分类: 计算机代写

计算机代写|python代考|PYTHON101

如果你也在 怎样代写python这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

Python是一种高级的、解释性的、通用的编程语言。它的设计理念强调代码的可读性,使用大量的缩进。

Python是动态类型的,并且是垃圾收集的。它支持多种编程范式,包括结构化(特别是程序化)、面向对象和函数式编程。由于其全面的标准库,它经常被描述为一种 “包含电池 “的语言。

statistics-lab™ 为您的留学生涯保驾护航 在代写python方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写python代写方面经验极为丰富,各种代写python相关的作业也就用不着说。

我们提供的python及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|python代考|PYTHON101

计算机代写|python代考|HTTP objects filter

As we can see, the filters provide us with a great traceability of communications and also serves as an ideal complement to analyze a multitude of attacks. An example of this is the http. content_type filter, thanks to which we can extract different data flows that take place in an HTTP connection (text/htm1, application/zip, audio/mpeg, image/gif). This will be very useful for locating malware, exploits, or other types of attacks that are embedded in such a protocol:

Wireshark contemplates two types of filters, that is, capture filters and display filters:

  • Capture filters are those that are set to show only packets that meet the requirements indicated in the filter
  • Display filters establish a filter criterion on the captured packages, which we are visualizing in the main screen of Wireshark

The visualization filters establish a criterion of filter on the packages that we are capturing and that we are visualizing in the main screen of Wireshark. When you apply a filter on the Wireshark main screen, only the filtered traffic will appear through the display filter. We can also use it to filter the content of a capture through a pcap file:

We can use the pyshark library to analyze the network traffic in Python, since everything Wireshark decodes in each packet is made available as a variable. We can find the source code of the tool in GitHub’s repository: https://github. com/Kimin ewt/pyshark.

In the PyPI repository, we can find the last version of the library, that is, https://p ypi.org/project/pyshark, and we can install it with the pip install pyshark command.

计算机代写|python代考|FileCapture and LiveCapture in pyshark

As we saw previously, you can use the filecapture method to open a previously saved trace file. You can also use pyshark to sniff from an interface in real time with the Livecapture method, like so:

Once a capture object is created, either from a Livecapture or Filecapture method, several methods and attributes are available at both the capture and packet level. The power of pyshark is that it has access to all of the packet decoders that are built into TShark.
Now, let’s see what methods provide the returned capture object.
To check this, we can use the dir method with the capture object:

Both methods offer similar parameters that affect packets that are returned in the capture object. For example, we can iterate through the packets and apply a function to each. The most useful method here is the apply_on_packets() method. apply_on_packets() is the main way to iterate through the packets, passing in a function to apply to each packet:

This option makes capture file reading much faster, and with the dir method, we can check the attributes that are available in the object to obtain information about a specific packet.

In this chapter, we have completed an introduction to TCP/IP and how machines communicate in a network. We learned about the main protocols of the network stack and the different types of address for communicating in a network. We started with Python libraries for network programming and looked at socket and the ur111ib and requests modules, and provided an example of how we can interact and obtain information from RFC documents. We also acquired some basic knowledge so that we are able to perform a network traffic analysis with Wireshark.

计算机代写|python代考|PYTHON101

python代写

计算机代写|python代考|HTTP objects filter

正如我们所见,过滤器为我们提供了很好的通信可追溯性,同时也是分析大量攻击的理想补充。这方面的一个例子是 http。content_type 过滤器,借助它我们可以提取 HTTP 连接中发生的不同数据流(text/htm1、application/zip、audio/mpeg、image/gif)。这对于定位嵌入在此类协议中的恶意软件、漏洞利用或其他类型的攻击非常有用:

Wireshark 考虑了两种类型的过滤器,即捕获过滤器和显示过滤器:

  • 捕获过滤器是那些设置为仅显示满足过滤器中指示要求的数据包的过滤器
  • 显示过滤器在捕获的包上建立过滤标准,我们在 Wireshark 的主屏幕中可视化

可视化过滤器在我们正在捕获的包和我们在 Wireshark 的主屏幕中可视化的包上建立过滤标准。当您在 Wireshark 主屏幕上应用过滤器时,只有过滤后的流量会通过显示过滤器显示。我们还可以使用它来过滤通过 pcap 文件捕获的内容:

我们可以使用 pyshark 库来分​​析 Python 中的网络流量,因为 Wireshark 在每个数据包中解码的所有内容都可以作为变量使用。我们可以在 GitHub 的存储库中找到该工具的源代码:https://github。com/Kimin ewt/pyshark。

在PyPI仓库中,我们可以找到该库的最新版本,即https://pypi.org/project/pyshark,我们可以使用pip install pyshark命令进行安装。

计算机代写|python代考|FileCapture and LiveCapture in pyshark

正如我们之前看到的,您可以使用 filecapture 方法打开以前保存的跟踪文件。您还可以使用 pyshark 通过 Livecapture 方法实时嗅探界面,如下所示:

一旦通过 Livecapture 或 Filecapture 方法创建了捕获对象,在捕获和数据包级别都可以使用多种方法和属性。pyshark 的强大之处在于它可以访问 TShark 中内置的所有数据包解码器。
现在,让我们看看哪些方法提供了返回的捕获对象。
要检查这一点,我们可以将 dir 方法与捕获对象一起使用:

这两种方法都提供类似的参数,这些参数会影响捕获对象中返回的数据包。例如,我们可以遍历数据包并对每个数据包应用一个函数。这里最有用的方法是 apply_on_packets() 方法。apply_on_packets() 是遍历数据包的主要方式,传入一个函数以应用于每个数据包:

此选项使捕获文件读取速度更快,并且使用 dir 方法,我们可以检查对象中可用的属性以获取有关特定数据包的信息。

在本章中,我们完成了对 TCP/IP 以及机器如何在网络中进行通信的介绍。我们了解了网络堆栈的主要协议以及用于在网络中通信的不同类型的地址。我们从用于网络编程的 Python 库开始,研究了 socket 和 ur111ib 以及 requests 模块,并提供了一个示例来说明我们如何交互并从 RFC 文档中获取信息。我们还获得了一些基础知识,以便我们能够使用 Wireshark 执行网络流量分析。

计算机代写|python代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|python代考|СP5805

如果你也在 怎样代写python这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

Python是一种高级的、解释性的、通用的编程语言。它的设计理念强调代码的可读性,使用大量的缩进。

Python是动态类型的,并且是垃圾收集的。它支持多种编程范式,包括结构化(特别是程序化)、面向对象和函数式编程。由于其全面的标准库,它经常被描述为一种 “包含电池 “的语言。

statistics-lab™ 为您的留学生涯保驾护航 在代写python方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写python代写方面经验极为丰富,各种代写python相关的作业也就用不着说。

我们提供的python及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|python代考|СP5805

计算机代写|python代考|Capturing packets with Wireshark

To start capturing packets, you can click on the name of an interface from the list of interfaces. For example, if you want to capture traffic on your Ethernet network, double-click on the Ethernet connection interface:

As soon as you click on the name of the interface, you will see that the packages start to appear in real time. Wireshark captures every packet that’s sent to or from your network traffic. You will see random flooding of data in the Wireshark dashboard. There are many ways to filter traffic:

  • To filter traffic from any specific IP address, type $i p$.addr $==’ x x x . x x . x x . x x^{\prime}$ in the Apply a display filter field
  • To filter traffic for a specific protocol, say, TCP, UDP, SMTP, ARP, and DNS requests, just type the protocol name into the Apply a display filter field

We can use the Apply a display filter box to filter traffic from any IP address or protocol:

The graphical interface of Wireshark is mainly divided into the following sections:

  • The toolbar, where you have all the options that you can perform on the pre and post capture
  • The main toolbar, where you have the most frequently used options in Wireshark
  • The filter bar, where you can apply filters to the current capture quickly
  • The list of packages, which shows a summary of each package that is captured by Wireshark
  • The panel of details of packages that, once you have selected a package in the list of packages, shows detailed information of the same
  • The packet byte panel, which shows the bytes of the selected packet, and highlights the bytes corresponding to the field that’s selected in the packet details panel
  • The status bar, which shows some information about the current state of Wireshark and the capture

计算机代写|python代考|Network traffic in Wireshark

Network traffic or network data is the amount of packets that are moving across a network at any given point of time. The following is a classical formula for obtaining the traffic volume of a network: Traffic volume = Traffic Intensity or rate * Time

In the following screenshot, we can see what the network traffic looks like in Wireshark:

In the previous screenshot, we can see all the information that is sent over, along with the data packets on a network. It includes several pieces of information, including the following:

  • Time: The time at which packets are captured
  • Source: The source from which the packet originated
  • Destination: The sink where packets reach their final destination
  • Protocol: Type of IP (or set of rules) the packet followed during its journey, such as TCP, UDP, SMTP, and ARP
  • Info: The information that the packet contains
    The Wireshark website contains samples for capture files that you can import into Wireshark. You can also inspect the packets that they contain: https://wiki.wi reshark.org/samplecaptures.

For example, we can find an HTTP section for downloading files that contains

When you start capturing packets, Wireshark uses colors to identify the types of traffic that can occur, among which we can highlight green for TCP traffic, blue for DNS traffic, and black for traffic that has errors at the packet level.

To see exactly what the color codes mean, click View | Coloring rules. You can also customize and modify the coloring rules in this screen.

If you need to change the color of one of the options, just double-click it and choose the color you want.

计算机代写|python代考|СP5805

python代写

计算机代写|python代考|Capturing packets with Wireshark

要开始捕获数据包,您可以单击接口列表中的接口名称。例如,如果要捕获以太网网络上的流量,请双击以太网连接界面:

单击界面名称后,您将看到包开始实时显示。Wireshark 捕获发送到您的网络流量或从您的网络流量发送的每个数据包。您将在 Wireshark 仪表板中看到随机的数据泛滥。过滤流量的方法有很多种:

  • 要过滤来自任何特定 IP 地址的流量,请键入一世p.地址==′XXX.XX.XX.XX′在应用显示过滤器字段中
  • 要过滤特定协议(例如 TCP、UDP、SMTP、ARP 和 DNS 请求)的流量,只需在“应用显示过滤器”字段中键入协议名称

我们可以使用 Apply a display filter 框来过滤来自任何 IP 地址或协议的流量:

Wireshark的图形界面主要分为以下几个部分:

  • 工具栏,您可以在其中执行捕获前和捕获后的所有选项
  • 主工具栏,您可以在其中找到 Wireshark 中最常用的选项
  • 过滤器栏,您可以在其中快速将过滤器应用于当前捕获
  • 包列表,显示 Wireshark 捕获的每个包的摘要
  • 包的详细信息面板,一旦您在包列表中选择了一个包,就会显示该包的详细信息
  • 数据包字节面板,显示所选数据包的字节,并突出显示与数据包详细信息面板中所选字段对应的字节
  • 状态栏,显示一些关于 Wireshark 当前状态和捕获的信息

计算机代写|python代考|Network traffic in Wireshark

网络流量或网络数据是在任何给定时间点通过网络移动的数据包数量。以下是获取网络流量的经典公式:流量=流量强度或速率*时间

在下面的屏幕截图中,我们可以看到 Wireshark 中的网络流量:

在前面的屏幕截图中,我们可以看到发送过来的所有信息以及网络上的数据包。它包括几条信息,包括以下内容:

  • 时间:抓包的时间
  • Source:数据包的来源
  • 目的地:数据包到达最终目的地的接收器
  • 协议:数据包在其传输过程中遵循的 IP 类型(或规则集),例如 TCP、UDP、SMTP 和 ARP
  • 信息:数据包包含
    的信息 Wireshark 网站包含您可以导入 Wireshark 的捕获文件示例。您还可以检查它们包含的数据包:https://wiki.wi reshark.org/samplecaptures。

例如,我们可以找到一个用于下载包含以下文件的 HTTP 部分

当您开始捕获数据包时,Wireshark 使用颜色来识别可能发生的流量类型,其中我们可以突出显示 TCP 流量的绿色,DNS 流量的蓝色,以及在数据包级别有错误的流量的黑色。

要准确查看颜色代码的含义,请单击查看 | 着色规则。您还可以在此屏幕中自定义和修改着色规则。

如果您需要更改其中一个选项的颜色,只需双击它并选择您想要的颜色。

计算机代写|python代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|python代考|CE9990

如果你也在 怎样代写python这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

Python是一种高级的、解释性的、通用的编程语言。它的设计理念强调代码的可读性,使用大量的缩进。

Python是动态类型的,并且是垃圾收集的。它支持多种编程范式,包括结构化(特别是程序化)、面向对象和函数式编程。由于其全面的标准库,它经常被描述为一种 “包含电池 “的语言。

statistics-lab™ 为您的留学生涯保驾护航 在代写python方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写python代写方面经验极为丰富,各种代写python相关的作业也就用不着说。

我们提供的python及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|python代考|CE9990

计算机代写|python代考|Downloading an RFC with the socket module

Now, we are going to create the same script but, instead of using ur11ib or requests, we are going to use the socket module for working at a low level. For this, create a text file called RFc_download_socket.py: The main difference here is that we are using a socket module instead of ur11ib or requests. Socket is Python’s interface for the operating system’s TCP and UDP implementation. We have to tell socket which transport layer protocol we want to use. We do this by using the socket.create_connection() convenience function. This function will always create a TCP connection. For establishing the connection, we are using port 80 , which is the standard port number for web services over HTTP.

