标签: MGF 657

金融代写|金融工程作业代写Financial Engineering代考|BE953

如果你也在 怎样代写金融工程Financial Engineering这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

statistics-lab™ 为您的留学生涯保驾护航 在代写金融工程Financial Engineering方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写金融工程Financial Engineering代写方面经验极为丰富,各种代写金融工程Financial Engineering相关的作业也就用不着说。

我们提供的金融工程Financial Engineering及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
金融代写|金融工程作业代写Financial Engineering代考|BE953

金融代写|金融工程作业代写Financial Engineering代考|Phase Diagrams for Linear Dynamical Systems

The following autonomous linear system is considered
$$
\dot{x}=A x
$$
The eigenvalues of matrix $A$ define the system dynamics. Some terminology associated with fixed points is as follows:

A fixed point for the system of Eq. (1.27) is called hyperbolic if none of the eigenvalues of matrix $A$ has zero real part. A hyperbolic fixed point is called a saddle if some of the eigenvalues of matrix $A$ have real parts greater than zero and the rest of the eigenvalues have real parts less than zero. If all of the eigenvalues have negative real parts then the hyperbolic fixed point is called a stable node or sink. If all of the eigenvalues have positive real parts then the hyperbolic fixed point is called an unstable node or source. If the eigenvalues are purely imaginary then one has an elliptic fixed point which is said to be a center.
Case 1: Both eigenvalues of matrix $A$ are real and unequal, that is $\lambda_1 \neq \lambda_1 \neq 0$. For $\lambda_1<0$ and $\lambda_2<0$ the phase diagram for $z_1$ and $z_2$ is shown in Fig. 1.4. In case that $\lambda_2$ is smaller than $\lambda_1$ the term $e^{\lambda_2 t}$ decays faster than $e^{\lambda_1 t}$. For $\lambda_1>0>\lambda_2$ the phase diagram of Fig. $1.5$ is obtained.

In the latter case there are stable trajectories along eigenvector $v_1$ and unstable trajectories along eigenvector $v_2$ of matrix $A$. The stability point $(0,0)$ is said to be a saddle point.
When $\lambda_1>\lambda_2>0$ then one has the phase diagrams of Fig. 1.6.
Case 2: Complex eigenvalues:
Typical phase diagrams in the case of stable complex eigenvalues are given in Fig. 1.7.
Typical phase diagrams in the case of unstable complex eigenvalues are given in Fig. 1.8.

Typical phase diagrams in the case of imaginary eigenvalues are given in Fig. 1.9.
Case 3: Matrix $A$ has nonzero eigenvalues which are equal to each other. The associated phase diagram is given in Fig. 1.10.

金融代写|金融工程作业代写Financial Engineering代考|Saddle-Node Bifurcations of Fixed Points

The considered dynamical system is given by $\dot{x}=\mu-x^2$. The fixed points of the system result from the condition $\dot{x}=0$ which for $\mu>0$ gives $x^*=\pm \sqrt{\mu}$. The first fixed point $x=\sqrt{\mu}$ is a stable one whereas the second fixed point $x=-\sqrt{\mu}$ is an unstable one. The phase diagram of the system is given in Fig. 1.14. Since there is one stable and one unstable fixed point the associated bifurcation (locus of the fixed points in the phase plane) will be a saddle-node one.

The bifurcations diagram is given next. The diagram shows how the fixed points of the dynamical system vary with respect to the values of parameter $\mu$. In the above case it represents a parabola in the $\mu-x$ plane as shown in Fig. 1.15.

For $\mu>0$ the dynamical system has two fixed points located at $\pm \sqrt{\mu}$. The one fixed point is stable and is associated with the upper branch of the parabola. The other fixed point is unstable and is associated with the lower branch of the parabola. The value $\mu=0$ is considered to be a bifurcation value and the point $(x, \mu)=(0,0)$ is a bifurcation point. This particular type of bifurcation where the one branch is associated with fixed points and the other branch is not associated to any fixed points is known as saddle-node bifurcation.

In pitchfork bifurcations the number of fixed points varies with respect to the values of the bifurcation parameter. The dynamical system $\dot{x}=x\left(\mu-x^2\right)$ is considered. The associated fixed points are found by the condition $\dot{x}=0$. For $\mu<0$ there is one fixed point at zero which is stable. For $\mu=0$ there is still one fixed point at zero which is still stable. For $\mu>0$ there are three fixed points, one at $x=0$, one at $x=+\sqrt{\mu}$ which is stable and one at $x=-\sqrt{\mu}$ which is also stable. The associated phase diagrams and fixed points are presented in Fig. 1.16.

The bifurcations diagram is given next. The diagram shows how the fixed points of the dynamical system vary with respect to the values of parameter $\mu$. In the above case it represents a parabola in the $\mu-x$ plane as shown in Fig. 1.17.

金融代写|金融工程作业代写Financial Engineering代考|BE953

金融工程代写

金融代写|金融工程作业代写Financial Engineering代考|Phase Diagrams for Linear Dynamical Systems

考虑以下自治线性系统
$$
\dot{x}=A x
$$
矩阵的特征值 $A$ 定义系统动力学。与固定点相关的一些术语如下:
方程式系统的固定点。如果没有矩阵的特征值,则 (1.27) 称为双曲线 $A$ 实部为零。如果矩阵的 某些特征值 $A$ 实部大于零,其余特征值的实部小于零。如果所有特征值都具有负实部,则双曲 不动点称为稳定节点或汇点。如果所有特征值都具有正实部,则双曲不动点称为不稳定节点或 源。如果特征值是纯虚数,则有一个椭圆不动点,称为中心。
情况 1: 矩阵的两个特征值 $A$ 是实数且不相等的,即 $\lambda_1 \neq \lambda_1 \neq 0$. 为了 $\lambda_1<0$ 和 $\lambda_2<0$ 的 相图 $z_1$ 和 $z_2$ 如图 $1.4$ 所示。万 $\lambda_2$ 小于 $\lambda_1$ 期限 $e^{\lambda_2 t}$ 衰减得比 $e^{\lambda_1 t}$. 为了 $\lambda_1>0>\lambda_2$ 图的相 图。1.5获得。
在后一种情况下,沿着特征向量有稳定的轨迹 $v_1$ 和沿特征向量的不稳定轨迹 $v_2$ 矩阵的 $A$. 稳定 点 $(0,0)$ 被称为鞍点。
什么时候 $\lambda_1>\lambda_2>0$ 然后是图 $1.6$ 的相图。
情况 2: 复特征值:
图 $1.7$ 给出了稳定复特征值情况下的典型相图。
图 $1.8$ 给出了不稳定复特征值情况下的典型相图。
图 $1.9$ 给出了虚本征值情况下的典型相图。
案例 3: 矩阵 $A$ 具有彼此相等的非零特征值。相关的相图如图 $1.10$ 所示。

