统计代写|复杂网络代写complex networks代考| Scale-Free Degree Distributions

如果你也在 怎样代写复杂网络complex networks这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

复杂网络是由数量巨大的节点和节点之间错综复杂的关系共同构成的网络结构。

statistics-lab™ 为您的留学生涯保驾护航 在代写复杂网络complex networks方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写复杂网络complex networks方面经验极为丰富,各种代写复杂网络complex networks相关的作业也就用不着说。

我们提供的复杂网络complex networks及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
PDF] The structure and dynamics of networks | Semantic Scholar
统计代写|复杂网络代写complex networks代考| Scale-Free Degree Distributions

统计代写|复杂网络代写complex networks代考|Scale-Free Degree Distributions

With the increasing use of the Internet as a source of information and means of communication as well as the increasing availability of large online databases and repositories, more and more differences between real world networks and random graphs were discovered. Most strikingly was certainly the observation that many real world networks have a degree distribution far from Poissonian with heavy tails which rather follows a log-normal distribution or alternatively a power law.

For networks with a power-law degree distribution the notion of a “scalefree” degree distribution is often used. A scale-free degree distribution is characterized by a power law of the form
$$
P(k) \propto k^{-\gamma}
$$
with some positive exponent $\gamma$. The probability of having $k$ neighbors is inversely proportional to $k^{\gamma}$. The name “scale free” comes from the fact that there is no characteristic value of $k$. While in ER graphs, the characteristic $k$ is the average degree $\langle k\rangle$, i.e., the average is also a typical $k$, there is no typical degree in scale-free networks.

From these observations, it became clear that the assumption of equal linking probability for all pairs of nodes had to be dropped and that specific mechanisms had to be sought which could explain the link pattern of complex networks from a set of rules. Until now, many such models have been introduced which model networks to an almost arbitrary degree of detail. The starting point for this development was most likely the model by Barabási and Albert [16]. They realized that for many real world networks, two key ingredients are crucial: growth and preferential attachment, i.e., nodes that already have a large number of links are more likely to acquire new ones during the growth of the network. These two simple assumptions lead them to develop a network model which produces a scale-free degree distribution of exponent $\gamma=3$. Consequently, this model was used as a first attempt to explain the link distribution of web pages.

In order to model an ensemble of random graphs with a given degree distribution without resorting to some growth model of how the graph is knit the “configuration model” can be used. It is generally attributed to Molloy and Reed [17], who devised an algorithm for constructing actual networks, but it was first introduced by Bender and Canfield [18]. The configuration model assumes a given degree distribution $P(k)$. Every node $i$ is assigned a number of stubs $k_{i}$ according to its degree drawn from $P(k)$ and then the stubs are connected randomly. For this model, the probability that two randomly chosen nodes are connected by an edge can be well approximated by $p_{i j}=k_{i} k_{j} / 2 M$ as long as the degrees of the nodes are smaller than $\sqrt{2 M}$. The probability to find a link between two nodes is hence proportional to the product of the degrees of these two nodes. The configuration model and the ER model make fundamentally different assumptions on the nature of the objects represented by the nodes. In the ER model, fluctuations in the number of connections of a node arise entirely due to chance. In the configuration model, they represent a quality of the node which may be interpreted as some sort of “activity” of the object represented by the node.

统计代写|复杂网络代写complex networks代考|Correlations in Networks

Thus far, only models in which all nodes were equivalent have been introduced. In many networks, however, nodes of different types coexist and the probability of linking between them may depend on the types of nodes. A typical example may be the age of the nodes in a social network. Agents of the same age generally have a higher tendency to interact than agents of different ages. Let us assume the type of each node is already known. One can then ask whether the assumption holds, that links between nodes in the same class are indeed more frequent than links between nodes in different classes. Newman [19] defines the following quantities: $e_{r s}$ as the fraction of edges that fall between nodes in class $r$ and $s$. Further, he defines $\sum_{r} e_{r s}=a_{s}$ as the fraction of edges that are connected to at least one node in class $s$. Note that