Next, we deal with the network communication over the TCP connection. We send the entire request string to the server by using the sendal1() call. The data that’s sent through TCP must be in raw bytes, so we have to encode the request text as ASCII before sending it.

Then, we piece together the server’s response as it arrives in the while loop. Bytes that are sent to us through a TCP socket are presented to our application in a continuous stream. So, like any stream of unknown length, we have to read it iteratively. The recv() call will return the empty string after the server sends all of its data and closes the connection. Finally, we can use this as a condition for breaking out and printing the response.This section will help you update the basics of Wireshark to capture packets, filter them, and inspect them. You can use Wireshark to analyze the network traffic of a suspicious program, analyze the traffic flow in your network, or solve network problems. We will also review the pyshark module for capturing packets in Python.

计算机代写|python代考|Introduction to Wireshark

Wireshark is a network packet analysis tool that captures packets in real time and displays them in a graphic interface. Wireshark includes filters, color coding, and other features that allow you to analyze network traffic and inspect packets individually.

Wireshark implements a wide range of filters that facilitate the definition of search criteria for the more than 1,000 protocols it currently supports. All of this happens through a simple and intuitive interface that allows each of the captured packages to be broken down into layers.
Thanks to Wireshark understanding the structure of these protocols, we can visualize the fields of each of the headers and layers that make up the packages, providing a wide range of possibilities to the network administrator when it comes to performing tasks in the analysis of traffic.
One of the advantages that Wireshark has is that at any given moment, we can leave capturing data in a network for as long as we want and then store them so that we can perform the analysis later. It works on several platforms, such as Windows, OS X, Linux, and Unix.
Wireshark is also considered a protocol analyzer or packet sniffer, thus allowing us to observe the messages that are exchanged between applications. For example, if we capture an HTTP message, the packet analyzer must know that this message is encapsulated in a TCP segment, which, in turn, is encapsulated in an IP packet, and which, in turn, is encapsulated in an Ethernet frame.

Wireshark is composed mainly of two elements: a packet capture library, which receives a copy of each data link frame that is either sent or received, and a packet analyzer, which shows the fields corresponding to each of the captured packets. To do this, the packet analyzer must know about the protocols that it is analyzing so that the information that’s shown is consistent.

计算机代写|python代考|CE9990

python代写

计算机代写|python代考|Downloading an RFC with the socket module

现在,我们将创建相同的脚本,但不使用 ur11ib 或请求,而是使用 socket 模块在低级别工作。为此,创建一个名为 RFc_download_socket.py 的文本文件:这里的主要区别是我们使用套接字模块而不是 ur11ib 或请求。Socket 是 Python 用于操作系统的 TCP 和 UDP 实现的接口。我们必须告诉套接字我们要使用哪个传输层协议。我们通过使用 socket.create_connection() 便利函数来做到这一点。此函数将始终创建 TCP 连接。为了建立连接,我们使用端口 80 ,这是基于 HTTP 的 Web 服务的标准端口号。

接下来,我们处理通过 TCP 连接的网络通信。我们使用 sendal1() 调用将整个请求字符串发送到服务器。通过 TCP 发送的数据必须是原始字节,所以我们必须在发送之前将请求文本编码为 ASCII。

然后,我们在 while 循环中拼凑服务器的响应。通过 TCP 套接字发送给我们的字节以连续流的形式呈现给我们的应用程序。因此,就像任何长度未知的流一样,我们必须反复读取它。在服务器发送所有数据并关闭连接后,recv() 调用将返回空字符串。最后,我们可以将其用作中断和打印响应的条件。本节将帮助您更新 Wireshark 的基础知识以捕获数据包、过滤它们并检查它们。您可以使用 Wireshark 分析可疑程序的网络流量,分析您网络中的流量,或解决网络问题。我们还将回顾用于在 Python 中捕获数据包的 pyshark 模块。

计算机代写|python代考|Introduction to Wireshark

Wireshark 是一种网络数据包分析工具,可以实时捕获数据包并将其显示在图形界面中。Wireshark 包括过滤器、颜色编码和其他功能,可让您分析网络流量并单独检查数据包。

Wireshark 实现了范围广泛的过滤器,这些过滤器有助于为它目前支持的 1,000 多种协议定义搜索条件。所有这一切都通过一个简单直观的界面发生,该界面允许将每个捕获的包分解为多个层。
由于 Wireshark 了解这些协议的结构,我们可以可视化构成数据包的每个标头和层的字段,从而为网络管理员在执行流量分析任务时提供广泛的可能性。
Wireshark 的优势之一是,在任何给定时刻,我们都可以将捕获的数据留在网络中,想留多久就留多久,然后存储它们,以便稍后执行分析。它适用于多种平台,例如 Windows、OS X、Linux 和 Unix。
Wireshark 也被认为是协议分析器或数据包嗅探器,从而使我们能够观察应用程序之间交换的消息。例如,如果我们捕获一个 HTTP 消息,数据包分析器必须知道这个消息被封装在一个 TCP 段中,TCP 段又被封装在一个 IP 数据包中,然后又被封装在一个以太网帧中。

Wireshark 主要由两个元素组成:一个数据包捕获库,它接收发送或接收的每个数据链路帧的副本,以及一个数据包分析器,它显示与每个捕获的数据包对应的字段。为此,数据包分析器必须了解它正在分析的协议,以便显示的信息是一致的。

计算机代写|python代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|机器学习代写machine learning代考|COMP4702

如果你也在 怎样代写机器学习 machine learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

机器学习是一个致力于理解和建立 “学习 “方法的研究领域,也就是说,利用数据来提高某些任务的性能的方法。机器学习算法基于样本数据(称为训练数据)建立模型,以便在没有明确编程的情况下做出预测或决定。机器学习算法被广泛用于各种应用,如医学、电子邮件过滤、语音识别和计算机视觉,在这些应用中,开发传统算法来执行所需任务是困难的或不可行的。

statistics-lab™ 为您的留学生涯保驾护航 在代写机器学习 machine learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写机器学习 machine learning代写方面经验极为丰富,各种代写机器学习 machine learning相关的作业也就用不着说。

我们提供的机器学习 machine learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|机器学习代写machine learning代考|COMP4702

计算机代写|机器学习代写machine learning代考|Intuition and Main Results

Consider first the training error $E_{\text {train }}$ defined in (5.3). Since
$$
\operatorname{tr} \mathbf{Y} \mathbf{Q}^2(\gamma) \mathbf{Y}^{\boldsymbol{\top}}=-\frac{\partial}{\partial \gamma} \operatorname{tr} \mathbf{Y} \mathbf{Q}(\gamma) \mathbf{Y}^{\top},
$$
a deterministic equivalent for the resolvent $\mathbf{Q}(\gamma)$ is sufficient to acceess the asymptotic behavior of $E_{\text {train }}$.
With a linear activation $\sigma(t)=t$, the resolvent of interest
$$
\mathbf{Q}(\gamma)=\left(\frac{1}{n} \sigma(\mathbf{W X})^{\top} \sigma(\mathbf{W} \mathbf{X})+\gamma \mathbf{I}n\right)^{-1} $$ is the same as in Theorem 2.6. In a sense, the evaluation of $\mathbf{Q}(\gamma)$ (and subsequently $\left.E{\text {train }}\right)$ calls for an extension of Theorem $2.6$ to handle the case of nonlinear activations. Recall now that the main ingredients to derive a deterministic equivalent for (the linear case) $\mathbf{Q}=\left(\mathbf{X}^{\top} \mathbf{W}^{\top} \mathbf{W} \mathbf{X} / n+\gamma \mathbf{I}n\right)^{-1}$ are (i) $\mathbf{X}^{\top} \mathbf{W}^{\top}$ has i.i.d. columns and (ii) its $i$ th column $\left[\mathbf{W}^{\top}\right]_i$ has i.i.d. (or linearly dependent) entries so that the key Lemma $2.11$ applies. These hold, in the linear case, due to the i.i.d. property of the entries of $\mathbf{W}$. However, while for Item (i), the nonlinear $\Sigma^{\top}=\sigma(\mathbf{W X})^{\top}$ still has i.i.d. columns, and for Item (ii), its $i$ th column $\sigma\left(\left[\mathbf{X}^{\top} \mathbf{W}^{\top}\right]{. i}\right)$ no longer has i.i.d. or linearly dependent entries. Therefore, the main technical difficulty here is to obtain a nonlinear version of the trace lemma, Lemma 2.11. That is, we expect that the concentration of quadratic forms around their expectation remains valid despite the application of the entry-wise nonlinear $\sigma$. This naturally falls into the concentration of measure theory discussed in Section $2.7$ and is given by the following lemma.

Lemma 5.1 (Concentration of nonlinear quadratic form, Louart et al. [2018, Lemma 1]). For $\mathbf{w} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_p\right)$, 1-Lipschitz $\sigma(\cdot)$, and $\mathbf{A} \in \mathbb{R}^{n \times n}, \mathbf{X} \in \mathbb{R}^{p \times n}$ such that $|\mathbf{A}| \leq 1$ and $|\mathbf{X}|$ bounded with respect to $p, n$, then,
$$
\mathbb{P}\left(\left|\frac{1}{n} \sigma\left(\mathbf{w}^{\top} \mathbf{X}\right) \mathbf{A} \sigma\left(\mathbf{X}^{\top} \mathbf{w}\right)-\frac{1}{n} \operatorname{tr} \mathbf{A} \mathbf{K}\right|>t\right) \leq C e^{-c n \min \left(t, t^2\right)}
$$ for some $C, c>0, p / n \in(0, \infty)$ with ${ }^2$
$$
\mathbf{K} \equiv \mathbf{K}{\mathbf{X X}} \equiv \mathbb{E}{\mathbf{w} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_p\right)}\left[\sigma\left(\mathbf{X}^{\top} \mathbf{w}\right) \sigma\left(\mathbf{w}^{\boldsymbol{\top}} \mathbf{X}\right)\right] \in \mathbb{R}^{n \times n}
$$

计算机代写|机器学习代写machine learning代考|Consequences for Learning with Large Neural Networks

To validate the asymptotic analysis in Theorem $5.1$ and Corollary $5.1$ on real-world data, Figures $5.2$ and $5.3$ compare the empirical MSEs with their limiting behavior predicted in Corollary 5.1, for a random network of $N=512$ neurons and various types of Lipschitz and non-Lipschitz activations $\sigma(\cdot)$, respectively. The regressor $\boldsymbol{\beta} \in \mathbb{R}^p$ maps the vectorized images from the Fashion-MNIST dataset (classes 1 and 2) [Xiao et al., 2017] to their corresponding uni-dimensional ( $d=1$ ) output labels $\mathbf{Y}{1 i}, \hat{\mathbf{Y}}{1 j} \in$ ${\pm 1}$. For $n, p, N$ of order a few hundreds (so not very large when compared to typical modern neural network dimensions), a close match between theory and practice is observed for the Lipschitz activations in Figure 5.2. The precision is less accurate but still quite good for the case of non-Lipschitz activations in Figure 5.3, which, we recall, are formally not supported by the theorem statement – here for $\sigma(t)=1-t^2 / 2$, $\sigma(t)=1_{t>0}$, and $\sigma(t)=\operatorname{sign}(t)$. For all activations, the deviation from theory is more acute for small values of regularization $\gamma$.

Figures $5.2$ and $5.3$ confirm that while the training error is a monotonically increasing function of the regularization parameter $\gamma$, there always exists an optimal value for $\gamma$ which minimizes the test error. In particular, the theoretical formulas derived in Corollary $5.1$ allow for a (data-dependent) fast offline tuning of the hyperparameter $\gamma$ of the network, in the setting where $n, p, N$ are not too small and comparable. In terms of activation functions (those listed here), we observe that, on the Fashion-MNIST dataset, the ReLU nonlinearity $\sigma(t)=\max (t, 0)$ is optimal and achieves the minimum test error, while the quadratic activation $\sigma(t)=1-t^2 / 2$ is the worst and produces much higher training and test errors compared to others. This observation will be theoretically explained through a deeper analysis of the corresponding kernel matrix $\mathbf{K}$, as performed in Section 5.1.2. Lastly, although not immediate at first sight, the training and test error curves of $\sigma(t)=1_{t>0}$ and $\sigma(t)=\operatorname{sign}(t)$ are indeed the same, up to a shift in $\gamma$, as a consequence of the fact that $\operatorname{sign}(t)=2 \cdot 1_{t>0}-1$.

