we obtain
$$
\begin{aligned}
C_V & =N k \frac{\partial}{\partial T}\left[T^2\left(\frac{\partial \ln Z^{\prime}}{\partial T}\right)+\frac{\varepsilon_{\circ}}{k}\right]_V \
C_V & =N k\left[\frac{\partial}{\partial T} T^2\left(\frac{\partial \ln Z^{\prime}}{\partial T}\right)\right]_V .
\end{aligned}
$$

物理代写|热力学代写thermodynamics代考|EGM-3211

热力学代写

物理代写|热力学代写thermodynamics代考|Additional Thermodynamic Properties in the Dilute Limit

建立等式。(4.21)和(4.23)分别为内能和熵,我们现在可以通过调用经典热力学(附录F)中的标准关系,为所有其他热力学性质推导出$Z(T, V)$的附加表达式。从式(4.11)开始,我们可以将稀极限下的化学势表示为
$$
\mu=-k T \ln \left(\frac{Z}{N}\right) .
$$
从经典热力学$G=\mu N$,所以吉布斯自由能变成
$$
G=-N k T \ln \left(\frac{Z}{N}\right) .
$$
回想一下,亥姆霍兹自由能定义为$A=U-T S$;因此,由式(4.22),
$$
A=-N k T\left[\ln \left(\frac{Z}{N}\right)+1\right] .
$$
从经典热力学,$G=H-T S$;因此,从方程。(4.22)及(4.27);
$$
H=U+N k T \text {. }
$$
将式(4.21)代入式(4.29),则焓为
$$
H=N k T\left[T\left(\frac{\partial \ln Z}{\partial T}\right)_V+1\right] .
$$
当然,我们还记得$H=U+P V$,因此,从式(4.29)中,
$$
P V=N k T,
$$

这就是理想气体状态方程的分子版本!我们得到了这个显著的结果,因为理想气体是在稀释极限下独立但不可区分的粒子的原型。此外,当我们先前评论理想气体通常具有较大的负化学势,从而自动满足我们的稀释极限标准(即式(4.18))时,我们预料到了这一结果。因此,我们得出结论,在稀极限下导出的热力学性质的所有表达式都必须适用于理想气体。

物理代写|热力学代写thermodynamics代考|The Zero of Energy and Thermodynamic Properties

我们以前已经指出,热力学性质通常是通过假设基态的能量$\varepsilon_0=0$来计算的。然而,确定我们的任何属性表达式是否实际上独立于$\varepsilon_0$的任意选择是很有意义的。这样的性质将成为统计热力学预测值的有力检验。

正如我们将在第七章学到的,我们总是可以通过光谱学来测量两个能级之间的能量差;因此,我们总是知道
$$
\varepsilon_j^{\prime}=\varepsilon_j-\varepsilon_0 .
$$
因此,使用Eq.(4.12),我们现在可以定义另一个配分函数,
$$
Z^{\prime}=\sum_j g_j \exp \left(-\varepsilon_j^{\prime} / k T\right)=Z \exp \left(\varepsilon_{\circ} / k T\right) .
$$
使用等式。式(4.19)和式(4.31)中,我们发现对于热力学能,
$$
U=N k T^2\left[\left(\frac{\partial \ln Z^{\prime}}{\partial T}\right)V+\frac{\varepsilon{\circ}}{k T^2}\right]
$$

$$
U-N \varepsilon_{\circ}=N k T^2\left(\frac{\partial \ln Z^{\prime}}{\partial T}\right)_V .
$$
因此,我们已经表明,对内能的任何计算都会产生基态能量$N \varepsilon_0$,我们必须将其任意设置为零才能生成热力学性质表。

与热力学能相比,可能存在一些特殊的性质,它们不受我们任意选择能量为零的影响。例如,考虑定容比热,我们可以将式(4.35)代入式(4.23)来研究。在这种情况下,我们得到
$$
\begin{aligned}
C_V & =N k \frac{\partial}{\partial T}\left[T^2\left(\frac{\partial \ln Z^{\prime}}{\partial T}\right)+\frac{\varepsilon_{\circ}}{k}\right]_V \
C_V & =N k\left[\frac{\partial}{\partial T} T^2\left(\frac{\partial \ln Z^{\prime}}{\partial T}\right)\right]_V .
\end{aligned}
$$

物理代写|热力学代写thermodynamics代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

物理代写|PHYS200 Thermodynamics

Statistics-lab™可以为您提供yale.edu PHYS200 Thermodynamics热力学课程的代写代考辅导服务!