金融代写|金融工程作业代写Financial Engineering代考|Saddle-Node Bifurcations of Fixed Points

所考虑的动力系统由下式给出 $\dot{x}=\mu-x^2$. 系统的固定点由条件产生 $\dot{x}=0$ 哪个 $\mu>0$ 给 $x^*=\pm \sqrt{\mu}$. 第一个固定点 $x=\sqrt{\mu}$ 是稳定的,而第二个不动点 $x=-\sqrt{\mu}$ 是一个不稳定 的。系统的相图如图 $1.14$ 所示。由于存在一个稳定不动点和一个不稳定不动点,因此相关的 分叉 (相平面中不动点的轨迹) 将是一个鞍节点分叉。
接下来给出分叉图。该图显示了动力系统的固定点如何随参数值变化 $\mu$. 在上面的例子中,它 代表了一条抛物线 $\mu-x$ 平面如图 $1.15$ 所示。
为了 $\mu>0$ 动力系统有两个固定点位于 $\pm \sqrt{\mu}$. 一个固定点是稳定的并且与抛物线的上分支相 关联。另一个不动点不稳定,与抛物线的下支有关。价值 $\mu=0$ 被认为是一个分叉值和点 $(x, \mu)=(0,0)$ 是分岔点。这种特殊类型的分叉称为鞍节点分叉,其中一个分支与固定点相 关联,而另一个分支不与任何固定点相关联。
在干草叉分叉中,固定点的数量随分叉参数的值而变化。动力系统 $\dot{x}=x\left(\mu-x^2\right)$ 被认为。 关联的固定点由条件找到 $\dot{x}=0$. 为了 $\mu<0$ 零处有一个固定点是稳定的。为了 $\mu=0$ 在零处 仍有一个固定点仍然稳定。为了 $\mu>0$ 有三个固定点,一个在 $x=0$ ,一在 $x=+\sqrt{\mu}$ 这是 稳定的,一个在 $x=-\sqrt{\mu}$ 这也是稳定的。相关的相图和固定点如图 $1.16$ 所示。
接下来给出分叉图。该图显示了动力系统的固定点如何随参数值变化 $\mu$. 在上面的例子中,它 代表了一条抛物线 $\mu-x$ 平面如图 $1.17$ 所示。

金融代写|金融工程作业代写Financial Engineering代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

金融代写|金融工程作业代写Financial Engineering代考|ICEFE2022

如果你也在 怎样代写金融工程Financial Engineering这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

statistics-lab™ 为您的留学生涯保驾护航 在代写金融工程Financial Engineering方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写金融工程Financial Engineering代写方面经验极为丰富,各种代写金融工程Financial Engineering相关的作业也就用不着说。

我们提供的金融工程Financial Engineering及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
金融代写|金融工程作业代写Financial Engineering代考|ICEFE2022

金融代写|金融工程作业代写Financial Engineering代考|Lyapunov Stability Approach

The Lyapunov method analyzes the stability of a dynamical system without the need to compute explicitly the trajectories of the state vector $x=\left[x_1, x_2, \cdots, x_n\right]^T$.
Theorem: The system described by the relation $\dot{x}=f(x)$ is asymptotically stable in the vicinity of the equilibrium $x_0=0$ if there is a function $V(x)$ such that
(i) $V(x)$ to be continuous and to have a continuous first order derivative at $x_0$
(ii) $V(x)>0$ if $x \neq 0$ and $V(0)=0$
(iii) $\dot{V}(x)<0, \forall x \neq 0$.
The Lyapunov function is usually chosen to be a quadratic (and thus positive) energy function of the system however there in no systematic method to define it.

Assume now, that $\dot{x}=f(x)$ and $x_0=0$ is the equilibrium. Then the system is globally asymptotically stable if for every $\varepsilon>0, \exists \delta(\varepsilon)>0$, such that if $|x(0)|<\delta$ then $|x(t)|<\varepsilon, \forall t \geq 0$.

This means that if the state vector of the system starts in a disc of radius $\delta$ then as time advances it will remain in the disc of radius $\varepsilon$, as shown in Fig. 1.3. Moreover, if $\lim _{t \rightarrow \infty}|x(t)|=x_0=0$ then the system is globally asymptotically stable.
Example 1: Consider the system
$$
\begin{gathered}
\dot{x}_1=x_2 \
\dot{x}_2=-x_1-x_3^2
\end{gathered}
$$
The following Lyapunov function is defined
$$
V(x)-x_1^2+x_2^2
$$

The equilibrium point is $\left(x_1=0, x_2=0\right)$. It holds that $V(x)>0 \forall\left(x_1, x_2\right) \neq(0,0)$ and $V(x)=0$ for $\left(x_1, x_2\right)=(0,0)$. Moreover, it holds
$$
\begin{gathered}
\dot{V}(x)=2 x_1 \dot{x}1+2 x_2 \dot{x}_2=2 x_1 x_2+2 x_2\left(-x_1-x_2^3\right) \Rightarrow \ \dot{V}(x)=-2 x_2^4<0 \forall\left(x_1, x_2\right) \neq(0,0) \end{gathered} $$ Therefore, the system is asymptotically stable and $\lim {t \rightarrow \infty}\left(x_1, x_2\right)=(0,0)$.