计算机代写|机器学习代写machine learning代考|COMP4702

机器学习代考

计算机代写|机器学习代写machine learning代考|Intuition and Main Results

首先考虑训练误差 $E_{\text {train }}$ 在 (5.3) 中定义。自从
$$
\operatorname{tr} \mathbf{Y} \mathbf{Q}^2(\gamma) \mathbf{Y}^{\top}=-\frac{\partial}{\partial \gamma} \operatorname{tr} \mathbf{Y} \mathbf{Q}(\gamma) \mathbf{Y}^{\top}
$$
解决方案的确定性等价物 $\mathbf{Q}(\gamma)$ 足以访问的渐近行为 $E_{\text {train }}$.
线性激活 $\sigma(t)=t$ ,感兴趣的溶剂
$$
\mathbf{Q}(\gamma)=\left(\frac{1}{n} \sigma(\mathbf{W X})^{\top} \sigma(\mathbf{W X})+\gamma \mathbf{I} n\right)^{-1}
$$
与定理 $2.6$ 相同。从某种意义上说,评价 $\mathbf{Q}(\gamma)$ (随后 $E \operatorname{train}$ )要求扩展定理 $2.6$ 处理非线性激活的情 况。现在回想一下,推导出 (线性情况) 的确定性等价物的主要成分
$\mathbf{Q}=\left(\mathbf{X}^{\top} \mathbf{W}^{\top} \mathbf{W X} / n+\gamma \mathbf{I} n\right)^{-1}$ 是我) $\mathbf{X}^{\top} \mathbf{W}^{\top}$ 有 iid 列和 (ii) 它的 $i$ 第 列 $\left[\mathbf{W}^{\top}\right]_i$ 具有独立同分布 (或线性相关) 条目,因此密钥引理 $2.11$ 适用。在线性情况下,由于条目的 iid 属性,这些成立 W. 然 而,对于项目 (i),非线性 $\Sigma^{\top}=\sigma(\mathbf{W X})^{\top}$ 仍然有 iid 列,对于项目 (ii),其 $i$ 第列 $\sigma\left(\left[\mathbf{X}^{\top} \mathbf{W}^{\top}\right] . i\right)$ 不 再具有 iid 或线性相关条目。因此,这里的主要技术难点是获得非线性版本的迹引理,引理 2.11。也就是 说,我们预计尽管应用了逐项非线性 $\sigma$. 这自然落入第 节讨论的测度论的集中 $2.7$ 并由以下引理给出。
引理 $5.1$ (非线性二次型的集中,Louart 等人 [2018,引理 1])。为了 $\mathbf{w} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_p\right)$, 1-利普㹷茨 $\sigma(\cdot)$ ,和 $\mathbf{A} \in \mathbb{R}^{n \times n}, \mathbf{X} \in \mathbb{R}^{p \times n}$ 这样 $|\mathbf{A}| \leq 1$ 和 $|\mathbf{X}|$ 有界于 $p, n$ ,然后,
$$
\mathbb{P}\left(\left|\frac{1}{n} \sigma\left(\mathbf{w}^{\top} \mathbf{X}\right) \mathbf{A} \sigma\left(\mathbf{X}^{\top} \mathbf{w}\right)-\frac{1}{n} \operatorname{tr} \mathbf{A K}\right|>t\right) \leq C e^{-c n \min \left(t, t^2\right)}
$$
对于一些 $C, c>0, p / n \in(0, \infty)$ 和 $^2$
$$
\mathbf{K} \equiv \mathbf{K X X} \equiv \mathbb{E} \mathbf{w} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_p\right)\left[\sigma\left(\mathbf{X}^{\top} \mathbf{w}\right) \sigma\left(\mathbf{w}^{\top} \mathbf{X}\right)\right] \in \mathbb{R}^{n \times n}
$$

计算机代写|机器学习代写machine learning代考|Consequences for Learning with Large Neural Networks

验证定理中的渐近分析5.1和推论 $5.1$ 关于真实世界的数据,数字 $5.2$ 和 $5.3$ 对于一个随机网络,将经验 MSE 与推论 $5.1$ 中预测的限制行为进行比较 $N=512$ 神经元和各种类型的 Lipschitz 和非 Lipschitz 激活 $\sigma(\cdot)$ ,分别。回归者 $\beta \in \mathbb{R}^p$ 将来自 Fashion-MNIST 数据集(第 1 类和第 2 类) [Xiao et al.,2017] 的矢 量化图像映射到它们相应的单维 $(d=1$ ) 输出标签 $\mathbf{Y} 1 i, \hat{\mathbf{Y}} 1 j \in \pm 1$. 为了 $n, p, N$ 数百个数量级 (因此 与典型的现代神经网络维度相比不是很大),在图 $5.2$ 中观察到 Lipschitz 激活的理论与实践之间的紧密 匹配。精度不太准确,但对于图 $5.3$ 中非 Lipschitz 激活的情况仍然相当不错,我们记得,定理陈述正式 不支持这种情况一一这里是为了 $\sigma(t)=1-t^2 / 2 , \sigma(t)=1_{t>0}$ ,和 $\sigma(t)=\operatorname{sign}(t)$. 对于所有激活, 正则化的小值与理论的偏差更为严重 $\gamma$.
数字 $5.2$ 和 $5.3$ 确认虽然训练误差是正则化参数的单调递增函数 $\gamma$ ,总是存在一个最优值 $\gamma$ 从而最小化测试误 差。特别是推论中推导出的理论公式5.1允许对超参数进行 (依赖于数据的) 快速离线调整 $\gamma$ 网络的设置 $n, p, N$ 不是太小且具有可比性。就激活函数(此处列出的那些) 而言,我们观察到,在 Fashion-MNIST 数据集上, $\operatorname{ReLU}$ 非线性 $\sigma(t)=\max (t, 0)$ 是最优的并达到最小测试误差,而二次激活 $\sigma(t)=1-t^2 / 2$ 是最差的,与其他人相比会产生更高的训练和测试错误。将通过对相应核矩阵的更深 入分析从理论上解释这一观察结果 $\mathbf{K}$ ,如第 5.1.2 节中所述。最后,虽然乍一看不是立即的,但训练和测试误差曲线 $\sigma(t)=1_{t>0}$ 和 $\sigma(t)=\operatorname{sign}(t)$ 确实是一样的,直到一个转变 $\gamma$ ,由于这样的事实 $\operatorname{sign}(t)=2 \cdot 1_{t>0}-1$

计算机代写|机器学习代写machine learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|机器学习代写machine learning代考|COMP30027

如果你也在 怎样代写机器学习 machine learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

机器学习是一个致力于理解和建立 “学习 “方法的研究领域,也就是说,利用数据来提高某些任务的性能的方法。机器学习算法基于样本数据(称为训练数据)建立模型,以便在没有明确编程的情况下做出预测或决定。机器学习算法被广泛用于各种应用,如医学、电子邮件过滤、语音识别和计算机视觉,在这些应用中,开发传统算法来执行所需任务是困难的或不可行的。

statistics-lab™ 为您的留学生涯保驾护航 在代写机器学习 machine learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写机器学习 machine learning代写方面经验极为丰富,各种代写机器学习 machine learning相关的作业也就用不着说。

我们提供的机器学习 machine learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|机器学习代写machine learning代考|COMP30027

计算机代写|机器学习代写machine learning代考|Random Neural Networks

Although much less popular than modern deep neural networks, neural networks with random fixed weights are simpler to analyze. Such networks have frequently arisen in the past decades as an appropriate solution to handle the possibly restricted number of training data, to reduce the computational and memory complexity and, from another viewpoint, can be seen as efficient random feature extractors. These neural networks in fact find their roots in Rosenblatt’s perceptron [Rosenblatt, 1958] and have then been many times revisited, rediscovered, and analyzed in a number of works, both in their feedforward [Schmidt et al., 1992] and recurrent [Gelenbe, 1993] versions. The simplest modern versions of these random networks are the so-called extreme learning machine [Huang et al., 2012] for the feedforward case, which one may seem as a mere linear regression method on nonlinear random features, and the echo state network [Jaeger, 2001] for the recurrent case. Also see Scardapane and Wang [2017] for a more exhaustive overview of randomness in neural networks.

It is also to be noted that deep neural networks are initialized at random and that random operations (such as random node deletions or voluntarily not-learning a large proportion of randomly initialized neural network weights, that is, random dropout) are common and efficient in neural network learning [Srivastava et al., 2014, Frankle and Carbin, 2019]. We may also point the recent endeavor toward neural network “learning without backpropagation,” which, inspired by biological neural networks (which naturally do not operate backpropagation learning), proposes learning mechanisms with fixed random backward weights and asymmetric forward learning procedures [Lillicrap et al., 2016, Nøkland, 2016, Baldi et al., 2018, Frenkel et al., 2019, Han et al., 2019]. As such, the study of random neural network structures may be instrumental to future improved understanding and designs of advanced neural network structures.

As shall be seen subsequently, the simple models of random neural networks are to a large extent connected to kernel matrices. More specifically, the classification or regression performance at the output of these random neural networks are functionals of random matrices that fall into the wide class of kernel random matrices, yet of a slightly different form than those studied in Section 4. Perhaps more surprisingly, this connection still exists for deep neural networks which are (i) randomly initialized and (ii) then trained with gradient descent, via the so-called neural tangent kernel [Jacot et al., 2018] by considering the “infinitely many neurons” limit, that is, the limit where the network widths of all layers go to infinity simultaneously. This close connection between neural networks and kernels has triggered a renewed interest for the theoretical investigation of deep neural networks from various perspectives including optimization [Du et al., 2019, Chizat et al., 2019], generalization [Allen-Zhu et al., 2019, Arora et al., 2019a, Bietti and Mairal, 2019], and learning dynamics [Lee et al., 2020, Advani et al., 2020, Liao and Couillet, 2018a]. These works shed new light on our theoretical understanding of deep neural network models and specifically demonstrate the significance of studying simple networks with random weights and their associated kernels to assess the intrinsic mechanisms of more elaborate and practical deep networks.

计算机代写|机器学习代写machine learning代考|Regression with Random Neural Networks

Throughout this section, we consider a feedforward single-hidden-layer neural network, as illustrated in Figure $5.1$ (displayed, for notational convenience, from right to left). A similar class of single-hidden-layer neural network models, however with a recurrent structure, will be discussed later in Section 5.3.

Given input data $\mathbf{X}=\left[\mathbf{x}_1, \ldots, \mathbf{x}_n\right] \in \mathbb{R}^{p \times n}$, we denote $\Sigma \equiv \sigma(\mathbf{W} \mathbf{X}) \in \mathbb{R}^{N \times n}$ the output of the first layer comprising $N$ neurons. This output arises from the premultiplication of $\mathbf{X}$ by some random weight matrix $\mathbf{W} \in \mathbb{R}^{N \times p}$ with i.i.d. (say standard Gaussian) entries and the entry-wise application of the nonlinear activation function $\sigma: \mathbb{R} \rightarrow \mathbb{R}$. As such, the columns $\sigma\left(\mathbf{W x}_i\right)$ of $\Sigma$ can be seen as random nonlinear features of $\mathbf{x}_i$. The second layer weight $\boldsymbol{\beta} \in \mathbb{R}^{N \times d}$ is then learned to adapt the feature matrix $\Sigma$ to some associated target $\mathbf{Y}=\left[\mathbf{y}_1, \ldots, \mathbf{y}_n\right] \in \mathbb{R}^{d \times n}$, for instance, by minimizing the Frobenius norm $\left|\mathbf{Y}-\boldsymbol{\beta}^{\top} \Sigma\right|_F^2$.

Remark 5.1 (Random neural networks, random feature maps and random kernels). The columns of $\Sigma$ may be seen as the output of the $\mathbb{R}^p \rightarrow \mathbb{R}^N$ random feature map $\phi: \mathbf{x}i \mapsto \sigma\left(\mathbf{W} \mathbf{x}_i\right)$ for some given $\mathbf{W} \in \mathbb{R}^{N \times p}$. In Rahimi and Recht [2008], it is shown that, for every nonnegative definite “shift-invariant” kernel of the form $(\mathbf{x}, \mathbf{y}) \mapsto f\left(|\mathbf{x}-\mathbf{y}|^2\right)$, there exist appropriate choices for $\sigma$ and the law of the entries of $\mathbf{W}$ so that as the number of neurons or random features $N \rightarrow \infty$, $$ \sigma\left(\mathbf{W} \mathbf{x}_i\right)^{\top} \sigma\left(\mathbf{W} \mathbf{x}_j\right) \stackrel{\text { a.s. }}{\longrightarrow} f\left(\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right) . $$ As such, for large enough $N$ (that in general must scale with $n, p$ ), the bivariate function $(\mathbf{x}, \mathbf{y}) \mapsto \sigma(\mathbf{W} \mathbf{x})^{\top} \sigma(\mathbf{W y})$ approximates a kernel function of the type $f\left(|\mathbf{x}-\mathbf{y}|^2\right)$ studied in Chapter 4. This result is then generalized, in subsequent works, to a larger family of kernels including inner-product kernels [Kar and Karnick, 2012], additive homogeneous kernels [Vedaldi and Zisserman, 2012], etc. Another, possibly more marginal, connection with the previous sections is that $\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)$ can be interpreted as a “properly scaling” inner-product kernel function applied to the “data” pair $\mathbf{w}, \mathbf{x} \in \mathbb{R}^p$. This technically induces another strong relation between the study of kernels and that of neural networks. Again, similar to the concentration of (Euclidean) distance extensively explored in this chapter, the entry-wise convergence in (5.1) does not imply convergence in the operator norm sense, which, as we shall see, leads directly to the so-called “double descent” test curve in random feature/neural network models. If the network output weight matrix $\boldsymbol{\beta}$ is designed to minimize the regularized MSE $L(\boldsymbol{\beta})=\frac{1}{n} \sum{i=1}^n\left|\mathbf{y}_i-\boldsymbol{\beta}^{\top} \sigma\left(\mathbf{W x}_i\right)\right|^2+\gamma|\boldsymbol{\beta}|_F^2$, for some regularization parameter $\gamma>0$, then $\beta$ takes the explicit form of a ridge-regressor ${ }^1$
$$
\beta \equiv \frac{1}{n} \Sigma\left(\frac{1}{n} \Sigma^{\top} \Sigma+\gamma \mathbf{I}_n\right)^{-1} \mathbf{Y}^{\top},
$$
which follows from differentiating $L(\boldsymbol{\beta})$ with respect to $\boldsymbol{\beta}$ to obtain $0=\gamma \boldsymbol{\beta}+$ $\frac{1}{n} \Sigma\left(\Sigma^{\top} \boldsymbol{\beta}-\mathbf{Y}^{\top}\right)$ so that $\left(\frac{1}{n} \Sigma \Sigma^{\top}+\gamma \mathbf{I}_N\right) \boldsymbol{\beta}=\frac{1}{n} \Sigma \mathbf{Y}^{\top}$ which, along with $\left(\frac{1}{n} \Sigma \Sigma^{\top}+\right.$ $\left.\gamma \mathbf{I}_N\right)^{-1} \Sigma=\Sigma\left(\frac{1}{n} \Sigma^{\top} \Sigma+\gamma \mathbf{I}_n\right)^{-1}$ for $\gamma>0$, gives the result.

