### 统计代写|随机分析作业代写stochastic analysis代写|The Hudson-Parthasarathy Quantum Stochastic Calculus

statistics-lab™ 为您的留学生涯保驾护航 在代写随机分析stochastic analysisl方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写随机分析stochastic analysisl代写方面经验极为丰富，各种代写随机分析stochastic analysisl相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 统计代写|随机分析作业代写stochastic analysis代写|The Hudson-Parthasarathy Quantum Stochastic Calculus

In the previous sections we have seen that, integrating the densities
\begin{aligned} w_{t} &=b_{t}+b_{t}^{+} \ p(\lambda){t} &=b{t}+b_{t}^{+}+\lambda b_{t}^{+} b_{t} \end{aligned}
one obtains the stochastic differentials (random measures) as WN integrals
$$\begin{gathered} d W_{t}=\int_{t}^{t+d t} w_{s} d s=\int_{t}^{t+d t}\left(b_{s}+b_{s}^{+}\right) d s=: d B_{t}^{+}+d B_{t} \ d P_{t}(\lambda)=\int_{t}^{t+d t} p_{s}(\lambda) d s=\int_{t}^{t+d t}\left(b_{s}+b_{s}^{+}+\lambda b_{s}^{+} b_{s}\right) d s=d B_{t}^{+}+d B_{t}+\lambda d N_{t} \end{gathered}$$

Starting from these one defines the classical stochastic integrals with the usual constructions.
$$\int_{0}^{t} F_{s} d W_{s} ; \quad \int_{0}^{t} F_{s} d P_{s}(\lambda)$$
The passage to $q$-stochastic integrals consists in separating the stochastic integrals corresponding to the different pieces. In other words, the quantum decomposition (5.1) suggests to introduce separately the stochastic integrals
$$\int_{0}^{t} F_{s} d B_{s} ; \quad \int_{0}^{t} F_{s} d B_{s}^{+} ; \quad \int_{0}^{t} F_{s} d N_{s}$$
This important development was due to Hudson and Parthasarathy and we refer to the monograph [Partha92] for an exposition of the whole theory.

## 统计代写|随机分析作业代写stochastic analysis代写|Schr¨odinger and Heisenberg Equations

A Schrödinger equation (also called an operator Hamiltonian equation) is an equation of the form:
$$\partial_{t} U_{t}=-i H_{t} U_{t} ; \quad U_{0}=1 ; \quad t \in \mathbb{R}$$
where the 1 -parameter family of symmetric operators on a Hilbert space $\mathcal{H}$
$$H_{t}=H_{t}^{*}$$
is called the Hamiltonian. In the pyhsics literature one often requires the positivity of $H_{t}$. We do not follow this convenction in order to give a unified treatment of the usual Schrödinger equation and of its so-called interaction representation form. This approach is essential to underline the analogy with the white noise Hamiltonian equations, to be discussed in Section (12).

When $H_{t}$ is a self-adjoint operator independent of $t$, the solution of equation (7.1) exists and is a 1 -parameter group of unitary operators:
$$U_{t} \in U n(\mathcal{H}) ; U_{s} U_{t}=U_{s+t} ; U_{0}=1 ; U_{t}^{*}=U_{t}^{-1}=U_{-t} ; s, t \in \mathbb{R}$$
Conversely every 1-parameter group of unitary operators is the solution of equation (7.1) for some self-adjoint operator $H_{t}=H$ independent of $t$.
An Heisenberg equation, associated to equation (7.1), is
$$\partial_{t} X_{t}=\delta_{t}\left(X_{t}\right) ; \quad X_{0}=X \in \mathcal{B}(\mathcal{H})$$
where $\delta_{t}$ has the form
$$\delta_{t}\left(X_{t}\right):=-i\left[H_{t}, X_{t}\right] ; \quad X_{0}=X \in \mathcal{B}(\mathcal{H})$$
One can prove that $\delta_{t}$ is a *-derivation, i.e. a linear operator on an appropriate subspace of the algebra $\mathcal{B}(\mathcal{H})$ of all the bounded operators on $\mathcal{H}$, also called the algebra of observables, satisfying (on this subspace):

$$\begin{gathered} \delta_{t}(a b)=\delta_{t}(a) b+a \delta_{t}(b) \ \delta_{t}^{}(a):=\delta_{t}\left(a^{}\right)^{*}=\delta_{t}(a) \end{gathered}$$
Not all *-derivations $\delta_{t}$ on subspaces (or sub algebras) of $\mathcal{B}(\mathcal{H}$ ) have the form (7.3). If this happens, then the $-$ derivation, $\delta_{t}$, and sometimes also the Heisenberg equation, is called inner and its solution has the form $$X_{t}=U_{t} X_{t} U_{t}^{}$$
where $U_{t}$ is the solution of the corresponding Schrödinger equation (7.1). Conversely, every solution $U_{t}$ of the Schrödinger equation (7.1) defines, through (7.5), a solution of the Heisenberg equation (7.2) with $\delta_{t}$ given by (7.3).