金融代写|金融工程作业代写Financial Engineering代考|Local Stability Properties of a Nonlinear Model

Local stability of a nonlinear model can be studied round the associated equilibria. Local linearization can be performed round equilibria, using the set of differential equations that describe the nonlinear model $\dot{x}=h(x)$ and performing Taylor series expansion, that is $\dot{x}=h(x) \Rightarrow \dot{x}=\left.h\left(x_0\right)\right|_{x_0}+\nabla_x h\left(x-x_0\right)+\cdots$.
The nonlinear model is taken to have the generic form
$$
\left(\begin{array}{l}
\dot{x}_1 \
\dot{x}_2
\end{array}\right)=\left(\begin{array}{l}
f\left(x_1, x_2\right) \
g\left(x_1, x_2\right)
\end{array}\right)
$$
where $f\left(x_1, x_2\right)=2 x_1+x_2^2$ and $g\left(x_1, x_2\right)=x_1^2+2 x_2$. The fixed points of this model are computed from the condition $\dot{x}_1=0$ and $\dot{x}_2=0$. Using these relations one finds the equilibria $\left(x_1^, x_2^\right)=(0,0)$ and $\left(x_1^, x_2^\right)=(0,0)$
The Jacobian matrix $\nabla_x h=M$ is given by
$$
M=\left(\begin{array}{ll}
\frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \
\frac{\partial g}{\partial x_1} & \frac{\partial g}{\partial x_2}
\end{array}\right)
$$
which results into the matrix
$$
J=\left(\begin{array}{cc}
2 & 2 x_2 \
2 x_1 & 2
\end{array}\right)
$$
The eigenvalues of matrix $M$ define stability round fixed points (stable or unstable fixed point). To this end, one has to find the roots of the associated characteristic polynomial that is given by $\operatorname{det}(\lambda I-J)=0$ where $I$ is the identity matrix.

金融代写|金融工程作业代写Financial Engineering代考|ICEFE2022

金融工程代写

金融代写|金融工程作业代写Financial Engineering代考|Lyapunov Stability Approach

Lyapunov 方法分析动力系统的稳定性,无需显式计算状态向量的轨迹
$$
x=\left[x_1, x_2, \cdots, x_n\right]^T \text {. }
$$
定理: 由关系描述的系统 $\dot{x}=f(x)$ 在平衡点附近渐近稳定 $x_0=0$ 如果有函数 $V(x)$ 这样
(i) $V(x)$ 是连续的,并且有一个连续的一阶导数在 $x_0$
(二) $V(x)>0$ 如果 $x \neq 0$ 和 $V(0)=0$
(三) $\dot{V}(x)<0, \forall x \neq 0$. Lyapunov 函数通常被选择为系统的二次 (因此是正) 能量函数,但是没有系统的方法来定义 它。 现在假设, $\dot{x}=f(x)$ 和 $x_0=0$ 是平衡点。那么系统是全局渐近稳定的如果对于每个 $\varepsilon>0, \exists \delta(\varepsilon)>0$, 这样如果 $|x(0)|<\delta$ 然后 $|x(t)|<\varepsilon, \forall t \geq 0$. 这意味着如果系统的状态向量开始于半径为 $\delta$ 然后随着时间的推移它将保留在半径的圆盘中 $\varepsilon$ , 如图1.3所示。此外,如果 $\lim _{t \rightarrow \infty}|x(t)|=x_0=0$ 那么系统是全局渐近稳定的。 示例 1:考虑系统 $$ \dot{x}_1=x_2 \dot{x}_2=-x_1-x_3^2 $$ 定义了以下 Lyapunov 函数 $$ V(x)-x_1^2+x_2^2 $$ 平衡点是 $\left(x_1=0, x_2=0\right)$. 它认为 $V(x)>0 \forall\left(x_1, x_2\right) \neq(0,0)$ 和 $V(x)=0$ 为了 $\left(x_1, x_2\right)=(0,0)$. 此外, 它持有
$$
\dot{V}(x)=2 x_1 \dot{x} 1+2 x_2 \dot{x}_2=2 x_1 x_2+2 x_2\left(-x_1-x_2^3\right) \Rightarrow \dot{V}(x)=-2 x_2^4<0 \forall\left(x_1, x_2\right)
$$
因此,系统斩近稳定且 $\lim t \rightarrow \infty\left(x_1, x_2\right)=(0,0)$.

金融代写|金融工程作业代写Financial Engineering代考|Local Stability Properties of a Nonlinear Model

非线性模型的局部稳定性可以围绕相关平衡进行研究。可以使用描述非线性模型的微分方程组 在循环平衡中执行局部线性化 $\dot{x}=h(x)$ 并进行泰勒级数展开,即 $\dot{x}=h(x) \Rightarrow \dot{x}=\left.h\left(x_0\right)\right|{x_0}+\nabla_x h\left(x-x_0\right)+\cdots$ 非线性模型采用一般形式 $$ \left(\dot{x}_1 \dot{x}_2\right)=\left(f\left(x_1, x_2\right) g\left(x_1, x_2\right)\right) $$ 在哪里 $f\left(x_1, x_2\right)=2 x_1+x_2^2$ 和 $g\left(x_1, x_2\right)=x_1^2+2 x_2$. 该模型的固定点是根据条件计算 的 $\dot{x}_1=0$ 和 $\dot{x}_2=0$. 使用这些关系可以找到平衡点 $\bigcup$ |left $\left(x{-} 1 \wedge, x_{-} 2 \wedge r i g h t\right)=(0,0)$ 和
left $\left(x_{-} 1 \wedge, x_{-} _2 \wedge\right.$ right $)=(0,0)$
雅可比矩阵 $\nabla_x h=M$ 是 (谁) 给的
$$
M=\left(\begin{array}{llll}
\frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \frac{\partial g}{\partial x_1} & \frac{\partial g}{\partial x_2}
\end{array}\right)
$$
结果进入矩阵
$$
J=\left(\begin{array}{lll}
2 & 2 x_2 2 x_1 & 2
\end{array}\right)
$$
矩阵的特征值 $M$ 定义围绕固定点的稳定性 (稳定或不稳定的固定点)。为此,必须找到由下 式给出的相关特征多项式的根 $\operatorname{det}(\lambda I-J)=0$ 在哪里 $I$ 是单位矩阵。