计算机代写|机器学习代写machine learning代考|COMP30027

机器学习代考

计算机代写|机器学习代写machine learning代考|Random Neural Networks

尽管远不如现代深度神经网络流行,但具有随机固定权重的神经网络更易于分析。这种网络在过去几十年中频繁出现,作为处理可能有限数量的训练数据、降低计算和内存复杂性的适当解决方案,并且从另一个角度来看,可以将其视为高效的随机特征提取器。这些神经网络实际上在 Rosenblatt 的感知器 [Rosenblatt, 1958] 中找到了它们的根源,然后在许多作品中被多次重新审视、重新发现和分析,包括它们的前馈 [Schmidt et al., 1992] 和循环 [Gelenbe] , 1993] 版本。这些随机网络的最简单的现代版本是所谓的极限学习机 [H​​uang et al., 2012] 对于前馈情况,其中一个可能看起来只是非线性随机特征的线性回归方法,而回声状态网络 [Jaeger, 2001] 则用于重复出现的情况。另请参阅 Scardapane 和 Wang [2017],以更详尽地概述神经网络中的随机性。

还需要注意的是,深度神经网络是随机初始化的,随机操作(例如随机节点删除或自愿不学习大部分随机初始化的神经网络权重,即随机丢失)在神经网络学习 [Srivastava 等人,2014 年,Frankle 和 Carbin,2019 年]。我们还可以指出最近对神经网络“无反向传播学习”的努力,它受生物神经网络(自然不进行反向传播学习)的启发,提出了具有固定随机反向权重和非对称正向学习程序的学习机制 [Lillicrap 等人., 2016, Nøkland, 2016, Baldi 等, 2018, Frenkel 等, 2019, Han 等, 2019]。像这样,

正如随后将看到的,随机神经网络的简单模型在很大程度上与内核矩阵相关联。更具体地说,这些随机神经网络输出的分类或回归性能是随机矩阵的函数,属于核随机矩阵的广泛类别,但与第 4 节中研究的形式略有不同。也许更令人惊讶的是,这个深层神经网络仍然存在连接,这些神经网络 (i) 随机初始化和 (ii) 然后通过所谓的神经正切核 [Jacot et al., 2018] 考虑“无限多个神经元”限制,使用梯度下降进行训练,即所有层的网络宽度同时趋于无穷大的极限。神经网络和内核之间的这种紧密联系引发了人们对从优化 [Du et al., 2019, Chizat et al., 2019]、泛化 [Allen-Zhu et al. , 2019, Arora 等人, 2019a, Bietti 和 Mairal, 2019],以及学习动态 [Lee 等人, 2020, Advani 等人, 2020, Liao 和 Couillet, 2018a]。这些工作为我们对深度神经网络模型的理论理解提供了新的思路,并具体说明了研究具有随机权重的简单网络及其相关核的重要性,以评估更精细和实用的深度网络的内在机制。泛化 [Allen-Zhu et al., 2019, Arora et al., 2019a, Bietti and Mairal, 2019] 和学习动态 [Lee et al., 2020, Advani et al., 2020, Liao and Couillet, 2018a]。这些工作为我们对深度神经网络模型的理论理解提供了新的思路,并具体说明了研究具有随机权重的简单网络及其相关核的重要性,以评估更精细和实用的深度网络的内在机制。泛化 [Allen-Zhu et al., 2019, Arora et al., 2019a, Bietti and Mairal, 2019] 和学习动态 [Lee et al., 2020, Advani et al., 2020, Liao and Couillet, 2018a]。这些工作为我们对深度神经网络模型的理论理解提供了新的思路,并具体说明了研究具有随机权重的简单网络及其相关核的重要性,以评估更精细和实用的深度网络的内在机制。

计算机代写|机器学习代写machine learning代考|Regression with Random Neural Networks

在本节中,我们考虑前馈单隐藏层神经网络,如图所示 $5.1$ (为了标记方便,从右到左显示)。稍后将在 第 $5.3$ 节中讨论一类类似的单隐藏层神经网络模型,但具有递归结构。
给定输入数据 $\mathbf{X}=\left[\mathbf{x}1, \ldots, \mathbf{x}_n\right] \in \mathbb{R}^{p \times n}$ ,我们表示 $\Sigma \equiv \sigma(\mathbf{W X}) \in \mathbb{R}^{N \times n}$ 第一层的输出包括 $N$ 神 经元。此输出来自预乘 $\mathbf{X}$ 通过一些随机权重矩阵 $\mathbf{W} \in \mathbb{R}^{N \times p}$ 具有 iid (比如标准高斯) 条目和非线性激 活函数的条目式应用 $\sigma: \mathbb{R} \rightarrow \mathbb{R}$. 因此,列 $\sigma\left(\mathbf{W} \mathbf{x}_i\right)$ 的 $\Sigma$ 可以看作是的随机非线性特征 $\mathbf{x}_i$. 第二层重量 化 Frobenius 范数 $\left|\mathbf{Y}-\boldsymbol{\beta}^{\top} \Sigma\right|_F^2$. 备注 $5.1$ (随机神经网络、随机特征图和随机内核)。列的 $\Sigma$ 可以看作是的输出 $\mathbb{R}^p \rightarrow \mathbb{R}^N$ 随机特征图 $\phi: \mathbf{x} i \mapsto \sigma\left(\mathbf{W} \mathbf{x}_i\right)$ 对于一些给定的 $\mathbf{W} \in \mathbb{R}^{N \times p}$. 在 Rahimi 和 Recht [2008] 中,表明对于以下形式的 每个非负定”移位不变”内核 $(\mathbf{x}, \mathbf{y}) \mapsto f\left(|\mathbf{x}-\mathbf{y}|^2\right)$ ,存在适当的选择 $\sigma$ 和条目的法律 $\mathbf{W}$ 这样作为神经 元或随机特征的数量 $N \rightarrow \infty$ , $$ \sigma\left(\mathbf{W} \mathbf{x}_i\right)^{\top} \sigma\left(\mathbf{W} \mathbf{x}_j\right) \stackrel{\text { a.s. }}{\longrightarrow} f\left(\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right) . $$ 因此,对于足够大的 $N$ (通常必须与 $n, p$ ),双变量函数 $(\mathbf{x}, \mathbf{y}) \mapsto \sigma(\mathbf{W} \mathbf{x})^{\top} \sigma(\mathbf{W y})$ 逼近该类型的核函 数 $f\left(|\mathbf{x}-\mathbf{y}|^2\right)$ 在第 4 章中进行了研究。然后在随后的工作中将这一结果推广到更大的内核系列,包括 内积内核 [Kar 和 Karnick,2012 年]、加性均质内核 [Vedaldi 和Zisserman,2012 年] 等。另一个,可 能更边缘的,与前面部分的联系是 $\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)$ 可以解释为应用于“数据”对的“适当缩放”的内积核函数 $\mathbf{w}, \mathbf{x} \in \mathbb{R}^p$. 这在技术上引发了内核研究与神经网络研究之间的另一种密切关系。同样,类似于本章广泛 探讨的 (欧几里得) 距离的集中,(5.1) 中的逐项收敛并不意味看算子范数意义上的收敛,正如我们将 看到的,这直接导致所谓的随机特征/神经网络模型中的“双下降”测试曲线。如果网络输出权重矩阵 $\beta$ 旨在 最小化正则化 $\operatorname{MSE} L(\boldsymbol{\beta})=\frac{1}{n} \sum i=1^n\left|\mathbf{y}_i-\boldsymbol{\beta}^{\top} \sigma\left(\mathbf{W} \mathbf{x}_i\right)\right|^2+\gamma|\boldsymbol{\beta}|{F^{\prime}}^2$, 对于一些正则化参数 $\gamma>0$ ,然后 $\beta$ 采用岭回归量的显式形式 ${ }^1$
$$
\beta \equiv \frac{1}{n} \Sigma\left(\frac{1}{n} \Sigma^{\top} \Sigma+\gamma \mathbf{I}_n\right)^{-1} \mathbf{Y}^{\top},
$$
由微分得出 $L(\boldsymbol{\beta})$ 关于 $\boldsymbol{\beta}$ 获得 $0=\gamma \boldsymbol{\beta}+\frac{1}{n} \Sigma\left(\Sigma^{\top} \boldsymbol{\beta}-\mathbf{Y}^{\top}\right)$ 以便 $\left(\frac{1}{n} \Sigma \Sigma^{\top}+\gamma \mathbf{I}_N\right) \boldsymbol{\beta}=\frac{1}{n} \Sigma \mathbf{Y}^{\top}$ 其 中,连同 $\left(\frac{1}{n} \Sigma \Sigma^{\top}+\gamma \mathbf{I}_N\right)^{-1} \Sigma=\Sigma\left(\frac{1}{n} \Sigma^{\top} \Sigma+\gamma \mathbf{I}_n\right)^{-1}$ 为了 $\gamma>0$, 给出结果。

计算机代写|机器学习代写machine learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|机器学习代写machine learning代考|COMP5318

如果你也在 怎样代写机器学习 machine learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

机器学习是一个致力于理解和建立 “学习 “方法的研究领域,也就是说,利用数据来提高某些任务的性能的方法。机器学习算法基于样本数据(称为训练数据)建立模型,以便在没有明确编程的情况下做出预测或决定。机器学习算法被广泛用于各种应用,如医学、电子邮件过滤、语音识别和计算机视觉,在这些应用中,开发传统算法来执行所需任务是困难的或不可行的。

statistics-lab™ 为您的留学生涯保驾护航 在代写机器学习 machine learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写机器学习 machine learning代写方面经验极为丰富,各种代写机器学习 machine learning相关的作业也就用不着说。

我们提供的机器学习 machine learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|机器学习代写machine learning代考|COMP5318

计算机代写|机器学习代写machine learning代考|Concluding Remarks

Before the present chapter, the first part of the book was mostly concerned with the sample covariance matrix model $\mathbf{X} \mathbf{X}^{\top} / n$ (and more marginally with the Wigner model $\mathbf{X} / \sqrt{n}$ for symmetric $\mathbf{X}$ ), where the columns of $\mathbf{X}$ are independent and the entries of each column are independent or linearly dependent. Historically, this model and its numerous variations (with a variance profile, with right-side correlation, summed up to other independent matrices of the same form, etc.) have covered most of the mathematical and applied interest of the first two decades (since the early nineties) of intense random matrix advances. The main drivers for these early developments were statistics, signal processing, and wireless communications. The present chapter leaped much further in considering now random matrix models with possibly highly correlated entries, with a specific focus on kernel matrices. When (moderately) largedimensional data are considered, the intuition and theoretical understanding of kernel matrices in small-dimensional setting being no longer accurate, random matrix theory provides accurate (and asymptotically exact) performance assessment along with the possibility to largely improve the performance of kernel-based machine learning methods. This, in effect, creates a small revolution in our understanding of machine learning on realistic large datasets.

A first important finding of the analysis of large-dimensional kernel statistics reported here is the ubiquitous character of the Marčenko-Pastur and the semi-circular laws. As a matter of fact, all random matrix models studied in this chapter, and in particular the kernel regimes $f\left(\mathbf{x}_i^{\top} \mathbf{x}_j / p\right)$ (which concentrate around $f(0)$ ) and $f\left(\mathbf{x}_i^{\top} \mathbf{x}_j / \sqrt{p}\right.$ ) (which tends to $f(\mathcal{N}(0,1))$ ), have a limiting eigenvalue distribution akin to a combination of the two laws. This combination may vary from case to case (compare for instance the results of Practical Lecture 3 to Theorem 4.4), but is often parametrized in a such way that the Marčenko-Pastur and semicircle laws appear as limiting cases (in the context of Practical Lecture 3, they correspond to the limiting cases of dense versus sparse kernels, and in Theorem $4.4$ to the limiting cases of linear versus “purely” nonlinear kernels).