$e_{r s}$ can also be interpreted as the probability that a randomly chosen edge lies between nodes of class $r$ and $s$ and that $a_{s}$ can be interpreted as the probability that a randomly chosen edge has at least one end in class $s$. Hence, $a_{s}^{2}$ is the expected fraction of edges connecting two nodes of class $s$. Comparing this expectation value with the true value $e_{s s}$ for all groups $s$ leads to the definition of the “assortativity coefficient” $r_{A}$ :
$$
r_{A}=\frac{\sum_{s}\left(e_{s s}-a_{s}^{2}\right)}{1-\sum_{s} a_{s}^{2}} .
$$
This assortativity coefficient $r_{A}$ is one, if all links fall exclusively between nodes of the same type. Then the network is perfectly “assortative”, but the different classes of nodes remain disconnected. It is zero if $e_{s s}=a_{s}^{2}$ for all classes $s$, i.e., no preference in linkage for either the same or a different class is present. It takes negative values, if edges lie preferably between nodes of different classes, in which case the network is called “disassortative”. The denominator corresponds to a perfectly assortative network. Hence, $r_{A}$ can be interpreted as the percentage to which the network is perfectly assortative.
For the classes of the nodes, any measurable quantity may be used [20]. Especially interesting are investigations into assortative mixing by degree, i.e., do nodes predominantly connect to other nodes of similar degree (assortative, $r_{A}>0$ ) or is the opposite the case (disassortative, $r_{A}<0$ ). It was found that many social networks are assortative, while technological or biological networks are generally disassortative $[20]$. Note that $r_{A}$ may also be generalized to the case where the class index $s$ takes continuous values [20]. It should be stressed that such correlation structures do not affect the degree distribution.

统计代写|复杂网络代写complex networks代考|Dynamics on Networks

Apart from these topological models mainly concerned with link structure, a large number of researchers are concerned with dynamical processes taking place on networks and the influence the network structure has on them. Among the most widely studied processes is epidemic spreading and one of the most salient results is certainly that by Cohen $[21,22]$, which shows that for scale-free topologies with exponents larger than two and low clustering, the epidemic threshold (the infectiousness a pathogen needs to infect a significant portion of the network) drops to zero. The reason for this is, in principle, the fact that for scale-free degree distributions with exponents between 2 and 3 the average number of second neighbors $\langle d\rangle$ may diverge. Liljeros showed that networks of sexual contacts do have indeed such a topology [23]. At the same time, these results brought about suggestions for new vaccination techniques such as the vaccination of acquaintances of randomly selected people which allows us to vaccinate people with higher numbers of connections with higher efficiency [24]. Consequently, a number of researchers are also studying the interplay between topology of the network and dynamic processes on networks

in models that allow dynamic rewiring of connections in accordance with, for instance, games being played on the network to gain insights into the origin of cooperation [25].

All of this research has shown the profound effect of the topology of the connections underlying a dynamical process and hence underlines the importance of thoroughly studying the topology of complex networks.

Collective dynamics of 'small-world' networks | Nature
统计代写|复杂网络代写complex networks代考| Scale-Free Degree Distributions

复杂网络代写

统计代写|复杂网络代写complex networks代考|Scale-Free Degree Distributions

随着互联网作为信息和通信手段的使用越来越多,以及大型在线数据库和存储库的可用性越来越高,现实世界网络和随机图之间的差异越来越大。最引人注目的当然是观察到,许多现实世界的网络的度数分布远离具有重尾的 Poissonian 分布,而是遵循对数正态分布或幂律。

对于具有幂律度分布的网络,经常使用“无标度”度分布的概念。无标度度分布的特征是幂律形式为
磷(ķ)∝ķ−C
有一些正指数C. 拥有的概率ķ邻居成反比ķC. “无标度”的名称来自于没有特征值的事实ķ. 而在 ER 图中,特征ķ是平均学位⟨ķ⟩,即平均值也是一个典型的ķ,无标度网络中没有典型度数。

从这些观察中可以清楚地看出,必须放弃所有节点对的链接概率相等的假设,并且必须寻找可以从一组规则中解释复杂网络的链接模式的特定机制。到目前为止,已经引入了许多这样的模型,它们对网络进行了几乎任意程度的详细建模。这一发展的起点很可能是 Barabási 和 Albert [16] 的模型。他们意识到,对于许多现实世界的网络来说,两个关键因素至关重要:增长和优先连接,即已经拥有大量链接的节点更有可能在网络增长期间获得新的链接。这两个简单的假设导致他们开发了一个网络模型,该模型产生指数的无标度度分布C=3. 因此,该模型被用作解释网页链接分布的第一次尝试。