金融代写|金融工程作业代写Financial Engineering代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

金融代写|金融工程作业代写Financial Engineering代考|Best107

如果你也在 怎样代写金融工程Financial Engineering这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

statistics-lab™ 为您的留学生涯保驾护航 在代写金融工程Financial Engineering方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写金融工程Financial Engineering代写方面经验极为丰富,各种代写金融工程Financial Engineering相关的作业也就用不着说。

我们提供的金融工程Financial Engineering及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
金融代写|金融工程作业代写Financial Engineering代考|Best107

金融代写|金融工程作业代写Financial Engineering代考|Characteristics of the Dynamics of Nonlinear Systems

Main features characterizing the stability of nonlinear dynamical systems are defined as follows [121, 274]:

  1. Finite escape time: It is the finite time within which the state-vector of the nonlinear system converges to infinity.
  2. Multiple isolated equilibria: A linear system can have only one equilibrium to which converges the state vector of the system in steady-state. A nonlinear system can have more than one isolated equilibria (fixed points). Depending on the initial state of the system, in steady-state the state vector of the system can converge to one of these equilibria.
  3. Limit cycles: For a linear system to exhibit oscillations it must have eigenvalues on the imaginary axis. The amplitude of the oscillations depends on initial conditions. In nonlinear systems one may have oscillations of constant amplitude and frequency, which do not depend on initial conditions. This type of oscillations is known as limit cycles.
  4. Sub-harmonic, harmonic and almost periodic oscillations: A stable linear system under periodic input produces an output of the same frequency. A nonlinear system,

under periodic excitation can generate oscillations with frequencies which are several times smaller (subharmonic) or multiples of the frequency of the input (harmonic). It may also generate almost periodic oscillations with frequencies which are not necessarily multiples of a basis frequency (almost periodic oscillations).

  1. Chaos: A nonlinear system in steady-state can exhibit a behavior which is not characterized as equilibrium, periodic oscillation or almost periodic oscillation. This behavior is characterized as chaos. As time advances the behavior of the system changes in a random-like manner, and this depends on the initial conditions. Although the dynamic system is deterministic it exhibits randomness in the way it evolves in time.
  2. Multiple modes of behavior: It is possible the same dynamical system to exhibit simultaneously more than one of the aforementioned characteristics (1)-(5). Thus, a system without external excitation may exhibit simultaneously more than one limit cycles. A system receiving a periodic external input may exhibit harmonic or subharmonic oscillations, or an even more complex behavior in steady state which depends on the amplitude and frequency of the excitation.

金融代写|金融工程作业代写Financial Engineering代考|Computation of Isoclines

An autonomous second order system is described by two differential equations of the form
$$
\begin{aligned}
& \dot{x}_1=f_1\left(x_1, x_2\right) \
& \dot{x}_2=f_2\left(x_1, x_2\right)
\end{aligned}
$$
The method of the isoclines consists of computing the slope (ratio) between $f_2$ and $f_1$ for every point of the trajectory of the state vector $\left(x_1, x_2\right)$.
$$
s(x)=\frac{f_2\left(x_1, x_2\right)}{f_1\left(x_1, x_2\right)}
$$
The case $s(x)=c$ describes a curve in the $x_1-x_2$ plane along which the trajectories $\dot{x}_1=f_1\left(x_1, x_2\right)$ and $\dot{x}_2=f_2\left(x_1, x_2\right)$ have a constant slope.

The curve $s(x)=c$ is drawn in the $x_1-x_2$ plane and along this curve one also draws small linear segments of length $c$. The curve $s(x)=c$ is known as isocline. The direction of these small linear segments is according to the sign of the ratio $f_2\left(x_1, x_2\right) / f_1\left(x_1, x_2\right)$.
Example 1:
The following simplified nonlinear dynamical system is considered
$$
\begin{gathered}
\dot{x}_1=x_2 \
\dot{x}_2=-\sin \left(x_1\right)
\end{gathered}
$$

The slope $s(x)$ is given by the relation
$$
s(x)=\frac{f_2\left(x_1, x_2\right)}{f_1\left(x_1, x_2\right)} \Rightarrow s(x)=-\frac{s i n\left(x_2\right)}{x_2}
$$
Setting $s(x)=c$ it holds that the isoclines are given by the relation
$$
x_2=-\frac{1}{c} \sin \left(x_1\right)
$$
For different values of $c$ one has the following isoclines diagram depicted in Fig. 1.1. Example 2:

The following oscillator model is considered, being free of friction and with statespace equations
$$
\begin{gathered}
\dot{x}_1=x_2 \
\dot{x}_2=-0.5 x_2-\sin \left(x_1\right)
\end{gathered}
$$

金融代写|金融工程作业代写Financial Engineering代考|Best107

金融工程代写

金融代写|金融工程作业代写Financial Engineering代考|Characteristics of the Dynamics of Nonlinear Systems

表征非线性动力系统稳定性的主要特征定义如下 [121, 274]:

  1. 有限逃逸时间:是非线性系统的状态向量收敛到无穷大的有限时间。
  2. 多重孤立平衡:一个线性系统只能有一个平衡点,该平衡点收敛于稳态系统的状态向量。一个非线性系统可以有多个孤立的平衡点(不动点)。根据系统的初始状态,在稳态下,系统的状态向量可以收敛到这些平衡点之一。
  3. 极限环:对于表现出振荡的线性系统,它必须在虚轴上具有特征值。振荡的幅度取决于初始条件。在非线性系统中,可能存在幅度和频率恒定的振荡,不依赖于初始条件。这种类型的振荡被称为极限环。
  4. 次谐波、谐波和几乎周期性振荡:在周期性输入下稳定的线性系统会产生相同频率的输出。一个非线性系统,