计算机代写|机器学习代写machine learning代考|Practical Course Material

In this section, Practical Lecture 3 (that evaluates the spectral behavior of uniformly sparsified kernels) related to the present Chapter 4 is discussed, where we shall see, as for $\alpha-\beta$ and properly scaling kernels in Sections $4.2 .4$ and $4.3$ that, depending on the “level of sparsity,” a combination of Marčenko-Pastur and semicircle laws is observed.
Practical Lecture Material 3 (Complexity-performance trade-off in spectral clustering with sparse kernel, Zarrouk et al. [2020]). In this exercise, we study the spectrum of a “punctured” version $\mathbf{K}=\mathbf{B} \odot\left(\mathbf{X}^{\top} \mathbf{X} / p\right.$ ) (with the Hadamard product $[\mathbf{A} \odot \mathbf{B}]{i j}=[\mathbf{A}]{i j}[\mathbf{B}]{i j}$ of the linear kernel $\mathbf{X}^{\top} \mathbf{X} / p$, with data matrix $\mathbf{X} \in \mathbb{R}^{p \times n}$ and a symmetric random mask-matrix $\mathbf{B} \in{0,1}^{n \times n}$ having independent $[\mathbf{B}]{i j} \sim \operatorname{Bern}(\boldsymbol{\epsilon})$ entries for $i \neq j$ (up to symmetry) and $[\mathbf{B}]_{i i}=b \in{0,1}$ fixed, in the limit $p, n \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$. This matrix mimics the computation of only a proportion $\epsilon \in(0,1)$ of the entries of $\mathbf{X}^{\top} \mathbf{X} / n$, and its impact on spectral clustering. Letting $\mathbf{X}=\left[\mathbf{x}_1, \ldots, \mathbf{x}_n\right]$ with $\mathbf{x}_i$ independently and uniformly drawn from the following symmetric two-class Gaussian mixture
$$
\mathcal{C}_1: \mathbf{x}_i \sim \mathcal{N}\left(-\boldsymbol{\mu}, \mathbf{I}_p\right), \quad \mathcal{C}_2: \mathbf{x}_i \sim \mathcal{N}\left(+\boldsymbol{\mu}, \mathbf{I}_p\right)
$$
for $\boldsymbol{\mu} \in \mathbb{R}^p$ such that $|\boldsymbol{\mu}|=O(1)$ with respect to $n, p$, we wish to study the effect of a uniform “zeroing out” of the entries of $\mathbf{X}^{\top} \mathbf{X}$ on the presence of an isolated spike in the spectrum of $\mathbf{K}$, and thus on the spectral clustering performance.

We will study the spectrum of $\mathbf{K}$ using Stein’s lemma and the Gaussian method discussed in Section 2.2.2. Let $\mathbf{Z}=\left[\mathbf{z}1, \ldots, \mathbf{z}_n\right] \in \mathbb{R}^{p \times n}$ for $\mathbf{z}_i=\mathbf{x}_i-(-1)^a \boldsymbol{\mu} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_p\right)$ with $\mathbf{x}_i \in \mathcal{C}_a$ and $\mathbf{M}=\mu \mathbf{j}^{\top}$ with $\mathbf{j}=\left[-\mathbf{1}{n / 2}, \mathbf{1}_{n / 2}\right]^{\top} \in \mathbb{R}^n$ so that $\mathbf{X}=\mathbf{M}+\mathbf{Z}$. First show that, for $\mathbf{Q} \equiv \mathbf{Q}(z)=\left(\mathbf{K}-z \mathbf{I}_n\right)^{-1}$,
$$
\begin{aligned}
\mathbf{Q}= & -\frac{1}{z} \mathbf{I}_n+\frac{1}{z}\left(\frac{\mathbf{Z}^{\boldsymbol{}} \mathbf{Z}}{p} \odot \mathbf{B}\right) \mathbf{Q}+\frac{1}{z}\left(\frac{\mathbf{Z}^{\boldsymbol{T}} \mathbf{M}}{p} \odot \mathbf{B}\right) \mathbf{Q} \
& +\frac{1}{z}\left(\frac{\mathbf{M}^{\boldsymbol{\top}} \mathbf{Z}}{p} \odot \mathbf{B}\right) \mathbf{Q}+\frac{1}{z}\left(\frac{\mathbf{M}^{\boldsymbol{T}} \mathbf{M}}{p} \odot \mathbf{B}\right) \mathbf{Q} .
\end{aligned}
$$
To proceed, we need to go slightly beyond the study of these four terms.

计算机代写|机器学习代写machine learning代考|COMP5318

机器学习代考

计算机代写|机器学习代写machine learning代考|Concluding Remarks

在本章之前,本书的第一部分主要关注样本协方差矩阵模型 $\mathbf{X} \mathbf{X}^{\top} / n$ (以及更边缘的 Wigner 模型 $\mathbf{X} / \sqrt{n}$ 对于对称 $\mathbf{X}$ ), 其中列 $\mathbf{X}$ 是独立的,每列的条目是独立的或线性相关的。从历史上看,这个模型及 其众多变体 (具有方差曲线、右侧相关、总结为相同形式的其他独立矩阵等) 已经涵盖了头二十年的大部 分数学和应用兴趣 (自九十年代初期) 的强烈随机矩阵进步。这些早期发展的主要驱动力是统计、信号处 理和无线通信。本章更进一步地考虑了现在可能具有高度相关条目的随机矩阵模型,并特别关注核矩阵。 当考虑 (适度) 大维数据时,对小维设置中核矩阵的直觉和理论理解不再准确,随机矩阵理论提供了准确 (和渐近精确) 的性能评估,并有可能大大提高基于内核的机器学习方法的性能。实际上,这在我们对现 实大型数据集上的机器学习的理解方面产生了一场小革命。
此处报告的大维核统计分析的第一个重要发现是 Marčenko-Pastur 和半圆定律的普遍特征。事实上,本 章研究的所有随机矩阵模型,尤其是内核状态 $f\left(\mathbf{x}_i^{\top} \mathbf{x}_j / p\right)$ (集中在 $\left.f(0)\right)$ 和 $f\left(\mathbf{x}_i^{\top} \mathbf{x}_j / \sqrt{p}\right.$ ) (倾向 于 $f(\mathcal{N}(0,1))$ ), 具有类似于这两个定律的组合的特征值极限分布。这种组合可能因情况而异 (例如比较 实践讲座 3 与定理 $4.4$ 的结果) ,但通常以 Marčenko-Pastur 和半圆定律作为极限情况出现的方式进行 参数化(在实践讲座的上下文中3,它们对应于密集核与稀疏核的极限情况,并且在定理中 $4.4$ 线性与”纯” 非线性内核的极限情况)。

计算机代写|机器学习代写machine learning代考|Practical Course Material

在本节中,将讨论与当前第 4 章相关的实践讲座 3 (评估均匀稀疏核的光谱行为),我们将在其中看到, 至于 $\alpha-\beta$ 并在部分中适当缩放内核 $4.2 .4$ 和 $4.3$ 也就是说,根据“稀疏程度”,观察到 Marčenko-Pastur 和半圆定律的组合。
实用讲座材料 3 (Complexity-performance trade-off in spectral clustering with sparse kernel, Zarrouk 等人 [2020])。在本练习中,我们研究了“打孔”版本的频谱 $\mathbf{K}=\mathbf{B} \odot\left(\mathbf{X}^{\top} \mathbf{X} / p\right)$ (与阿达玛产 品 $[\mathbf{A} \odot \mathbf{B}] i j=[\mathbf{A}] i j[\mathbf{B}] i j$ 线性内核 $\mathbf{X}^{\top} \mathbf{X} / p$ ,有数据矩阵 $\mathbf{X} \in \mathbb{R}^{p \times n}$ 和一个对称的随机掩码矩阵 $\mathbf{B} \in 0,1^{n \times n}$ 有独立的 $[\mathbf{B}] i j \sim \operatorname{Bern}(\boldsymbol{\epsilon})$ 条目 $i \neq j$ (直到对称) 和 $[\mathbf{B}]{i i}=b \in 0,1$ 固定的,在极限 $p, n \rightarrow \infty$ 和 $p / n \rightarrow c \in(0, \infty)$. 该矩阵模拟仅计算一个比例 $\epsilon \in(0,1)$ 条目的 $\mathbf{X}^{\top} \mathbf{X} / n$ ,及其对谱 聚类的影响。出租 $\mathbf{X}=\left[\mathbf{x}_1, \ldots, \mathbf{x}_n\right]$ 和 $\mathbf{x}_i$ 从以下对称二类高斯混合中独立均匀地抽取 $$ \mathcal{C}_1: \mathbf{x}_i \sim \mathcal{N}\left(-\boldsymbol{\mu}, \mathbf{I}_p\right), \quad \mathcal{C}_2: \mathbf{x}_i \sim \mathcal{N}\left(+\boldsymbol{\mu}, \mathbf{I}_p\right) $$ 为了 $\boldsymbol{\mu} \in \mathbb{R}^p$ 这样 $|\boldsymbol{\mu}|=O(1)$ 关于 $n, p$ ,我们布望研究统一”归零”条目的效果 $\mathbf{X}^{\top} \mathbf{X}{\text {在频谱中存在孤立 }}$ 的尖峰K,从而影响谱聚类性能。
我们将研究频谱K使用 Stein 引理和 $2.2 .2$ 节中讨论的高斯方法。让 $\mathbf{Z}=\left[\mathbf{z} 1, \ldots, \mathbf{z}n\right] \in \mathbb{R}^{p \times n}$ 为了 $\mathbf{z}_i=\mathbf{x}_i-(-1)^a \boldsymbol{\mu} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_p\right)$ 和 $\mathbf{x}_i \in \mathcal{C}_a$ 和 $\mathbf{M}=\mu \mathbf{j}^{\top}$ 和 $\mathbf{j}=\left[-\mathbf{1} n / 2, \mathbf{1}{n / 2}\right]^{\top} \in \mathbb{R}^n$ 以便 $\mathbf{X}=\mathbf{M}+\mathbf{Z}$. 首先表明,对于 $\mathbf{Q} \equiv \mathbf{Q}(z)=\left(\mathbf{K}-z \mathbf{I}_n\right)^{-1}$ ,
$$
\mathbf{Q}=-\frac{1}{z} \mathbf{I}_n+\frac{1}{z}\left(\frac{\mathbf{Z Z}}{p} \odot \mathbf{B}\right) \mathbf{Q}+\frac{1}{z}\left(\frac{\mathbf{Z}^T \mathbf{M}}{p} \odot \mathbf{B}\right) \mathbf{Q} \quad+\frac{1}{z}\left(\frac{\mathbf{M}^{\top} \mathbf{Z}}{p} \odot \mathbf{B}\right) \mathbf{Q}+\frac{1}{z}\left(\frac{\mathbf{M}^T}{p}\right.
$$
为了继续,我们需要略微超出对这四个术语的研究。

计算机代写|机器学习代写machine learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|机器学习代写machine learning代考|COMP4702

如果你也在 怎样代写机器学习 machine learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

机器学习是一个致力于理解和建立 “学习 “方法的研究领域,也就是说,利用数据来提高某些任务的性能的方法。机器学习算法基于样本数据(称为训练数据)建立模型,以便在没有明确编程的情况下做出预测或决定。机器学习算法被广泛用于各种应用,如医学、电子邮件过滤、语音识别和计算机视觉,在这些应用中,开发传统算法来执行所需任务是困难的或不可行的。

statistics-lab™ 为您的留学生涯保驾护航 在代写机器学习 machine learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写机器学习 machine learning代写方面经验极为丰富,各种代写机器学习 machine learning相关的作业也就用不着说。

我们提供的机器学习 machine learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|机器学习代写machine learning代考|COMP4702

计算机代写|机器学习代写machine learning代考|Distance and Inner-Product Random Kernel Matrices

The most widely used kernel model in machine learning applications is the heat kernel $\mathbf{K}=\left{\exp \left(-\left|\mathbf{x}i-\mathbf{x}_j\right|^2 / 2 \sigma^2\right)\right}{i, j=1}^n$, for some $\sigma>0$. It is thus natural to start the large-dimensional analysis of kernel random matrices by focusing on this model.
As mentioned in the previous sections, for the Gaussian mixture model above, as the dimension $p$ increases, $\sigma^2$ needs to scale as $O(p)$, so say $\sigma^2=\tilde{\sigma}^2 p$ for some $\tilde{\sigma}^2=O(1)$, to avoid evaluating the exponential at increasingly large values for $p$ large. As such, the prototypical kernel of present interest is
$$
\mathbf{K}=\left{f\left(\frac{1}{p}\left|\mathbf{x}i-\mathbf{x}_j\right|^2\right)\right}{i, j-1}^n,
$$
for $f$ a sufficiently smooth function (specifically, $f(t)=\exp \left(-t / 2 \tilde{\sigma}^2\right)$ for the heat kernel). As we will see though, it is much desirable not to restrict ourselves to $f(t)=\exp \left(-t / 2 \tilde{\sigma}^2\right)$ so to better appreciate the impact of the nonlinear kernel function $f$ on the (asymptotic) structural behavior of the kernel matrix $\mathbf{K}$.

