经济代写|计量经济学作业代写Econometrics代考|Asymptotic Theory and Methods

如果你也在 怎样代写计量经济学Econometrics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

计量经济学是将统计方法应用于经济数据,以赋予经济关系以经验内容。

statistics-lab™ 为您的留学生涯保驾护航 在代写计量经济学Econometrics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写计量经济学Econometrics代写方面经验极为丰富,各种代写计量经济学Econometrics相关的作业也就用不着说。

我们提供的计量经济学Econometrics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等楖率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
经济代写|计量经济学作业代写Econometrics代考|Asymptotic Theory and Methods

经济代写|计量经济学作业代写Econometrics代考|Asymptotic Theory and Methods

Once one leaves the context of ordinary (linear) least squares with fixed regressors and normally distributed errors, it is frequently impossible, or at least impractical, to obtain exact statistical results. It is therefore necessary to resort to asymptotic theory, that is, theory which applies to the case in which the sample size is infinitely large. Infinite samples are not available in this finite unverse, and only if they were would there be a context in which asymptotic theory was exact. Of course, since statistics itself would be quite unnecessary if samples were infinitely large, asymptotic theory would not be useful if it were exact. In practice, asymptotic theory is used as an approximation – sometimes a good one, sometimes not so good.

Most of the time, it is a pious hope rather than a firmly founded belief that asymptotic results have some relevance to the data with which one actually works. Unfortunately, more accurate approximations are available only in the simplest cases. At this time, it is probably fair to say that the principal means of getting evidence on these matters is to use Monte Carlo experiments, which we will discuss in the last chapter of this book. Since one cannot resort to a Monte Carlo experiment every time one obtains a test statistic or a set of estimates, a thorough knowledge of asymptotic theory is necessary in the present state of the art and science of econometrics. The purpose of this chapter is therefore to embark on the study of the asymptotic theory that will be used throughout the rest of the book. All of this theory is ultimately based on laws of large numbers and central limit theorems, and we will therefore spend considerable time discussing these fundamental results.

In this chapter, we discuss the basic ideas of, and mathematical prerequisites to, asymptotic theory in econometrics. We begin the next section by treating the fundamental notion of an infinite sequence, either of random or of nonrandom elements. Much of this material should be familiar to those who have studied calculus, but it is worth reviewing because it leads directly to the fundamental notions of limits and convergence, which allow us to state and prove a simple law of large numbers. In Section 4.3, we introduce the “big- $O$ ” “little-o” notation and show how the idea of a limit can be used to obtain more precise and detailed results than were obtained in Section 4.2. Data-generating processes capable of generating infinite sequences of data are introduced in Section 4.4, and this necessitates a little discussion of stochastic processes. Section $4.5$ then introduces the property of consistency of an estimator and shows how this property can often be established with the help of a law of large numbers. Asymptotic normality is the topic of Section $4.6$, and this property is obtained for some simple estimators by use of a central limit theorem. Then, in Section 4.7, we provide, mostly for the sake of later reference, a collection of definitions and theorems, the latter being laws of large numbers and central limit theorems much more sophisticated than those actually discussed in the text. In addition, we present in Section $4.7$ two sets of conditions, one centered on a law of large numbers, the other on a central limit theorem, which will be very useful subsequently as a summary of the regularity conditions needed for results proved in later chapters.

经济代写|计量经济学作业代写Econometrics代考|Sequences, Limits, and Convergence

The concept of infinity is one of unending fascination for mathematicians. One noted twentieth-century mathematician, Stanislaw Ulam, wrote that the continuing evolution of various notions of infinity is one of the chief driving forces behind research in mathematics (Ulam, 1976). However that may be, seemingly impractical and certainly unattainable infinities are at the heart of almost all valuable and useful applications of mathematics presently in use, among which we may count econometrics.