Thus every Schrödinger equation is canonically associated to an Heisenberg equation. The converse is in general false, i.e. there are Heisenberg equations with no associated Schrödinger equation (equivalently: not always a derivation is inner). The simplest physically relevant examples of this situation are given by the quantum generalization of the so called interacting particle systems [AcKo00b] which have been widely studied in classical probability.

## 统计代写|随机分析作业代写stochastic analysis代写|Algebraic Form of a Classical Stochastic Process

Let $\left(X_{t}\right)$ be a real valued stochastic process. Define
$$j_{t}(f):=f\left(X_{t}\right)$$
In the spirit of quantum probability, we realize $f$ as a multiplication operator on $L^{2}(\mathbb{R})$ and $f\left(X_{t}\right)$ as a multiplieation operator on
$$L^{2}\left(\mathbb{R} \times \Omega, \mathcal{B}{\mathbb{Z}} \times \mathcal{F}{+} d x \otimes P\right) \equiv L^{2}(\mathbb{R}) \otimes L^{2}\left(\Omega, \mathcal{F}{,} P\right)$$ where $(\Omega, \mathcal{F}, P)$ is the probability space of the process $\left(X{t}\right)$ and $\mathcal{B}{\mathbb{R}}$ denotes the Borel $\sigma$-algebra on RR. Sometimes we use the notation: $$M{f} \varphi(x):=f(x) \varphi(x) ; \quad \varphi \in L^{2}(\mathbb{R})$$
The same notation will be used if $x \in \mathbb{R}$ is replaced by $(x, \omega) \in \mathbb{R} \times \Omega$.
Thus $f\left(X_{t}\right)$ is realized as multiplication operator on $L^{2}(\mathbb{R}) \otimes L^{2}(\Omega, \mathcal{F}, P)$. With these notations, for each $t \geq 0, j_{t}$ is a $*$-homomorphism
$$j_{t}: \mathcal{C}^{2}(\mathbb{R}) \subseteq \mathcal{B}\left(L^{2}(\mathbb{R})\right) \rightarrow \mathcal{B}\left(L^{2}(\mathbb{R}) \otimes L^{2}(\Omega, \mathcal{F}, P)\right)$$

## 统计代写|随机分析作业代写stochastic analysis代写|The Hudson-Parthasarathy Quantum Stochastic Calculus

\begin{aligned} w_{t} &=b_{t}+b_{t}^{+} \ p(\lambda) {t} &=b {t}+b_{t}^{+}+\lambda b_{t}^{+} b_{t} \end{对齐} 这n和这b吨一种一世ns吨H和s吨这CH一种s吨一世Cd一世FF和r和n吨一世一种ls(r一种nd这米米和一种s在r和s)一种s在ñ一世n吨和Gr一种ls d在吨=∫吨吨+d吨在sds=∫吨吨+d吨(bs+bs+)ds=:d乙吨++d乙吨 d磷吨(λ)=∫吨吨+d吨ps(λ)ds=∫吨吨+d吨(bs+bs++λbs+bs)ds=d乙吨++d乙吨+λdñ吨

∫0吨Fsd在s;∫0吨Fsd磷s(λ)

∫0吨Fsd乙s;∫0吨Fsd乙s+;∫0吨Fsdñs

## 统计代写|随机分析作业代写stochastic analysis代写|Schr¨odinger and Heisenberg Equations

∂吨在吨=−一世H吨在吨;在0=1;吨∈R

H吨=H吨∗

∂吨X吨=d吨(X吨);X0=X∈乙(H)

d吨(X吨):=−一世[H吨,X吨];X0=X∈乙(H)

## 统计代写|随机分析作业代写stochastic analysis代写|Algebraic Form of a Classical Stochastic Process

j吨(F):=F(X吨)

j吨:C2(R)⊆乙(大号2(R))→乙(大号2(R)⊗大号2(Ω,F,磷))

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。