在周期性激励下会产生频率比输入频率小几倍(次谐波)或数倍(谐波)的振荡。它还可能产生几乎周期性的振荡,其频率不一定是基频的倍数(几乎周期性振荡)。

  1. 混沌:处于稳态的非线性系统可能表现出一种不具有平衡、周期性振荡或几乎周期性振荡特征的行为。这种行为的特点是混乱。随着时间的推移,系统的行为会以类似随机的方式发生变化,这取决于初始条件。尽管动态系统是确定性的,但它随时间演化的方式表现出随机性。
  2. 多种行为模式:同一动力系统可能同时表现出上述特征 (1)-(5) 中的一个以上。因此,没有外部激励的系统可能同时表现出多个极限循环。接收周期性外部输入的系统可能会表现出谐波或次谐波振荡,或者在稳态下表现出更复杂的行为,这取决于激励的幅度和频率。

金融代写|金融工程作业代写Financial Engineering代考|Computation of Isoclines

自治二阶系统由以下形式的两个微分方程描述
$$
\dot{x}_1=f_1\left(x_1, x_2\right) \quad \dot{x}_2=f_2\left(x_1, x_2\right)
$$
等斜线的方法包括计算之间的斜率 (比率) $f_2$ 和 $f_1$ 对于状态向量轨迹的每一点 $\left(x_1, x_2\right)$.
$$
s(x)=\frac{f_2\left(x_1, x_2\right)}{f_1\left(x_1, x_2\right)}
$$
案子 $s(x)=c$ 描述了一条曲线 $x_1-x_2$ 轨迹沿着的平面 $\dot{x}_1=f_1\left(x_1, x_2\right)$ 和 $\dot{x}_2=f_2\left(x_1, x_2\right)$ 有一个恒定的斜率。
曲线 $s(x)=c$ 被绘制在 $x_1-x_2$ 平面并沿着这条曲线也绘制了长度的小线性段 $c$. 曲线 $s(x)=c$ 被称为等倾角。这些小线段的方向是根据比率的符号 $f_2\left(x_1, x_2\right) / f_1\left(x_1, x_2\right)$. 示例 1:
考虑以下简化的非线性动力系统
$$
\dot{x}_1=x_2 \dot{x}_2=-\sin \left(x_1\right)
$$
斜坡 $s(x)$ 由关系给出
$$
s(x)=\frac{f_2\left(x_1, x_2\right)}{f_1\left(x_1, x_2\right)} \Rightarrow s(x)=-\frac{\sin \left(x_2\right)}{x_2}
$$
环境 $s(x)=c$ 它认为等斜线由关系给出
$$
x_2=-\frac{1}{c} \sin \left(x_1\right)
$$
对于不同的值 $c$ 一个具有以下图 $1.1$ 中描绘的等倾线图。示例 2 :
考虑以下振荡器模型,无摩擦且具有状态空间方程
$$
\dot{x}_1=x_2 \dot{x}_2=-0.5 x_2-\sin \left(x_1\right)
$$

金融代写|金融工程作业代写Financial Engineering代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

金融代写|金融工程作业代写Financial Engineering代考|BE953

如果你也在 怎样代写金融工程Financial Engineering这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

statistics-lab™ 为您的留学生涯保驾护航 在代写金融工程Financial Engineering方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写金融工程Financial Engineering代写方面经验极为丰富,各种代写金融工程Financial Engineering相关的作业也就用不着说。

我们提供的金融工程Financial Engineering及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
金融代写|金融工程作业代写Financial Engineering代考|BE953

金融代写|金融工程作业代写Financial Engineering代考|Local Stability Properties of a Nonlinear Model

Local stability of a nonlinear model can be studied round the associated equilibria. Local linearization can be performed round equilibria, using the set of differential equations that describe the nonlinear model $\dot{x}=h(x)$ and performing Taylor series expansion, that is $\dot{x}=h(x) \Rightarrow \dot{x}=\left.h\left(x_{0}\right)\right|{x{0}}+\nabla_{x} h\left(x-x_{0}\right)+\cdots$.
The nonlinear model is taken to have the generic form
$$
\left(\begin{array}{l}
\dot{x}{1} \ \dot{x}{2}
\end{array}\right)=\left(\begin{array}{l}
f\left(x_{1}, x_{2}\right) \
g\left(x_{1}, x_{2}\right)
\end{array}\right)
$$
where $f\left(x_{1}, x_{2}\right)=2 x_{1}+x_{2}^{2}$ and $g\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 x_{2}$. The fixed points of this model are computed from the condition $\dot{x}{1}=0$ and $\dot{x}{2}=0$. Using these relations one finds the equilibria $\left(x_{1}^{}, x_{2}^{}\right)=(0,0)$ and $\left(x_{1}^{}, x_{2}^{}\right)=(0,0)$
The Jacobian matrix $\nabla_{x} h=M$ is given by
$$
M=\left(\begin{array}{ll}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} \
\frac{\partial g}{\partial x_{1}} & \frac{\partial g}{\partial x_{2}}
\end{array}\right)
$$
which results into the matrix
$$
J=\left(\begin{array}{cc}
2 & 2 x_{2} \
2 x_{1} & 2
\end{array}\right)
$$

金融代写|金融工程作业代写Financial Engineering代考|Phase Diagrams for Linear Dynamical Systems

The following autonomous linear system is considered
$$
\dot{x}=A x
$$
The eigenvalues of matrix $A$ define the system dynamics. Some terminology associated with fixed points is as follows:

A fixed point for the system of Eq. (1.27) is called hyperbolic if none of the eigenvalues of matrix $A$ has zero real part. A hyperbolic fixed point is called a saddle if some of the eigenvalues of matrix $A$ have real parts greater than zero and the rest of the eigenvalues have real parts less than zero. If all of the eigenvalues have negative real parts then the hyperbolic fixed point is called a stable node or sink. If all of the eigenvalues have positive real parts then the hyperbolic fixed point is called an unstable node or source. If the eigenvalues are purely imaginary then one has an elliptic fixed point which is said to be a center.
Case 1: Both eigenvalues of matrix $A$ are real and unequal, that is $\lambda_{1} \neq \lambda_{1} \neq 0$. For $\lambda_{1}<0$ and $\lambda_{2}<0$ the phase diagram for $z_{1}$ and $z_{2}$ is shown in Fig. 1.4. In case that $\lambda_{2}$ is smaller than $\lambda_{1}$ the term $e^{\lambda_{2} t}$ decays faster than $e^{\lambda_{1} t}$. For $\lambda_{1}>0>\lambda_{2}$ the phase diagram of Fig. $1.5$ is obtained.