The reason for the widespread use of infinity is that it can provide workable approximations in circumstances in which exact results are difficult or impossible to obtain. The crucial mathematical operation which yields these approximations is that of passage to the limit, the limit being where the notion of infinity comes in. The limits of interest may be zero, finite, or infinite. Zero or finite limits usually provide the approximations that are sought: Things difficult to calculate in a realistic, finite, context are replaced by their limits as an approximation.

The first and most frequently encountered mathematical construct which may possess a limit is that of a sequence. A sequence is a countably infinite collection of things, such as numbers, vectors, matrices, or more general mathematical objects, and thus by its mere definition cannot be represented in the actual physical world. But some sequences are nevertheless very familiar. Consider the most famous sequence of all: the sequence
$$
{1,2,3, \ldots}
$$
of the natural numbers. This is a simple-minded example perhaps, but one that exhibits some of the important properties which sequences may possess.

经济代写|计量经济学作业代写Econometrics代考|Rates of Convergence

We covered a lot of ground in the last section, so much so that we have by now, even if very briefly, touched on all the important purely mathematical topics to be discussed in this chapter. What remains is to flesh out the treatment of some matters and to begin to apply our theory to statistics and econometrics. The subject of this section is rates of convergence. In treating it we will introduce some very important notation, called the $\boldsymbol{O}, \boldsymbol{o}$ notation, which is read as “big-O, little- $o$ notation.” Here $O$ and $o$ stand for order and are often referred to as order symbols. Roughly speaking, when we say that some quantity is, say, $O(x)$, we mean that is of the same order, asymptotically, as the quantity $x$, while when we say that it is $o(x)$, we mean that it is of lower order than the quantity $x$. Just what this means will be made precise below.

In the last section, we discussed the random variable $b_{n}$ at some length and saw from (4.05) that its variance converged to zero, because it was proportional to $n^{-1}$. This implies that the sequence converges in probability to zero, and it can be seen that the higher moments of $b_{n}$, the third, fourth, and so on, must also tend to zero as $n \rightarrow \infty$. A somewhat tricky calculation, which interested readers are invited to try for themselves, reveals that the fourth moment of $b_{n}$ is
$$
E\left(b_{n}^{4}\right)=\frac{3}{16} n^{-2}-\frac{1}{8} n^{-3}
$$
that is, the sum of two terms, one proportional to $n^{-2}$ and the other to $n^{-3}$. The third moment of $b_{n}$, like the first, is zero, simply because the random variable is symmetric about zero, a fact which implies that all its odd-numbered moments vanish. Thus the second, third, and fourth moments of $b_{n}$ all converge to zero, but at different rates. Again, the two terms in the fourth moment (4.11) converge at different rates, and it is the term which is proportional to $n^{-2}$ that has the greatest importance asymptotically.

The word “asymptotically” has here been used in a slightly wider sense than we have used up to now. In Section 4.1, we said that asymptotic theory dealt with limits as some index, usually the sample size in econometrics, tends to infinity. Here we are concerned with rates of convergence rather than limits per se. Limits can be used to determine the rates of convergence of sequences as well as their limits: These rates of convergence can be defined as the limits of other sequences. For example, in the comparison of $n^{-2}$ and $n^{-3}$, the other sequence that interests us is the sequence of the ratio of $n^{-3}$ to $n^{-2}$, that is, the sequence $\left{n^{-1}\right}$. This last sequence has a limit of zero, and so, asymptotically, we can treat $n^{-3}$, or anything proportional to it, as zero in the presence of $n^{-2}$, or anything proportional to it. All of this can be expressed by the little-o notation, which expresses what is called the small-order relation: We write $n^{-3}=o\left(n^{-2}\right)$, meaning that $n^{-3}$ is of lower order than $n^{-2}$. In general, we have the following definition:
Definition 4.5.