PHYS200 Thermodynamics课程简介

Thermodynamics is the branch of physics that deals with the study of the relationship between heat, work, and energy. The laws of thermodynamics govern the behavior of all physical systems, including those that involve the transfer of energy as heat or work.

The First Law of Thermodynamics: The law of conservation of energy states that energy cannot be created or destroyed, only converted from one form to another. The first law of thermodynamics is a statement of this principle as applied to thermodynamic systems. It states that the total energy of a closed system remains constant, although it may be converted from one form to another.

The Second Law of Thermodynamics: The second law of thermodynamics states that the entropy of an isolated system never decreases over time. Entropy is a measure of the disorder or randomness of a system, and the second law of thermodynamics tells us that the natural tendency of any system is to become more disordered over time.

Thermodynamic Property Relationships: In thermodynamics, a property is a characteristic of a system that can be measured or calculated. Examples of thermodynamic properties include temperature, pressure, volume, and entropy. The relationships between these properties are described by equations of state, which relate them to each other and to the state of the system.

PREREQUISITES 

Presents the definitions, concepts, and laws of thermodynamics. Topics include the first and second laws, thermodynamic property relationships, and applications to vapor and gas power systems, refrigeration, and heat pump systems. Examples and problems are related to contemporary aspects of energy and power generation and to broader environmental issues.

Outcome 1: Students will be able to choose an appropriate system and identify interactions between system and surroundings.
Outcome 2: Obtain values of thermodynamic properties for a pure substance in a given state, using table, relations for incompressible substances, and relations for gases.

Outcome 3: Apply energy and entropy balances in the control mass (closed system) and control volume formulations to the analysis of devices and cycles.

Cornell students enroll only in ENGRD 2210. MAE 2210 for Non-CU students.

PHYS200 Thermodynamics HELP(EXAM HELP, ONLINE TUTOR)

问题 1.

(i) The minimal work required to isothermally drive a system from one state to another is the difference between free energies. The dissipated or irreversible work associated with the isothermal entropy production [cf. (17.4)] is related by the second law to this minimal work.

问题 2.

(ii) QND measurements increase the free energy and thereby the work that can be extracted isothermically. The upper bound on extractable work following a measurement is proportional to the Shannon-entropy information of the measurement (17.12).

问题 3.

(iii) The minimal work required to reset a symmetric memory is the Shannon entropy of the measurement generated by the meter [cf. (17.15)], which yields the Landauer bound for work required to reset a completely random bit. The same work is extractable by completely randomizing a pure-state qubit.

问题 4.

(iv) The minimal work required to store the measurement result and subsequently reset the memory is proportional to the mutual information of the system and the meter.

Textbooks


• An Introduction to Stochastic Modeling, Fourth Edition by Pinsky and Karlin (freely
available through the university library here)
• Essentials of Stochastic Processes, Third Edition by Durrett (freely available through
the university library here)
To reiterate, the textbooks are freely available through the university library. Note that
you must be connected to the university Wi-Fi or VPN to access the ebooks from the library
links. Furthermore, the library links take some time to populate, so do not be alarmed if
the webpage looks bare for a few seconds.

此图像的alt属性为空;文件名为%E7%B2%89%E7%AC%94%E5%AD%97%E6%B5%B7%E6%8A%A5-1024x575-10.png
物理代写|PHYS200 Thermodynamics

Statistics-lab™可以为您提供yale.edu PHYS200 Thermodynamics热力学课程的代写代考辅导服务! 请认准Statistics-lab™. Statistics-lab™为您的留学生涯保驾护航。

物理代写|PHYS200 Thermodynamics

Statistics-lab™可以为您提供yale.edu PHYS200 Thermodynamics热力学课程的代写代考辅导服务!

PHYS200 Thermodynamics课程简介

Thermodynamics is the branch of physics that deals with the study of the relationship between heat, work, and energy. The laws of thermodynamics govern the behavior of all physical systems, including those that involve the transfer of energy as heat or work.

The First Law of Thermodynamics: The law of conservation of energy states that energy cannot be created or destroyed, only converted from one form to another. The first law of thermodynamics is a statement of this principle as applied to thermodynamic systems. It states that the total energy of a closed system remains constant, although it may be converted from one form to another.