计算机代写|机器学习代写machine learning代考|Euclidean Random Matrices with Equal Covariances

In order to get a first picture of the large-dimensional behavior of $\mathbf{K}$, let us first develop the distance $\left|\mathbf{x}_i-\mathbf{x}_j\right|^2 / p$ for $\mathbf{x}_i \in \mathcal{C}_a$ and $\mathbf{x}_j \in \mathcal{C}_b$, with $i \neq j$.

For simplicity, let us assume for the moment $\mathbf{C}_1=\cdots=\mathbf{C}_k=\mathbf{I}_p$ and recall the notation $\mathbf{x}_i=\boldsymbol{\mu}_a+\mathbf{z}_i$. We have, for $i \neq j$ that “entry-wise,”
$$
\begin{aligned}
\frac{1}{p}\left|\mathbf{x}_i-\mathbf{x}_j\right|^2= & \frac{1}{p}\left|\boldsymbol{\mu}_a-\boldsymbol{\mu}_b\right|^2+\frac{2}{p}\left(\boldsymbol{\mu}_a-\boldsymbol{\mu}_b\right)^{\top}\left(\mathbf{z}_i-\mathbf{z}_j\right) \
& +\frac{1}{p}\left|\mathbf{z}_i\right|^2+\frac{1}{p}\left|\mathbf{z}_j\right|^2-\frac{2}{p} \mathbf{z}_i^{\top} \mathbf{z}_j .
\end{aligned}
$$
For $\left|\mathbf{x}_i\right|$ of order $O(\sqrt{p})$, if $\left|\mu_a\right|=O(\sqrt{p})$ for all $a \in{1, \ldots, k}$ (which would be natural), then $\left|\mu_a-\mu_b\right|^2 / p$ is a priori of order $O(1)$ while, by the central limit theorem, $\left|\mathbf{z}_i\right|^2 / p=1+O\left(p^{-1 / 2}\right)$. Also, again by the central limit theorem, $\mathbf{z}_i^{\top} \mathbf{z}_j / p=$ $O\left(p^{-1 / 2}\right)$ and $\left(\mu_a-\mu_b\right)^{\top}\left(\mathbf{z}_i-\mathbf{z}_j\right) / p=O\left(p^{-1 / 2}\right)$

As a consequence, for $p$ large, the distance $\left|\mathbf{x}i-\mathbf{x}_j\right|^2 / p$ is dominated by $| \boldsymbol{\mu}_a-$ $\boldsymbol{\mu}_b |^2 / p+2$ and easily discriminates classes from the pairwise observations of $\mathbf{x}_i, \mathbf{x}_j$, making the classification asymptotically trivial (without having to resort to any kernel method). It is thus of interest consider the situations where the class distances are less significant to understand how the choices of kernel come into play in such more practical scenario. To this end, we now demand that $$ \left|\mu_a-\mu_b\right|=O(1), $$ which is also the minimal distance rate that can be discriminated from a mere Bayesian inference analysis, as thoroughly discussed in Section 1.1.3. Since the kernel function $f(\cdot)$ operates only on the distances $\left|\mathbf{x}_i-\mathbf{x}_j\right|$, we may even request (up to centering all data by, say, the constant vector $\frac{1}{n} \sum{a=1}^k n_a \mu_a$ ) for simplicity that $\left|\mu_a\right|=O(1)$ for each $a$.

计算机代写|机器学习代写machine learning代考|COMP4702

机器学习代考

计算机代写|机器学习代写machine learning代考|Distance and Inner-Product Random Kernel Matrices

机器学习应用中使用最广泛的内核模型是热内核 于一些 $\sigma>0$. 因此,通过关注该模型来开始核随机矩阵的大维分析是很自然的。
前面章节提到,对于上面的高斯混合模型,作为维度 $p$ 增加, $\sigma^2$ 需要缩放为 $O(p)$ ,所以说 $\sigma^2=\tilde{\sigma}^2 p$ 对于 一些 $\tilde{\sigma}^2=O(1)$ ,以避免在越来越大的值下评估指数 $p$ 大。因此,目前感兴趣的原型内核是
为了 $f$ 一个足够平滑的函数(具体来说, $f(t)=\exp \left(-t / 2 \tilde{\sigma}^2\right)$ 为热内核)。正如我们将要看到的,最 好不要将自己限制在 $f(t)=\exp \left(-t / 2 \tilde{\sigma}^2\right)$ 以便更好地理解非线性核函数的影响 $f$ 关于内核矩阵的 (渐 近) 结构行为 $\mathbf{K}$.

计算机代写|机器学习代写machine learning代考|Euclidean Random Matrices with Equal Covariances

为了获得大维行为的第一张图片 $\mathbf{K}$ ,让我们先发展距离 $\left|\mathbf{x}_i-\mathbf{x}_j\right|^2 / p$ 为了 $\mathbf{x}_i \in \mathcal{C}_a$ 和 $\mathbf{x}_j \in \mathcal{C}_b$ ,和 $i \neq j$
为简单起见,让我们暂时假设 $\mathbf{C}_1=\cdots=\mathbf{C}_k=\mathbf{I}_p$ 并回忆一下符号 $\mathbf{x}_i=\boldsymbol{\mu}_a+\mathbf{z}_i$. 我们有,为了 $i \neq j$ 那个”入门级”,
$$
\frac{1}{p}\left|\mathbf{x}_i-\mathbf{x}_j\right|^2=\frac{1}{p}\left|\boldsymbol{\mu}_a-\boldsymbol{\mu}_b\right|^2+\frac{2}{p}\left(\boldsymbol{\mu}_a-\boldsymbol{\mu}_b\right)^{\top}\left(\mathbf{z}_i-\mathbf{z}_j\right) \quad+\frac{1}{p}\left|\mathbf{z}_i\right|^2+\frac{1}{p}\left|\mathbf{z}_j\right|^2-\frac{2}{p} \mathbf{z}_i^{\top} \mathbf{z}_j
$$
为了 $\left|\mathbf{x}_i\right|$ 秩序 $O(\sqrt{p})$ ,如果 $\left|\mu_a\right|=O(\sqrt{p})$ 对所有人 $a \in 1, \ldots, k$ (这很自然),然后 $\left|\mu_a-\mu_b\right|^2 / p$ 是先验的顺序 $O(1)$ 而根据中心极限定理, $\left|\mathbf{z}_i\right|^2 / p=1+O\left(p^{-1 / 2}\right)$. 同样,再次根据中心极限定理, $\mathbf{z}_i^{\top} \mathbf{z}_j / p=O\left(p^{-1 / 2}\right)$ 和 $\left(\mu_a-\mu_b\right)^{\top}\left(\mathbf{z}_i-\mathbf{z}_j\right) / p=O\left(p^{-1 / 2}\right)$
结果,对于 $p$ 大,距离 $\left|\mathbf{x} i-\mathbf{x}_j\right|^2 / p$ 被支配 $\left|\boldsymbol{\mu}_a-\boldsymbol{\mu}_b\right|^2 / p+2$ 并且很容易从成对观察中区分类别 $\mathbf{x}_i, \mathbf{x}_j$ ,使分类渐近平凡(无需求助于任何内核方法) 。因此,有趣的是考虑类距离不太重要的情况,以了解 内核的选择如何在这种更实际的场景中发挥作用。为此,我们现在要求
$$
\left|\mu_a-\mu_b\right|=O(1)
$$
这也是可以从单纯的贝叶斯推理分析中区分出来的最小距离率,如第 1.1.3 节中详尽讨论的那样。由于核 函数 $f(\cdot)$ 仅在距离上运行 $\left|\mathbf{x}_i-\mathbf{x}_j\right|$ ,我们甚至可以请求 (直到通过常量向量将所有数据居中 $\left.\frac{1}{n} \sum a=1^k n_a \mu_a\right)$ 为简单起见 $\left|\mu_a\right|=O(1)$ 每个 $a$.

计算机代写|机器学习代写machine learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|机器学习代写machine learning代考|COMP30027

如果你也在 怎样代写机器学习 machine learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

机器学习是一个致力于理解和建立 “学习 “方法的研究领域,也就是说,利用数据来提高某些任务的性能的方法。机器学习算法基于样本数据(称为训练数据)建立模型,以便在没有明确编程的情况下做出预测或决定。机器学习算法被广泛用于各种应用,如医学、电子邮件过滤、语音识别和计算机视觉,在这些应用中,开发传统算法来执行所需任务是困难的或不可行的。

statistics-lab™ 为您的留学生涯保驾护航 在代写机器学习 machine learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写机器学习 machine learning代写方面经验极为丰富,各种代写机器学习 machine learning相关的作业也就用不着说。

我们提供的机器学习 machine learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|机器学习代写machine learning代考|COMP30027

计算机代写|机器学习代写machine learning代考|The Nontrivial Growth Rates

In classical large- $n$ only asymptotic statistics, laws of large numbers demand a scaling by $1 / n$ of the summed observations. When centered, central limit theorems then occur after multiplication of the average by $\sqrt{n}$. A similar requirement is needed when we now consider that the dimension $p$ of the data is also large. In particular, we will demand that the norm of each observation remains bounded. Assuming $\mathbf{x} \in \mathbb{R}^p$ is a vector of bounded entries, that is, each of order $O(1)$ with respect to $p$, the natural normalization is typically $\mathbf{x} / \sqrt{p}$.

In the context of kernel methods, for data $\mathbf{x}_1, \ldots, \mathbf{x}_n$, one wishes that the argument of $f(\cdot)$ in the inner-product kernel $f\left(\mathbf{x}_i^{\top} \mathbf{x}_j\right)$ or the distance kernel $f\left(\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right)$ be of order $O(1)$, when $f$ is assumed independent of $p$.

The “correct” scaling however appears not to be so immediate. Letting $\mathbf{x}i$ have entries of order $O(1)$, one naturally has that $\left|\mathbf{x}_i-\mathbf{x}_j\right|^2=\left|\mathbf{x}_i\right|^2+\left|\mathbf{x}_j\right|^2-2 \mathbf{x}_i^{\top} \mathbf{x}_j=$ $O(p)$ and it thus appears natural to scale $\left|\mathbf{x}_i-\mathbf{x}_j\right|^2$ by $1 / p$. Similarly, if the norm of the mean $\left|\mathbb{E}\left[\mathbf{x}_i\right]\right|$ of $\mathbf{x}_i$ has the same order of magnitude as $\left|\mathbf{x}_i\right|$ itself (as it should in general), then for $\mathbf{x}_i, \mathbf{x}_j$ independent, $\mathbb{E}\left[\mathbf{x}_i^{\top} \mathbf{x}_j\right]=O(p)$. So again, one should scale the inner-product also by $1 / p$, to obtain kernel matrices of the type $$ \mathbf{K}=\left{f\left(\frac{1}{p}\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right)\right}{i, j=1}^n, \text { and }\left{f\left(\frac{1}{p} \mathbf{x}i^{\top} \mathbf{x}_j\right)\right}{i, j=1}^n
$$
Section $4.2$ (and most applications thereafter) will be placed under these kernel forms. The most commonly used Gaussian kernel matrix, defined as $\mathbf{K}=\left{\exp \left(-| \mathbf{x}i-\right.\right.$ $\left.\left.\mathbf{x}_j |^2 / 2 \sigma^2\right)\right}{i, j=1}^n$, falls into this family as one usually demands that $\sigma^2 \sim \mathbb{E}\left[\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right]$ (to avoid evaluating the exponential close to zero or infinity).

However, as already demonstrated in Section 1.1.3, if $n$ scales like $p$, then, for the classification problem to be asymptotically nontrivial, the difference $\left|\mathbb{E}\left[\mathbf{x}_i\right]-\mathbb{E}\left[\mathbf{x}_j\right]\right|^2$ needs to scale like $O(1)$ rather than $O(p)$ (otherwise data classes would be too easy to cluster for all large $n, p$ ), resulting in $\left|\mathbf{x}_i-\mathbf{x}_j\right|^2 / p$ possibly converging to a constant value irrespective of the data classes (of $\mathbf{x}_i$ and $\mathbf{x}_j$ ), with a typical “spread” of order $O(1 / \sqrt{p})$. Similarly, up to re-centering, ${ }^2 \mathbf{x}i^{\top} \mathbf{x}_j / p$ scales like $O(1 / \sqrt{p})$ rather than $O(1)$. As such, it seems more appropriate to normalize the kernel matrix entries as $$ [\mathbf{K}]{i j}=f\left(\frac{\left|\mathbf{x}i-\mathbf{x}_j\right|^2}{\sqrt{p}}-\frac{1}{n(n-1)} \sum{i^{\prime}, j^{\prime}} \frac{\left|\mathbf{x}{i^{\prime}}-\mathbf{x}{j^{\prime}}\right|^2}{\sqrt{p}}\right), \text { or }[\mathbf{K}]_{i j}=f\left(\frac{1}{\sqrt{p}} \mathbf{x}_i^{\top} \mathbf{x}_j\right)
$$
in order here to avoid evaluating $f$ essentially at a single value (equal to zero for the inner-product kernel or equal to the average “common” limiting intra-data distance for the distance kernel).

This “properly scaling” setting is in fact much richer than the $1 / p$ normalization when $n, p$ are of the same order of magnitude. Sections $4.2 .4$ and $4.3$ elaborate on this scenario.