金融代写|金融工程作业代写Financial Engineering代考|BE953

金融工程代写

金融代写|金融工程作业代写Financial Engineering代考|Local Stability Properties of a Nonlinear Model

非线性模型的局部稳定性可以围绕相关的平衡来研究。使用描述非线性模型的微分方程组,可以围绕平衡执行局 部线性化 $\dot{x}=h(x)$ 并执行泰勒级数展开,即 $\dot{x}=h(x) \Rightarrow \dot{x}=h\left(x_{0}\right) \mid x 0+\nabla_{x} h\left(x-x_{0}\right)+\cdots$. 非线性模型被取为具有一般形式
$$
(\dot{x} 1 \dot{x} 2)=\left(f\left(x_{1}, x_{2}\right) g\left(x_{1}, x_{2}\right)\right)
$$
在哪里 $f\left(x_{1}, x_{2}\right)=2 x_{1}+x_{2}^{2}$ 和 $g\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 x_{2}$. 该模型的不动点是根据条件计算的 $\dot{x} 1=0$ 和 $\dot{x} 2=0$. 使用这些关系可以找到平衡 $\left(x_{1}, x_{2}\right)=(0,0)$ 和 $\left(x_{1}, x_{2}\right)=(0,0)$ 雅可比矩阵 $\nabla_{x} h=M$ 是 (谁) 给的
$$
M=\left(\begin{array}{lll}
\frac{\partial f}{\partial x_{1}} \quad \frac{\partial f}{\partial x_{2}} & \frac{\partial g}{\partial x_{1}} & \frac{\partial g}{\partial x_{2}}
\end{array}\right)
$$
这导致矩阵

金融代写|金融工程作业代写Financial Engineering代考|Phase Diagrams for Linear Dynamical Systems

考虑以下自治线性系统
$$
\dot{x}=A x
$$
矩阵的特征值 $A$ 定义系统动力学。与固定点相关的一些术语如下:
方程系统的不动点。如果矩阵没有任何特征值,则称 (1.27) 为双曲线 $A$ 实部为零。如果矩阵的某些特征值,则双 曲不动点称为鞍 $A$ 实部大于零,其余特征值的实部小于零。如果所有特征值都具有负实部,则双曲不动点称为稳 定节点或汇点。如果所有特征值都具有正实部,则双曲不动点称为不稳定节点或源。如果特征值是纯虚数,则有 一个椭圆不动点,称为中心。
案例1: 矩阵的两个特征值 $A$ 是真实的和不平等的,即 $\lambda_{1} \neq \lambda_{1} \neq 0$. 为了 $\lambda_{1}<0$ 和 $\lambda_{2}<0$ 相图 $z_{1}$ 和 $z_{2}$ 如图 $1.4$ 所示。万一 $\lambda_{2}$ 小于 $\lambda_{1}$ 期限 $e^{\lambda_{2} t}$ 衰减速度比 $e^{\lambda_{1} t}$. 为了 $\lambda_{1}>0>\lambda_{2}$ 图的相图1.5获得。

金融代写|金融工程作业代写Financial Engineering代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

金融代写|金融工程作业代写Financial Engineering代考|ICEFE 2022

如果你也在 怎样代写金融工程Financial Engineering这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

statistics-lab™ 为您的留学生涯保驾护航 在代写金融工程Financial Engineering方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写金融工程Financial Engineering代写方面经验极为丰富,各种代写金融工程Financial Engineering相关的作业也就用不着说。

我们提供的金融工程Financial Engineering及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
金融代写|金融工程作业代写Financial Engineering代考|ICEFE 2022

金融代写|金融工程作业代写Financial Engineering代考|The Phase Diagram

One can consider the following nonlinear model with the two state variables, $V$ and $\eta$. The dynamics of this model can be written as
$$
\begin{aligned}
\frac{d V}{d t} &=f(V, t) \
\frac{d \eta}{d t} &=g(V, \eta)
\end{aligned}
$$
The phase diagram consists of the points on the trajectories of the solution of the associated differential equation, i.e. $\left(V\left(t_{k}\right), \eta\left(t_{k}\right)\right)$.

At a fixed point or equilibrium it holds $f\left(V_{R}, \eta_{R}\right)=0$ and $g\left(V_{R}, \eta_{R}\right)=0$. The closed trajectories are associated with periodic solutions. If there are closed trajectories then $\exists T>0$ such that $\left(V\left(t_{k}\right), \eta\left(t_{k}\right)\right)=\left(V\left(t_{k}+T\right), \eta\left(t_{k}+T\right)\right)$.

Another useful parameter is the nullclines. The $V$-nullcline is characterized by the relation $\dot{V}=f(V, \eta)=0$. The $\eta$-nullcline is characterized by the relation $\dot{\eta}=g(V, \eta)=0$. The fixed points (or equilibria) are found on the intersection of nullclines.

金融代写|金融工程作业代写Financial Engineering代考|Lyapunov Stability Approach

The Lyapunov method analyzes the stability of a dynamical system without the need to compute explicitly the trajectories of the state vector $x=\left[x_{1}, x_{2}, \cdots, x_{n}\right]^{T}$.
Theorem: The system described by the relation $\dot{x}=f(x)$ is asymptotically stable in the vicinity of the equilibrium $x_{0}=0$ if there is a function $V(x)$ such that
(i) $V(x)$ to be continuous and to have a continuous first order derivative at $x_{0}$
(ii) $V(x)>0$ if $x \neq 0$ and $V(0)=0$
(iii) $\dot{V}(x)<0, \forall x \neq 0$.
The Lyapunov function is usually chosen to be a quadratic (and thus positive) energy function of the system however there in no systematic method to define it.