The Second Law of Thermodynamics: The second law of thermodynamics states that the entropy of an isolated system never decreases over time. Entropy is a measure of the disorder or randomness of a system, and the second law of thermodynamics tells us that the natural tendency of any system is to become more disordered over time.

Thermodynamic Property Relationships: In thermodynamics, a property is a characteristic of a system that can be measured or calculated. Examples of thermodynamic properties include temperature, pressure, volume, and entropy. The relationships between these properties are described by equations of state, which relate them to each other and to the state of the system.

PREREQUISITES 

Presents the definitions, concepts, and laws of thermodynamics. Topics include the first and second laws, thermodynamic property relationships, and applications to vapor and gas power systems, refrigeration, and heat pump systems. Examples and problems are related to contemporary aspects of energy and power generation and to broader environmental issues.

Outcome 1: Students will be able to choose an appropriate system and identify interactions between system and surroundings.
Outcome 2: Obtain values of thermodynamic properties for a pure substance in a given state, using table, relations for incompressible substances, and relations for gases.

Outcome 3: Apply energy and entropy balances in the control mass (closed system) and control volume formulations to the analysis of devices and cycles.

Cornell students enroll only in ENGRD 2210. MAE 2210 for Non-CU students.

PHYS200 Thermodynamics HELP(EXAM HELP, ONLINE TUTOR)

问题 1.

The control (modulation) transforms the system-bath coupling operators to the time-dependent form $\hat{S}(t) \otimes \hat{B}(t)$ in the interaction picture, via the set of time-dependent coefficients $\epsilon_i(t)$ that define a notation in the Pauli basis $\hat{\sigma}_i$,$\hat{S}(t)=\sum_i \epsilon_i(t) \hat{\sigma}_i$

问题 2.

We next write the time-independent gradient-control matrix (12.31), describing how the fidelity score changes for each pair of the Paui basis operators,
$$
\Xi_{i j} \equiv \overline{\left\langle\psi\left|\left[\sigma_i, \sigma_j|\psi\rangle\langle\psi|\right]\right| \psi\right\rangle}
$$
the overline being an average over all possible initial states.

问题 3.

Using the matrix $\Xi$ whose elements are $\Xi_{i j}$, one arrives at the following expression for the average fidelity of the desired operation (to second-order accuracy in the system-bath coupling):
$$
\bar{f}(t)=1-t \int_{-\infty}^{\infty} d \omega \operatorname{Tr}\left[\boldsymbol{G}(\omega) \boldsymbol{F}t(\omega)\right], $$ where $\boldsymbol{G}(\omega)$ is the bath-coupling (-response) spectral matrix defined in (12.32) and the modulation (control) spectral matrix $\boldsymbol{F}_t(\omega)$ is defined in (12.37) according to the operation, via the gradient-control matrix $\Xi{i j}$.

问题 4.

The fidelity is maximized by the variational Euler-Lagrange method described in Chapter 12 that minimizes the overlap between $\boldsymbol{G}(\omega)$ and $\boldsymbol{F}_t(\omega)$ under the constraint of a given control energy.

Textbooks


• An Introduction to Stochastic Modeling, Fourth Edition by Pinsky and Karlin (freely
available through the university library here)
• Essentials of Stochastic Processes, Third Edition by Durrett (freely available through
the university library here)
To reiterate, the textbooks are freely available through the university library. Note that
you must be connected to the university Wi-Fi or VPN to access the ebooks from the library
links. Furthermore, the library links take some time to populate, so do not be alarmed if
the webpage looks bare for a few seconds.

此图像的alt属性为空;文件名为%E7%B2%89%E7%AC%94%E5%AD%97%E6%B5%B7%E6%8A%A5-1024x575-10.png
物理代写|PHYS200 Thermodynamics

Statistics-lab™可以为您提供yale.edu PHYS200 Thermodynamics热力学课程的代写代考辅导服务! 请认准Statistics-lab™. Statistics-lab™为您的留学生涯保驾护航。

物理代写|PHYS200 Thermodynamics

Statistics-lab™可以为您提供yale.edu PHYS200 Thermodynamics热力学课程的代写代考辅导服务!

PHYS200 Thermodynamics课程简介

Thermodynamics is the branch of physics that deals with the study of the relationship between heat, work, and energy. The laws of thermodynamics govern the behavior of all physical systems, including those that involve the transfer of energy as heat or work.