经济代写|计量经济学作业代写Econometrics代考|Asymptotic Theory and Methods

计量经济学代考

经济代写|计量经济学作业代写Econometrics代考|Asymptotic Theory and Methods

一旦离开具有固定回归量和正态分布误差的普通(线性)最小二乘法的上下文,通常就不可能或至少不切实际地获得准确的统计结果。因此有必要求助于渐近理论,即适用于样本量无限大的情况的理论。在这个有限的宇宙中没有无限的样本,只有当它们存在时,才会有一个渐近理论是精确的上下文。当然,由于如果样本无限大,统计本身就完全没有必要,如果渐近理论是精确的,它就没有用处了。在实践中,渐近理论被用作一种近似——有时很好,有时不太好。

大多数时候,渐近结果与实际使用的数据有一定的相关性是一种虔诚的希望,而不是一种根深蒂固的信念。不幸的是,只有在最简单的情况下才能获得更准确的近似值。目前,可以公平地说,获取这些问题的证据的主要方法是使用蒙特卡洛实验,我们将在本书的最后一章讨论。由于不能在每次获得检验统计量或一组估计值时都求助于蒙特卡洛实验,因此在当前计量经济学的最新技术和科学水平中,对渐近理论的透彻了解是必要的。因此,本章的目的是着手研究将贯穿本书其余部分的渐近理论。

在本章中,我们将讨论计量经济学中渐近理论的基本思想和数学前提。我们从处理随机或非随机元素的无限序列的基本概念开始下一节。研究过微积分的人应该熟悉这些材料的大部分内容,但值得回顾,因为它直接引出了极限和收敛的基本概念,这使我们能够陈述和证明一个简单的大数定律。在 4.3 节中,我们介绍了“大这” “little-o” 符号,并展示了如何使用极限的概念来获得比 4.2 节中获得的更精确和详细的结果。4.4 节介绍了能够生成无限数据序列的数据生成过程,这需要对随机过程进行一些讨论。部分4.5然后介绍了估计量的一致性属性,并展示了如何经常借助大数定律来建立该属性。渐近正态性是本节的主题4.6, 并且这个性质是通过使用中心极限定理为一些简单的估计量获得的。然后,在第 4.7 节中,我们提供了一组定义和定理,主要是为了以后参考,后者是大数定律和中心极限定理,比文本中实际讨论的要复杂得多。此外,我们在第4.7两组条件,一组以大数定律为中心,另一组以中心极限定理为中心,这对于后面章节中证明的结果所需的规律性条件的总结将非常有用。

经济代写|计量经济学作业代写Econometrics代考|Sequences, Limits, and Convergence

无穷大的概念是数学家永无止境的魅力之一。一位著名的 20 世纪数学家 Stanislaw Ulam 写道,各种无穷大概念的持续发展是数学研究背后的主要驱动力之一(Ulam,1976 年)。不管怎样,看似不切实际且肯定无法实现的无穷大是目前使用的几乎所有有价值和有用的数学应用的核心,其中我们可以算上计量经济学。

广泛使用无穷大的原因是它可以在难以或不可能获得精确结果的情况下提供可行的近似值。产生这些近似值的关键数学运算是通过极限,极限是无限概念的来源。感兴趣的极限可能是零、有限或无限。零极限或有限极限通常提供所寻求的近似值:在现实的有限环境中难以计算的事物被它们的极限所取代,作为近似值。

第一个也是最常遇到的可能具有极限的数学结构是序列。序列是可数无限的事物集合,例如数字、向量、矩阵或更一般的数学对象,因此仅通过其定义无法在实际物理世界中表示。但是有些序列仍然非常熟悉。考虑最有名的序列:序列
1,2,3,…
的自然数。这也许是一个头脑简单的例子,但它展示了序列可能拥有的一些重要特性。