为了对具有给定度分布的随机图的集合进行建模,而无需求助于图如何编织的一些增长模型,可以使用“配置模型”。它通常归功于 Molloy 和 Reed [17],他们设计了一种用于构建实际网络的算法,但它首先由 Bender 和 Canfield [18] 引入。配置模型假设给定度数分布磷(ķ). 每个节点一世分配了一些存根ķ一世根据其程度从磷(ķ)然后随机连接存根。对于这个模型,两个随机选择的节点被一条边连接的概率可以很好地近似为p一世j=ķ一世ķj/2米只要节点的度数小于2米. 因此,在两个节点之间找到链接的概率与这两个节点的度数的乘积成正比。配置模型和 ER 模型对节点表示的对象的性质做出了根本不同的假设。在 ER 模型中,节点连接数的波动完全是偶然性的。在配置模型中,它们代表了节点的质量,可以解释为节点所代表的对象的某种“活动”。

统计代写|复杂网络代写complex networks代考|Correlations in Networks

到目前为止,仅引入了所有节点都等效的模型。然而,在许多网络中,不同类型的节点共存,它们之间链接的概率可能取决于节点的类型。一个典型的例子可能是社交网络中节点的年龄。同年龄的代理人通常比不同年龄的代理人有更高的互动倾向。让我们假设每个节点的类型是已知的。然后人们可以询问是否存在这样的假设,即同一类中节点之间的链接确实比不同类中节点之间的链接更频繁。Newman [19] 定义了以下量:和rs作为落在类中节点之间的边的分数r和s. 此外,他定义∑r和rs=一种s作为连接到类中至少一个节点的边的分数s. 注意

和rs也可以解释为随机选择的边位于类节点之间的概率r和s然后一种s可以解释为随机选择的边在类中至少有一个端点的概率s. 因此,一种s2是连接两个类节点的边的预期分数s. 将此期望值与真实值进行比较和ss对于所有组s导致“分类系数”的定义r一种 :
r一种=∑s(和ss−一种s2)1−∑s一种s2.
这个分类系数r一种是一,如果所有链接都只落在相同类型的节点之间。然后网络是完全“分类的”,但不同类别的节点保持断开连接。如果是零和ss=一种s2所有班级s,即不存在对相同或不同类的链接偏好。如果边最好位于不同类的节点之间,则它取负值,在这种情况下,网络被称为“不分类”。分母对应于完美分类网络。因此,r一种可以解释为网络完全匹配的百分比。
对于节点的类别,可以使用任何可测量的数量[20]。特别有趣的是按程度对分类混合的研究,即节点是否主要连接到相似程度的其他节点(分类,r一种>0) 或者是相反的情况 (disassortative,r一种<0)。发现许多社交网络是分类的,而技术或生物网络通常是不分类的[20]. 注意r一种也可以推广到类索引的情况s取连续值 [20]。需要强调的是,这种相关结构不会影响度数分布。

统计代写|复杂网络代写complex networks代考|Dynamics on Networks

除了这些主要关注链接结构的拓扑模型外,还有大量研究人员关注网络上发生的动态过程以及网络结构对它们的影响。研究最广泛的过程之一是流行病传播,最显着的结果之一当然是科恩的[21,22],这表明对于指数大于 2 和低聚类的无标度拓扑,流行阈值(病原体感染大部分网络所需的传染性)降至零。其原因原则上是,对于指数在 2 到 3 之间的无标度度分布,第二个邻居的平均数量⟨d⟩可能会发散。Liljeros 表明,性接触网络确实具有这样的拓扑结构 [23]。同时,这些结果为新的疫苗接种技术带来了建议,例如对随机选择的人的熟人进行疫苗接种,这使我们能够以更高的效率为具有更多联系数的人接种疫苗[24]。因此,许多研究人员也在研究网络拓扑与网络动态过程之间的相互作用。

例如,在允许根据网络上正在玩的游戏动态重新布线连接的模型中,以深入了解合作的起源[25]。

所有这些研究都表明了动态过程背后的连接拓扑的深远影响,因此强调了深入研究复杂网络拓扑的重要性。

统计代写|复杂网络代写complex networks代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。统计代写|python代写代考

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注