计算机代写|机器学习代写machine learning代考|Statistical Data Model

In the remainder of the section, we assume the observation of $n$ independent data vectors from a total of $k$ classes gathered as $\mathbf{X}=\left[\mathbf{x}1, \ldots, \mathbf{x}_n\right] \in \mathbb{R}^{p \times n}$, where $$ \begin{array}{cc} \mathbf{x}_1, \ldots, \mathbf{x}{n_1} & \sim \mathcal{N}\left(\mu_1, \mathbf{C}1\right) \ \vdots & \vdots \ \mathbf{x}{n-n_k+1}, \ldots, \mathbf{x}n \sim \mathcal{N}\left(\mu_k, \mathbf{C}_k\right), \end{array} $$ which is a $k$-class Gaussian mixture model (GMM) with a fixed cardinality $n_1, \ldots, n_k$ in each class. ${ }^3$ The fact that the data are indexed according to classes simplifies the notation but has no practical consequence in the analysis. We will denote $\mathcal{C}_a$ the class number ” $a$,” so in particular $$ \mathbf{x}_i \sim \mathcal{N}\left(\mu_a, \mathbf{C}_a\right) \Leftrightarrow \mathbf{x}_i \in \mathcal{C}_a $$ for $a \in{1, \ldots, k}$, and will use for convenience the matrix $$ \mathbf{J}=\left[\mathbf{j}_1, \ldots, \mathbf{j}_k\right] \in \mathbb{R}^{n \times k}, \quad \mathbf{j}_a=[\underbrace{0, \ldots, 0}{n_1+\ldots+n_{a-1}}, \underbrace{1, \ldots, 1}{n_a}, \underbrace{0, \ldots, 0}{n_{a+1}+\ldots+n_k}]^{\top},
$$
which is the indicator matrix of the class labels $(\mathbf{J}$ is a priori known under a supervised learning setting and is to be fully or partially recovered under a semi-supervised or unsupervised learning setting).

We shall systematically make the following simplifying growth rate assumption for $p, n$ and $n_1, \ldots, n_k$.

Assumption 1 (Growth rate of data size and number). As $n \rightarrow \infty, p / n \rightarrow c \in(0, \infty)$ and $n_a / n \rightarrow c_a \in(0,1)$.

This assumption, in particular, implies that each class is “large” in the sense that their cardinalities increase with $n^4$

Accordingly with the discussions in Chapter 2, from a random matrix “universality” perspective, the Gaussian mixture assumption will often (yet not always) turn out equivalent to demanding that
$$
\mathbf{x}_i \in \mathcal{C}_a: \mathbf{x}_i=\mu_a+\mathbf{C}_a^{\frac{1}{2}} \mathbf{z}_i
$$
with $\mathbf{z}_i \in \mathbb{R}^p$ a random vector with i.i.d. entries of zero mean, unit variance, and bounded higher-order (e.g., fourth) moments.

This hypothesis is indeed quite restrictive as it imposes that the data, up to centering and linear scaling, are composed of i.i.d. entries. Equivalently, this suggests that only data which result from affine transformations of vectors with i.i.d. entries can be studied, which is quite restrictive in practice as “real data” are deemed much more complex.

Exploring the notion of concentrated random vectors introduced in Section 2.7, Chapter 8 will open up this discussion by showing that a much larger class of (statistical) data models embrace the same asymptotic statistics, and that most results discussed in the present section apply identically to broader models of data irreducible to vectors of independent entries.

计算机代写|机器学习代写machine learning代考|COMP30027

机器学习代考

计算机代写|机器学习代写machine learning代考|The Nontrivial Growth Rates

在经典大 $n$ 只有渐近统计,大数定律要求按比例缩放 $1 / n$ 总结的意见。当居中时,中心极限定理然后出现 在平均值乘以 $\sqrt{n}$. 当我们现在考虑维度时,需要类似的要求 $p$ 数据量也很大。特别是,我们将要求每个 观察的范数保持有界。假设 $\mathbf{x} \in \mathbb{R}^p$ 是有界条目的向量,即每个顺序 $O(1)$ 关于 $p$ ,自然归一化通常是 $\mathbf{x} / \sqrt{p}$
在内核方法的上下文中,对于数据 $\mathbf{x}1, \ldots, \mathbf{x}_n$ , 人们㹷望 $f(\cdot)$ 在内积内核中 $f\left(\mathbf{x}_i^{\top} \mathbf{x}_j\right)$ 或距离内核 $f\left(\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right)$ 有秩序 $O(1)$ , 什么时候 $f$ 假设独立于 $p$. 然而, “正确”的缩放比例似乎并不是那么直接。出租 $\mathbf{x} i$ 有订单条目 $O(1)$ ,自然有 $\left|\mathbf{x}_i-\mathbf{x}_j\right|^2=\left|\mathbf{x}_i\right|^2+\left|\mathbf{x}_j\right|^2-2 \mathbf{x}_i^{\top} \mathbf{x}_j=O(p)$ 因此它看起来很自然 $\left|\mathbf{x}_i-\mathbf{x}_j\right|^2$ 经过 $1 / p$. 同样,如 果均值范数 $\left|\mathbb{E}\left[\mathbf{x}_i\right]\right|$ 的 $\mathbf{x}_i$ 具有相同的数量级 $\left|\mathbf{x}_i\right|$ 本身(通常应该如此),然后对于 $\mathbf{x}_i, \mathbf{x}_j$ 独立的, $\mathbb{E}\left[\mathbf{x}_i^{\top} \mathbf{x}_j\right]=O(p)$. 因此,同样,也应该通过以下方式缩放内积 $1 / p$ , 以获得类型的内核矩阵 部分 $4.2$ (以及此后的大多数应用程序) 将置于这些内核形式下。最常用的高斯核矩阵,定义为 ,属于这个家庭,因为人们通常要求 $\sigma^2 \sim \mathbb{E}\left[\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right]$ (以避免评估接近零或无穷大的指数)。 然而,正如第 $1.1 .3$ 节中所展示的,如果 $n$ 天平像 $p$ ,那么,对于渐进非平凡的分类问题,差分 $\left|\mathbb{E}\left[\mathbf{x}_i\right]-\mathbb{E}\left[\mathbf{x}_j\right]\right|^2$ 需要像这样扩展 $O(1)$ 而不是 $O(p)$ (否则数据类对于所有大型 $n, p$ ),导致 $\left|\mathbf{x}_i-\mathbf{x}_j\right|^2 / p$ 可能收玫到一个常数值,而不管数据类 (的 $\mathbf{x}_i$ 和 $\mathbf{x}_j$ ),具有典型的订单“价差” $O(1 / \sqrt{p})$. 同 样,直到重新居中, ${ }^2 \mathbf{x} i^{\top} \mathbf{x}_j / p$ 天平像 $O(1 / \sqrt{p})$ 而不是 $O(1)$. 因此,将内核矩阵条目归一化似乎更合 适 $$ [\mathbf{K}] i j=f\left(\frac{\left|\mathbf{x} i-\mathbf{x}_j\right|^2}{\sqrt{p}}-\frac{1}{n(n-1)} \sum i^{\prime}, j^{\prime} \frac{\left|\mathbf{x} i^{\prime}-\mathbf{x} j^{\prime}\right|^2}{\sqrt{p}}\right), \text { or }[\mathbf{K}]{i j}=f\left(\frac{1}{\sqrt{p}} \mathbf{x}_i^{\top} \mathbf{x}_j\right)
$$
为了避免在这里评估 $f$ 基本上是一个单一的值(对于内积内核等于零或对于距离内核等于平均”公共”限制 数据内距离)。
这种”适当缩放”的设置实际上比 $1 / p |$ 归一化时 $n, p$ 是同一个数量级。部分 $4.2 .4$ 和 $4.3$ 详细说明这个场景。

计算机代写|机器学习代写machine learning代考|Statistical Data Model

在本节的其余部分,我们假设观察到 $n$ 来自总共的独立数据向量 $k$ 班级聚集为 $\mathbf{X}=\left[\mathbf{x} 1, \ldots, \mathbf{x}n\right] \in \mathbb{R}^{p \times n}$ , 在哪里 $$ \mathbf{x}_1, \ldots, \mathbf{x} n_1 \sim \mathcal{N}\left(\mu_1, \mathbf{C} 1\right) \vdots \vdots \mathbf{x} n-n_k+1, \ldots, \mathbf{x} n \sim \mathcal{N}\left(\mu_k, \mathbf{C}_k\right), $$ 这是一个 $k$ 具有固定基数的类高斯混合模型 (GMM) $n_1, \ldots, n_k$ 在每个班级。 ${ }^3$ 数据按类索引的事实简 化了符号,但在分析中没有实际影响。我们将表示 $\mathcal{C}_a$ 班级号” $a$ “,所以特别是 $$ \mathbf{x}_i \sim \mathcal{N}\left(\mu_a, \mathbf{C}_a\right) \Leftrightarrow \mathbf{x}_i \in \mathcal{C}_a $$ 为了 $a \in 1, \ldots, k$, 并且为了方便起见将使用矩阵 $$ \mathbf{J}=\left[\mathbf{j}_1, \ldots, \mathbf{j}_k\right] \in \mathbb{R}^{n \times k}, \quad \mathbf{j}_a=[\underbrace{0, \ldots, 0} n_1+\ldots+n{a-1}, \underbrace{1, \ldots, 1} n_a, \underbrace{0, \ldots, 0} n_{a+1}+\ldots+n_k]
$$
这是类标签的指标矩阵 $(\mathbf{J}$ 在监督学习环境下是先验已知的,并且在半监督或无监督学习环境下将完全或 部分恢复)。
我们将系统地做出以下简化的增长率假设 $p, n$ 和 $n_1, \ldots, n_k$.
假设 1 (数据大小和数量的增长率) 。作为 $n \rightarrow \infty, p / n \rightarrow c \in(0, \infty)$ 和 $n_a / n \rightarrow c_a \in(0,1)$.
这个假设特别意味着每个类都是“大的”,因为它们的基数随着 $n^4$
根据第 2 章的讨论,从随机矩阵“普遍性”的角度来看,高斯混合假设通常 (但不总是) 等同于要求
$$
\mathbf{x}_i \in \mathcal{C}_a: \mathbf{x}_i=\mu_a+\mathbf{C}_a^{\frac{1}{2}} \mathbf{z}_i
$$
和 $\mathbf{z}_i \in \mathbb{R}^p$ 具有零均值、单位方差和有界高阶(例如四阶)矩的独立同分布条目的随机向量。
这个假设确实非常严格,因为它强加了数据,直到居中和线性缩放,由 iid 条目组成。等价地,这表明只 能研究由具有 iid 条目的向量的仿射变换产生的数据,这在实践中是相当受限的,因为“真实数据”被认为 要复杂得多。
探索第 $2.7$ 节中介绍的集中随机向量的概念,第 8 章将通过展示更大类的(统计)数据模型包含相同的 渐近统计来展开这一讨论,并且本节中讨论的大多数结果同样适用于更广泛的数据模型不能简化为独立 条目的向量。

计算机代写|机器学习代写machine learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|机器学习代写machine learning代考|COMP5318

如果你也在 怎样代写机器学习 machine learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

机器学习是一个致力于理解和建立 “学习 “方法的研究领域,也就是说,利用数据来提高某些任务的性能的方法。机器学习算法基于样本数据(称为训练数据)建立模型,以便在没有明确编程的情况下做出预测或决定。机器学习算法被广泛用于各种应用,如医学、电子邮件过滤、语音识别和计算机视觉,在这些应用中,开发传统算法来执行所需任务是困难的或不可行的。

statistics-lab™ 为您的留学生涯保驾护航 在代写机器学习 machine learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写机器学习 machine learning代写方面经验极为丰富,各种代写机器学习 machine learning相关的作业也就用不着说。

我们提供的机器学习 machine learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|机器学习代写machine learning代考|COMP5318

计算机代写|机器学习代写machine learning代考|Kernel Methods

In a broad sense, kernel methods are at the core of many, if not most, machine learning algorithms [Schölkopf and Smola, 2018]. Given a set of data $\mathbf{x}1, \ldots, \mathbf{x}_n \in \mathbb{R}^p$, most learning mechanisms rely on extracting the structural data information from direct or indirect pairwise comparisons $\kappa\left(\mathbf{x}_i, \mathbf{x}_j\right)$ for some affinity metric $\kappa(\cdot, \cdot)$. Gathered in an $n \times n$ matrix $$ \mathbf{K}=\left{\kappa\left(\mathbf{x}_i, \mathbf{x}_j\right)\right}{i, j=1}^n
$$
the “cumulative” effect of these comparisons for numerous $(n \gg 1)$ data is at the source of various supervised, semi-supervised, or unsupervised methods such as support vector machines, graph Laplacian-based learning, kernel spectral clustering, and has deep connections to neural networks.