经济代写|计量经济学作业代写Econometrics代考|Rates of Convergence

我们在上一节中涵盖了很多内容,以至于到现在为止,即使非常简短,我们也已经触及了本章要讨论的所有重要的纯数学主题。剩下的就是充实对某些问题的处理,并开始将我们的理论应用于统计和计量经济学。本节的主题是收敛速度。在处理它时,我们将引入一些非常重要的符号,称为这,这表示法,读作“big-O, little-这符号。” 这里这和这代表顺序,通常被称为顺序符号。粗略地说,当我们说某个数量时,比如说,这(X), 我们的意思是它与数量相同,渐近,X, 而当我们说它是这(X), 我们的意思是它比数量低X. 这意味着什么将在下面准确说明。

在上一节中,我们讨论了随机变量bn从(4.05)中看到,它的方差收敛到零,因为它与n−1. 这意味着序列以概率收敛到零,并且可以看出bn,第三个,第四个等等,也必须趋向于零,因为n→∞. 有兴趣的读者可以自己尝试一个有点棘手的计算,结果表明第四个时刻bn是
和(bn4)=316n−2−18n−3
也就是说,两项之和,一项与n−2而另一个n−3. 第三个时刻bn,和第一个一样,是零,仅仅是因为随机变量关于零对称,这意味着它的所有奇数矩都消失了。因此,第二个、第三个和第四个时刻bn都收敛到零,但速度不同。同样,四阶矩 (4.11) 中的两项以不同的速率收敛,它是与n−2渐近地具有最大的重要性。

“渐近地”这个词在这里使用的含义比我们迄今为止使用的要广泛一些。在第 4.1 节中,我们说渐近理论将极限作为一些指标,通常是计量经济学中的样本量,趋于无穷大。在这里,我们关注的是收敛速度而不是限制本身。限制可用于确定序列的收敛速度及其限制:这些收敛速度可以定义为其他序列的限制。例如,在比较n−2和n−3,我们感兴趣的另一个序列是比率的序列n−3到n−2,即序列\左{n^{-1}\右}\左{n^{-1}\右}. 最后一个序列的极限为零,因此,我们可以渐近地对待n−3,或任何与它成比例的东西,在存在的情况下为零n−2,或任何与它成比例的东西。所有这些都可以用 little-o 表示法来表达,它表达了所谓的小阶关系:我们写n−3=这(n−2), 意思是n−3低于n−2. 一般来说,我们有以下定义:
定义4.5。

经济代写|计量经济学作业代写Econometrics代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

随机过程代考

在概率论概念中,随机过程随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。 实际应用中,样本函数的一般定义在时间域或者空间域。 随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

贝叶斯方法代考

贝叶斯统计概念及数据分析表示使用概率陈述回答有关未知参数的研究问题以及统计范式。后验分布包括关于参数的先验分布,和基于观测数据提供关于参数的信息似然模型。根据选择的先验分布和似然模型,后验分布可以解析或近似,例如,马尔科夫链蒙特卡罗 (MCMC) 方法之一。贝叶斯统计概念及数据分析使用后验分布来形成模型参数的各种摘要,包括点估计,如后验平均值、中位数、百分位数和称为可信区间的区间估计。此外,所有关于模型参数的统计检验都可以表示为基于估计后验分布的概率报表。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

statistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

机器学习代写

随着AI的大潮到来,Machine Learning逐渐成为一个新的学习热点。同时与传统CS相比,Machine Learning在其他领域也有着广泛的应用,因此这门学科成为不仅折磨CS专业同学的“小恶魔”,也是折磨生物、化学、统计等其他学科留学生的“大魔王”。学习Machine learning的一大绊脚石在于使用语言众多,跨学科范围广,所以学习起来尤其困难。但是不管你在学习Machine Learning时遇到任何难题,StudyGate专业导师团队都能为你轻松解决。

多元统计分析代考


基础数据: $N$ 个样本, $P$ 个变量数的单样本,组成的横列的数据表
变量定性: 分类和顺序;变量定量:数值
数学公式的角度分为: 因变量与自变量

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注