Assume now, that $\dot{x}=f(x)$ and $x_{0}=0$ is the equilibrium. Then the system is globally asymptotically stable if for every $\varepsilon>0, \exists \delta(\varepsilon)>0$, such that if $|x(0)|<\delta$ then $|x(t)|<\varepsilon, \forall t \geq 0$.

This means that if the state vector of the system starts in a disc of radius $\delta$ then as time advances it will remain in the disc of radius $\varepsilon$, as shown in Fig. 1.3. Moreover, if $\lim {t \rightarrow \infty}|x(t)|=x{0}=0$ then the system is globally asymptotically stable.
Example 1: Consider the system
$$
\begin{gathered}
\dot{x}{1}=x{2} \
\dot{x}{2}=-x{1}-x_{3}^{2}
\end{gathered}
$$
The following Lyapunov function is defined
$$
V(x)=x_{1}^{2}+x_{2}^{2}
$$

金融代写|金融工程作业代写Financial Engineering代考|ICEFE 2022

金融工程代写

金融代写|金融工程作业代写Financial Engineering代考|The Phase Diagram

可以考虑以下具有两个状态变量的非线性模型, $V$ 和 $\eta$. 该模型的动力学可以写为
$$
\frac{d V}{d t}=f(V, t) \frac{d \eta}{d t} \quad=g(V, \eta)
$$
相图由相关微分方程解的轨迹上的点组成,即 $\left(V\left(t_{k}\right), \eta\left(t_{k}\right)\right)$.
在固定点或平衡点,它保持 $f\left(V_{R}, \eta_{R}\right)=0$ 和 $g\left(V_{R}, \eta_{R}\right)=0$. 闭合轨迹与周期解相关联。如果有封闭的轨 迹,那么 $\exists T>0$ 这样 $\left(V\left(t_{k}\right), \eta\left(t_{k}\right)\right)=\left(V\left(t_{k}+T\right), \eta\left(t_{k}+T\right)\right)$.
另一个有用的参数是 nullclines。这 $V$-nullcline 的特征是关系 $\dot{V}=f(V, \eta)=0$. 这 $\eta$-nullcline 的特征是关系 $\dot{\eta}=g(V, \eta)=0$. 在零斜线的交点上找到不动点 (或平衡点)。

金融代写|金融工程作业代写Financial Engineering代考|Lyapunov Stability Approach

Lyapunov 方法无需明确计算状态向量的轨迹即可分析动力系统的稳定性 $x=\left[x_{1}, x_{2}, \cdots, x_{n}\right]^{T}$. 定理: 由关系描述的系统 $\dot{x}=f(x)$ 在平衡点附近是渐近稳定的 $x_{0}=0$ 如果有功能 $V(x)$ 这样 (i) $V(x)$ 是连续的并且在处具有连续的一阶导数 $x_{0}$
(二) $V(x)>0$ 如果 $x \neq 0$ 和 $V(0)=0$
$\Leftrightarrow \dot{V}(x)<0, \forall x \neq 0$. Lyapunov 函数通常被选择为系统的二次 (因此是正) 能量函数,但是没有系统的方法来定义它。 现在假设,那 $\dot{x}=f(x)$ 和 $x_{0}=0$ 是均衡。那么系统是全局渐近稳定的,如果对于每个 $\varepsilon>0, \exists \delta(\varepsilon)>0$, 这样 如果 $|x(0)|<\delta$ 然后 $|x(t)|<\varepsilon, \forall t \geq 0$.
这意味責如果系统的状态向量开始于一个半径为 $\delta$ 然后随着时间的推移,它将留在半径的圆盘中 $\varepsilon$ ,如图 $1.3$ 所 示。此外,如果 $\lim t \rightarrow \infty|x(t)|=x 0=0$ 那么系统是全局渐近稳定的。
示例 1:考虑系统
$$
\dot{x} 1=x 2 \dot{x} 2=-x 1-x_{3}^{2}
$$
定义以下 Lyapunov 函数
$$
V(x)=x_{1}^{2}+x_{2}^{2}
$$

金融代写|金融工程作业代写Financial Engineering代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

金融代写|金融工程作业代写Financial Engineering代考|Best 107

如果你也在 怎样代写金融工程Financial Engineering这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

statistics-lab™ 为您的留学生涯保驾护航 在代写金融工程Financial Engineering方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写金融工程Financial Engineering代写方面经验极为丰富,各种代写金融工程Financial Engineering相关的作业也就用不着说。

我们提供的金融工程Financial Engineering及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
金融代写|金融工程作业代写Financial Engineering代考|Best 107

金融代写|金融工程作业代写Financial Engineering代考|Characteristics of the Dynamics of Nonlinear Systems

Main features characterizing the stability of nonlinear dynamical systems are defined as follows [121, 274]:

  1. Finite escape time: It is the finite time within which the state-vector of the nonlinear system converges to infinity.
  2. Multiple isolated equilibria: A linear system can have only one equilibrium to which converges the state vector of the system in steady-state. A nonlinear system can have more than one isolated equilibria (fixed points). Depending on the initial state of the system, in steady-state the state vector of the system can converge to one of these equilibria.
  3. Limit cycles: For a linear system to exhibit oscillations it must have eigenvalues on the imaginary axis. The amplitude of the oscillations depends on initial conditions. In nonlinear systems one may have oscillations of constant amplitude and frequency, which do not depend on initial conditions. This type of oscillations is known as limit cycles.
  4. Sub-harmonic, harmonic and almost periodic oscillations: A stable linear system under periodic input produces an output of the same frequency. A nonlinear system,

under periodic excitation can generate oscillations with frequencies which are several times smaller (subharmonic) or multiples of the frequency of the input (harmonic). It may also generate almost periodic oscillations with frequencies which are not necessarily multiples of a basis frequency (almost periodic oscillations).

