### 统计代写|应用随机过程代写Stochastic process代考|Branching processes

statistics-lab™ 为您的留学生涯保驾护航 在代写应用随机过程Stochastic process方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写应用随机过程Stochastic process代写方面经验极为丰富，各种代写应用随机过程Stochastic process相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• Advanced Probability Theory 高等楖率论
• Advanced Mathematical Statistics 高等数理统计学
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 统计代写|应用随机过程代写Stochastic process代考|Branching processes

The Bienaymé-Galton-Watson branching process was originally introduced as a model for the survival of family surnames over generations and has later been applied in areas such as survival of genes. The process is defined as follows. Assume that at time 0 , a population consists of a single individual who lives for a single time unit and then dies and is replaced by his offspring. These offspring all survive for a further single time unit and are then replaced by their offspring, and so on.

Formally, define $Z_{n}$ to be the population after time $n$. Then, $Z_{0}=1$. Also let $X_{i j}$ be the number of offspring born to the $j$ th individual in generation $i$. Assume that the $X_{i j}$ are all independent and identically distributed variables, $X_{i j} \sim X$, with some distribution $P(X=x)=p_{x}$ for $x=0,1,2, \ldots$ where we assume that $p_{0}>0$. Then,
$$Z_{n+1}=\sum_{j=1}^{Z_{s}} X_{n j}$$
Interest is usually focused on the probability $\gamma$ of extinction,
$$\gamma=P\left(Z_{n}=0, \text { for some } n=1,2, \ldots\right)$$
It is well known that extinction is certain if $\theta=E[X] \leq 1$. Otherwise, $\gamma$ is the smallest root of the equation $G(s)=s$, where $G(s)$ is the probability generating function of $X$ (see Appendix B). Obviously, if the initial population is of size $k>1$, then the probability of eventual extinction is $\gamma^{k}$.
Inference for branching processes is provided in Section 3.4.4.

## 统计代写|应用随机过程代写Stochastic process代考|Hidden Markov models

Hidden Markov models (HMMs) have been widely applied to the analysis of weakly dependent data in diverse areas such as econometrics, ecology, and signal processing. A hidden Markov model is defined as follows. Observations $Y_{n}$ for $n=0,1,2, \ldots$ are generated from a conditional distribution $f\left(y_{n} \mid X_{n}\right)$ with parameters that depend on an unobserved or hidden state, $X_{n} \in{1,2, \ldots K}$. The hidden states follow a Markov

chain with transition matrix $\boldsymbol{P}$ and an initial distribution, usually assumed to be the equilibrium distribution, $\pi(\cdot \mid \boldsymbol{P})$, of the underlying Markov chain.

The architecture of this process can be represented by an influence diagram as in Figure 3.1, with arrows denoting conditional dependencies.In the preceding text, we are assuming that the hidden state space of the HMM is discrete. However, it is straightforward to extend the definition to HMMs with a continuous state space. A simple example is the dynamic linear model described in Section 2.4.1. Inference for HMMs is overviewed in Section 3.4.5.

## 统计代写|应用随机过程代写Stochastic process代考|Inference for first-order, time homogeneous, Markov chains

In this section, we study inference for a first-order, time homogeneous, Markov chain, $\left{X_{n}\right}$, with state space ${1,2, \ldots, K}$ and (unknown) transition matrix $\boldsymbol{P}$.

Initially, we consider the simple experiment of observing $m$ successive transitions of the Markov chain, say $X_{1}=x_{1}, \ldots, X_{m}=x_{m}$, given a known initial state $X_{0}=x_{0}$. In this case, the likelihood function is
$$l(\boldsymbol{P} \mid \mathbf{x})=\prod_{i=1}^{K} \prod_{j=1}^{K} p_{i j}^{n_{i j}},$$
where $n_{i j} \geq 0$ is the number of observed transitions from state $i$ to state $j$ and $\sum_{i=1}^{K} \sum_{j=1}^{K} n_{i j}=m .$

Given the likelihood function (3.3), it is easy to show that the classical, maximum likelihood estimate for $\boldsymbol{P}$ is $\hat{\boldsymbol{P}}$ with $i, j$ th element equal to the proportion of transitions from state $i$ that go to state $j$, that is,
$$\hat{p}{i j}=\frac{n{i j}}{n_{i}}, \quad \text { where } \quad n_{i},=\sum_{j=1}^{K} n_{i j}$$
However, especially in chains where the number $K$ of states is large and, therefore, a very large number $K^{2}$ of transitions are possible, it will often be the case that there are no observed transitions between various pairs, $(i, j)$, of states and thus $\hat{p}_{i j}=0$.

## 统计代写|应用随机过程代写Stochastic process代考|Branching processes

Bienaymé-Galton-Watson 分支过程最初是作为家族姓氏世代生存的模型引入的，后来被应用于基因生存等领域。该过程定义如下。假设在时间 0 ，人口由一个个体组成，该个体生活了一个时间单位，然后死亡并被他的后代所取代。这些后代都存活了一个时间单位，然后被它们的后代取代，依此类推。

C=磷(从n=0, 对于一些 n=1,2,…)

## 统计代写|应用随机过程代写Stochastic process代考|Inference for first-order, time homogeneous, Markov chains

l(磷∣X)=∏一世=1ķ∏j=1ķp一世jn一世j,

p^一世j=n一世jn一世, 在哪里 n一世,=∑j=1ķn一世j

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。