The First Law of Thermodynamics: The law of conservation of energy states that energy cannot be created or destroyed, only converted from one form to another. The first law of thermodynamics is a statement of this principle as applied to thermodynamic systems. It states that the total energy of a closed system remains constant, although it may be converted from one form to another.

The Second Law of Thermodynamics: The second law of thermodynamics states that the entropy of an isolated system never decreases over time. Entropy is a measure of the disorder or randomness of a system, and the second law of thermodynamics tells us that the natural tendency of any system is to become more disordered over time.

Thermodynamic Property Relationships: In thermodynamics, a property is a characteristic of a system that can be measured or calculated. Examples of thermodynamic properties include temperature, pressure, volume, and entropy. The relationships between these properties are described by equations of state, which relate them to each other and to the state of the system.

PREREQUISITES 

Presents the definitions, concepts, and laws of thermodynamics. Topics include the first and second laws, thermodynamic property relationships, and applications to vapor and gas power systems, refrigeration, and heat pump systems. Examples and problems are related to contemporary aspects of energy and power generation and to broader environmental issues.

Outcome 1: Students will be able to choose an appropriate system and identify interactions between system and surroundings.
Outcome 2: Obtain values of thermodynamic properties for a pure substance in a given state, using table, relations for incompressible substances, and relations for gases.

Outcome 3: Apply energy and entropy balances in the control mass (closed system) and control volume formulations to the analysis of devices and cycles.

Cornell students enroll only in ENGRD 2210. MAE 2210 for Non-CU students.

PHYS200 Thermodynamics HELP(EXAM HELP, ONLINE TUTOR)

问题 1.

  1. Consider $N$ molecules of an ideal monatomic gas, $C_V=3 N / 2$, placed in a vertical cylinder. The top of the cylinder is closed by a piston of mass $M$ and cross section $A$. Initially the piston is fixed, and the gas has volume $V_0$ and temperature $T_0$. Next, the piston is released, and after several oscillations comes to a stop. Disregarding friction and the heat capacity of the piston and cylinder, find the temperature and volume of the gas at equilibrium. The system is thermally isolated, and the pressure outside the cylinder is $P_a$.

问题 2.

  1. For a van der Waals gas
  2. a) Prove that $\left(\partial C_V / \partial V\right)_T=0$
  3. b) Using a), determine the entropy of the monatomic gas $S(T, V)$ and its energy $E(T, V)$ to within additive constants.
  4. Hint: In the limit $V \rightarrow \infty, C_V=3 N / 2$ for a monatomic van der Waals gas.
  5. c) What is the final temperature when the gas is adiabatically compressed from $\left(V_1, T_1\right)$ to $V_2$. How much work is done in this compression?

问题 3.

The operation of a gasoline engine is roughly similar to the Otto cycle:
$A \rightarrow B$ Gas compressed adiabatically, $\triangle S=0$
$B \rightarrow C$ Gas heated isochorically, $\Delta V=0$ corresponds to combustion of gasoline)
$C \rightarrow D$ Gas expanded adiabatically (power stroke)
$D \rightarrow A$ Gass cooled isochorically.
Compute the efficiency of the Otto cycle for an ideal gas as a function of the compression ratio $V_A / V_B$ and the heat capacity $C_V$.

问题 4.

Consider a cylinder of length $L$ with a thin massless piston that divides it into two equal parts. The cylinder is submerged in a large heat bath at temperature $T$. The left side of the cylinder contains $N$ molecules of ideal gas at pressure $P$, while the right side is at $P / 2$. Let the piston be released.
a) What is its final equilibrium position?
b) How much heat will be transmitted to the bath in the process of equilibration?

Textbooks


• An Introduction to Stochastic Modeling, Fourth Edition by Pinsky and Karlin (freely
available through the university library here)
• Essentials of Stochastic Processes, Third Edition by Durrett (freely available through
the university library here)
To reiterate, the textbooks are freely available through the university library. Note that
you must be connected to the university Wi-Fi or VPN to access the ebooks from the library
links. Furthermore, the library links take some time to populate, so do not be alarmed if
the webpage looks bare for a few seconds.

此图像的alt属性为空;文件名为%E7%B2%89%E7%AC%94%E5%AD%97%E6%B5%B7%E6%8A%A5-1024x575-10.png
物理代写|PHYS200 Thermodynamics

Statistics-lab™可以为您提供yale.edu PHYS200 Thermodynamics热力学课程的代写代考辅导服务! 请认准Statistics-lab™. Statistics-lab™为您的留学生涯保驾护航。