  1. Chaos: A nonlinear system in steady-state can exhibit a behavior which is not characterized as equilibrium, periodic oscillation or almost periodic oscillation. This behavior is characterized as chaos. As time advances the behavior of the system changes in a random-like manner, and this depends on the initial conditions. Although the dynamic system is deterministic it exhibits randomness in the way it evolves in time.
  2. Multiple modes of behavior: It is possible the same dynamical system to exhibit simultaneously more than one of the aforementioned characteristics (1)-(5). Thus, a system without external excitation may exhibit simultaneously more than one limit cycles. A system receiving a periodic external input may exhibit harmonic or subharmonic oscillations, or an even more complex behavior in steady state which depends on the amplitude and frequency of the excitation.

金融代写|金融工程作业代写Financial Engineering代考|Computation of Isoclines

An autonomous second order system is described by two differential equations of the form
$$
\begin{aligned}
&\dot{x}{1}=f{1}\left(x_{1}, x_{2}\right) \
&\dot{x}{2}=f{2}\left(x_{1}, x_{2}\right)
\end{aligned}
$$
The method of the isoclines consists of computing the slope (ratio) between $f_{2}$ and $f_{1}$ for every point of the trajectory of the state vector $\left(x_{1}, x_{2}\right)$.
$$
s(x)=\frac{f_{2}\left(x_{1}, x_{2}\right)}{f_{1}\left(x_{1}, x_{2}\right)}
$$
The case $s(x)=c$ describes a curve in the $x_{1}-x_{2}$ plane along which the trajectories $\dot{x}{1}=f{1}\left(x_{1}, x_{2}\right)$ and $\dot{x}{2}=f{2}\left(x_{1}, x_{2}\right)$ have a constant slope.

The curve $s(x)=c$ is drawn in the $x_{1}-x_{2}$ plane and along this curve one also draws small linear segments of length $c$. The curve $s(x)=c$ is known as isocline. The direction of these small linear segments is according to the sign of the ratio $f_{2}\left(x_{1}, x_{2}\right) / f_{1}\left(x_{1}, x_{2}\right)$
Example 1:
The following simplified nonlinear dynamical system is considered
$$
\begin{gathered}
\dot{x}{1}=x{2} \
\dot{x}{2}=-\sin \left(x{1}\right)
\end{gathered}
$$

金融代写|金融工程作业代写Financial Engineering代考|Best 107

金融工程代写

金融代写|金融工程作业代写Financial Engineering代考|Characteristics of the Dynamics of Nonlinear Systems

表征非线性动力系统稳定性的主要特征定义如下 [121, 274]:

  1. 有限逃逸时间:这是非线性系统的状态向量收敛到无穷大的有限时间。
  2. 多重孤立平衡:一个线性系统只能有一个平衡点,系统在稳态时的状态向量会收敛到该平衡点。一个非线性系统可以有多个孤立的平衡点(固定点)。根据系统的初始状态,在稳态下,系统的状态向量可以收敛到这些平衡之一。
  3. 极限环:对于表现出振荡的线性系统,它必须在虚轴上具有特征值。振荡幅度取决于初始条件。在非线性系统中,可能会有恒定幅度和频率的振荡,它不依赖于初始条件。这种类型的振荡称为极限环。
  4. 次谐波、谐波和几乎周期性的振荡:周期性输入下的稳定线性系统会产生相同频率的输出。非线性系统,

在周期性激励下会产生频率比输入频率小几倍(次谐波)或多倍(谐波)的振荡。它还可能产生几乎周期性的振荡,其频率不一定是基频的倍数(几乎周期性振荡)。

  1. 混沌:稳态的非线性系统可以表现出不具有平衡、周期性振荡或几乎周期性振荡的特性。这种行为的特点是混乱。随着时间的推移,系统的行为会以类似随机的方式发生变化,这取决于初始条件。尽管动态系统是确定性的,但它在时间演化的方式上表现出随机性。
  2. 多种行为模式:同一动力系统可能同时表现出上述特征 (1)-(5) 中的一个以上。因此,没有外部激励的系统可能同时表现出多个极限环。接收周期性外部输入的系统可能会表现出谐波或次谐波振荡,或者在稳态下表现出更复杂的行为,这取决于激励的幅度和频率。

金融代写|金融工程作业代写Financial Engineering代考|Computation of Isoclines

自治二阶系统由以下形式的两个微分方程描述
$$
\dot{x} 1=f 1\left(x_{1}, x_{2}\right) \quad \dot{x} 2=f 2\left(x_{1}, x_{2}\right)
$$
等倾线的方法包括计算之间的斜率 (比率) $f_{2}$ 和 $f_{1}$ 对于状态向量轨迹的每个点 $\left(x_{1}, x_{2}\right)$.
$$
s(x)=\frac{f_{2}\left(x_{1}, x_{2}\right)}{f_{1}\left(x_{1}, x_{2}\right)}
$$
案子 $s(x)=c$ 描述了一条曲线 $x_{1}-x_{2}$ 轨迹所沿的平面 $\dot{x} 1=f 1\left(x_{1}, x_{2}\right)$ 和 $\dot{x} 2=f 2\left(x_{1}, x_{2}\right)$ 有一个恒定的 斜率。
曲线 $s(x)=c$ 被绘制在 $x_{1}-x_{2}$ 平面并且沿着这条曲线,还可以绘制长度的小线性段 $c$. 曲线 $s(x)=c$ 被称为等倾。这些小的线性段的方向是根据比率的符号 $f_{2}\left(x_{1}, x_{2}\right) / f_{1}\left(x_{1}, x_{2}\right)$
示例 1:
考虑以下简化的非线性动力系统
$$
\dot{x} 1=x 2 \dot{x} 2=-\sin (x 1)
$$

金融代写|金融工程作业代写Financial Engineering代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写