These applications will be thoroughly discussed in Section 4.4. For the moment though, our main interest lies in the spectral characterization of the kernel matrix $\mathbf{K}$ itself for various (classical) choices of affinity functions $\kappa$ and for various statistical models of the data $\mathbf{x}_i$

Clearly, from a purely machine learning perspective, the choice of the affinity function $\kappa(\cdot, \cdot)$ is central to a good performance of the learning method under study. Since real data in general have highly complex structures, a typical viewpoint is to assume that the data points $\mathbf{x}_i$ and $\mathbf{x}_j$ are not directly comparable in their ambient space but that there exists a convenient feature extraction function $\phi: \mathbb{R}^p \rightarrow \mathbb{R}^q(q \in \mathbb{N} \cup{+\infty})$ such that $\phi\left(\mathbf{x}_i\right)$ and $\phi\left(\mathbf{x}_j\right)$ are more amenable to comparison. Otherwise stated, in the image of $\phi(\cdot)$, the data are more “linear” (or more “linearly separable” if one seeks to group the data in affinity classes). The simplest affinity function between $\mathbf{x}_i$ and $\mathbf{x}_j$ would in this case be $\kappa\left(\mathbf{x}_i, \mathbf{x}_j\right)=\phi\left(\mathbf{x}_i\right)^{\top} \phi\left(\mathbf{x}_j\right)$

Since $q$ may be larger (if not much larger) than $p$, the mere cost of evaluating $\phi\left(\mathbf{x}_i\right)^{\top} \phi\left(\mathbf{x}_j\right)$ can be deleterious to practical implementation. The so-called kernel trick is anchored in the remark that, for a certain class of such functions $\phi, \phi\left(\mathbf{x}_i\right)^{\top} \phi\left(\mathbf{x}_j\right)=$ $f\left(\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right)$ or $-f\left(\mathbf{x}_i^{\top} \mathbf{x}_j\right)$ for some function $f: \mathbb{R} \rightarrow \mathbb{R}$ and it thus suffices to evaluate $\left|\mathbf{x}_i-\mathbf{x}_j\right|^2$ or $\mathbf{x}_i^{\top} \mathbf{x}_j$ in the ambient space and then apply $f$ in an entrywise manner to evaluate all data affinities, leading to more practically convenient methods.

Although the class of such functions $f$ is inherently restricted by the need for a mapping $\phi$ to exist such that, say, $\phi\left(\mathbf{x}_i\right)^{\top} \phi\left(\mathbf{x}_j\right)=f\left(\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right)$ for all possible $\mathbf{x}_i, \mathbf{x}_j$ pairs (these are sometimes called Mercer kernel functions), ${ }^1$ with time, practitioners have started to use arbitrary functions $f$ and worked with generic kernel matrices of the form
$$
\mathbf{K}=\left{f\left(\left|\mathbf{x}i-\mathbf{x}_j\right|^2\right)\right}{i, j=1}^n, \quad \text { or } \quad \mathbf{K}=\left{f\left(\mathbf{x}i^{\top} \mathbf{x}_j\right)\right}{i, j=1}^n,
$$
irrespective of the actual form or even the existence of an underlying feature extraction function $\phi$. There are, in particular, empirical evidences showing that well-chosen “indefinite” (i.e., nonMercer type) kernels, being not associated with a mapping $\phi$, can sometimes outperform conventional nonnegative definite kernels that satisfy the Mercer’s condition [Haasdonk, 2005, Luss and D’Aspremont, 2008].

计算机代写|机器学习代写machine learning代考|Basic Setting

As pointed out in Remark $4.1$ and shall become evident from the coming analysis, the small-dimensional intuition according to which $f$ should be a nonincreasing “valid” Mercer function becomes rather meaningless when dealing with large-dimensional data, essentially due to the “curse of dimensionality” and the concentration phenomenon in high dimensions.

To fully capture this aspect, a first important consideration is, as already mentioned in Section 1.1.3, to deal with “nontrivial” relative growth rates of the statistical data parameters with respect to the dimensions $p, n$. By nontrivial, we mean that the underlying classification or regression problem for which the kernel method is designed should neither be impossible nor trivially easy to solve as $p, n \rightarrow \infty$. The reason behind this request is fundamental, and also disrupts from many research works in machine learning which, instead, seek to prove that the method under study performs perfectly in the limit of large $n$ (with $p$ fixed in general): Here, we rather wish to account for the fact that, at finite but large $p, n$, the machine learning methods of practical interest are those which have nontrivial performances; thus, in what follows, ” $n, p \rightarrow \infty$ in nontrivial growth rates” should really be understood as ” $n, p$ are both large and the problem at hand is non-trivially easy or hard to solve.”

In this section, we will mostly focus on the use of kernel methods for classification, and thus the nontrivial settings are given in terms of the growth rate of the “distance” between (the statistics of) data classes. It will particularly appear that the very definition of the appropriate growth rates to ensure the nontrivial character of a machine learning problem to be solved through kernel methods depends on the kernel design itself, and that flagship kernels such as the Gaussian kernel $\kappa\left(\mathbf{x}_i, \mathbf{x}_j\right)=\exp \left(-\left|\mathbf{x}_i-\mathbf{x}_j\right|^2 / 2 \sigma^2\right)$ are in general quite suboptimal.

计算机代写|机器学习代写machine learning代考|COMP5318

机器学习代考

计算机代写|机器学习代写machine learning代考|Kernel Methods

从广义上讲,内核方法是许多 (如果不是大多数) 机器学习算法的核心 [Schölkopf 和 Smola, 2018 年]。给定一组数据 $\mathbf{x} 1, \ldots, \mathbf{x}_n \in \mathbb{R}^p$ ,大多数学习机制依赖于从直接或间接的成对比较中提取结构数 据信息 $\kappa\left(\mathbf{x}_i, \mathbf{x}_j\right)$ 对于一些亲和力指标 $\kappa(\cdot, \cdot)$. 聚集在一个 $n \times n$ 矩阵
这些比较的㽧积”效应对许多 $(n \gg 1)$ 数据是各种监督、半监督或无监督方法的来源,例如支持向量 机、基于图拉普拉斯算子的学习、核谱聚类,并且与神经网络有看深厚的联系。
这些应用程序将在第 $4.4$ 节中详细讨论。不过目前,我们的主要兴趣在于核矩阵的光谱特征KK本身用于 亲和函数的各种(经典)选择 $\kappa$ 以及数据的各种统计模型 $\mathbf{x}_i$
显然,从纯机器学习的角度来看,亲和函数的选择 $\kappa(\cdot, \cdot)$ 是所研究学习方法良好表现的核心。由于真实 数据通常具有高度复杂的结构,一个典型的观点是假设数据点 $\mathbf{x}_i$ 和 $\mathbf{x}_j$ 在它们的环境空间中不能直接比 较,但是存在一个方便的特征提取函数 $\phi: \mathbb{R}^p \rightarrow \mathbb{R}^q(q \in \mathbb{N} \cup+\infty)$ 这样 $\phi\left(\mathbf{x}_i\right)$ 和 $\phi\left(\mathbf{x}_j\right)$ 更适合比 较。另有说明,在图片中 $\phi(\cdot)$ ,数据更 线性”(或者如果试图将数据分组到亲和类中,则数据更“线性可 分”) 。之间最简单的亲和函数 $\mathbf{x}_i$ 和 $\mathbf{x}_j$ 在这种情况下会是 $\kappa\left(\mathbf{x}_i, \mathbf{x}_j\right)=\phi\left(\mathbf{x}_i\right)^{\top} \phi\left(\mathbf{x}_j\right)$
自从 $q$ 可能比 $p$, 单纯的评估成本 $\phi\left(\mathbf{x}_i\right)^{\top} \phi\left(\mathbf{x}_j\right)$ 可能不利于实际实施。所谓的内核技巧是基于这样的评 论,对于某一类这样的函数 $\phi, \phi\left(\mathbf{x}_i\right)^{\top} \phi\left(\mathbf{x}_j\right)=f\left(\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right)$ 要么 $-f\left(\mathbf{x}_i^{\top} \mathbf{x}_j\right)$ 对于某些功能 $f: \mathbb{R} \rightarrow \mathbb{R}$ 因此足以评估 $\left|\mathbf{x}_i-\mathbf{x}_j\right|^2$ 要么 $\mathbf{x}_i^{\top} \mathbf{x}_j$ 在环境空间中,然后应用 $f$ 以入方式评估所有数据亲 和力,从而导致更实用的方法。
虽然此类函数 $f$ 本质上受到映射需求的限制 $\phi$ 存在这样的,说, $\phi\left(\mathbf{x}_i\right)^{\top} \phi\left(\mathbf{x}_j\right)=f\left(\left|\mathbf{x}_i-\mathbf{x}_j\right|^2\right)$ 对于 所有可能的 $\mathbf{x}_i, \mathbf{x}_j$ 对(这些有时称为 Mercer 核函数), 1 随着时间的推移,从业者开始使用任意函数 $f$ 并使用形式的通用内核矩阵
无论实际形式如何,甚至不考虑底层特征提取函数的存在 $\phi$. 特别是,有经验证据表明,精心挑选的“不确 定” (即非 Mercer 类型) 内核与映射无关 $\phi$ ,有时可以胜过满足 Mercer 条件的传统非负定核 [Haasdonk, 2005, Luss and D’Aspremont, 2008]。

计算机代写|机器学习代写machine learning代考|Basic Setting

正如备注中指出的 $4.1$ 并且将从接下来的分析中变得明显,小维度的直觉根据它 $f$ 应该是一个非递增的“有 效”Mercer函数在处理大维数据时变得毫无意义,本质上是由于”维数灾难”和高维集中现象。
为了充分把握这一方面,第一个重要的考虑因素是,如第 $1.1 .3$ 节所述,处理统计数据参数相对于维度的 “非平凡”相对增长率 $p, n$. 非平凡的意思是,设计核方法所针对的基础分类或回归问题既不应该是不可能 的,也不应该很容易解决,因为 $p, n \rightarrow \infty$. 这一要求背后的原因是根本性的,并且与机器学习中的许多 研究工作不同,这些研究工作相反,试图证明所研究的方法在大的限制下完美执行 $n$ (和 $p$ 一般固定): 在这里,我们宁愿考虑这样一个事实,即在有限但大的情况下 $p, n$ ,具有实际意义的机器学习方法是那 些具有非凡性能的方法;因此,在接下来的内容中, “ $n, p \rightarrow \infty$ 以非平凡的增长率”应该真正理解为” $n, p$ 两者都很大,手头的问题非常容易或难以解决。”
在本节中,我们将主要关注使用核方法进行分类,因此根据数据类别(统计数据)之间“距离“的增长率给 出了重要的设置。特别是,为了确保通过内核方法解决的机器学习问题的非平凡特性,适当增长率的定 义取决于内核设计本身,而高斯内核等旗舰内核 $\kappa\left(\mathbf{x}_i, \mathbf{x}_j\right)=\exp \left(-\left|\mathbf{x}_i-\mathbf{x}_j\right|^2 / 2 \sigma^2\right)$ 通常是次优的。

计算机代写|机器学习代写machine learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

计算机代写|深度学习代写deep learning代考|STAT3007

如果你也在 怎样代写深度学习deep learning这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

深度学习是机器学习的一个子集,它本质上是一个具有三层或更多层的神经网络。这些神经网络试图模拟人脑的行为–尽管远未达到与之匹配的能力–允许它从大量数据中 “学习”。

statistics-lab™ 为您的留学生涯保驾护航 在代写深度学习deep learning方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写深度学习deep learning代写方面经验极为丰富,各种代写深度学习deep learning相关的作业也就用不着说。

我们提供的深度学习deep learning及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
计算机代写|深度学习代写deep learning代考|STAT3007

计算机代写|深度学习代写deep learning代考|Some Background on Darwin and Evolution

Charles Darwin formed his initial concepts and theory of natural selection based on his voyages around the continent of South America. From Darwin’s work, our thirst for understanding evolution drove our exploration into how life on earth shares and passes on selective traits using genetics.

Taking 2 decades to write in 1859 , Darwin published his most famous work “On the Origin of Species” a seminal work that uprooted the natural sciences. His work challenged the idea of an intelligent creator and formed the basis for much of our natural and biological sciences to this day. The following excerpt is from that book and describes the theory of natural selection in Darwin’s words:

“One general law, leading to the advancement of all organic beings, namely, multiply, vary, let the strongest live and the weakest die.”
Charles Darwin – On the Origin of Species
From this law Darwin constructed his theory of evolution and the need for life to survive by passing on more successful traits to offspring. While he didn’t understand the process of cellular mitosis and genetics, he did observe the selective passing of traits in multiple species. It wasn’t until 1865 that a German monk named Gregor Mendel would outline his theories of gene inheritance by observing 7 traits in pea plants.

Mendel used the term factors or traits to describe what we now understand as genes. It took almost another 3 decades before his work was recognized and the field of genetics was born. Since then, our understanding of genetics has grown from gene therapy and hacking to solving complex problems and evolving code.

计算机代写|深度学习代写deep learning代考|Applying Crossover – Reproduction

After the parents are selected, we can move on to applying crossover or essentially the reproduction process of creating offspring. Not unlike the cellular division process in biology, we simulate the combining of chromosomes through a crossover operation. Where each parent shares a slice of its gene sequence and combines it with the other parents.

Figure $2.9$ shows the crossover operation being applied using 2 parents. In crossover, a point is selected either randomly or using some strategy along the gene sequence. It is at this point the gene sequences of the parents are split and then recombined. In this simple example, we don’t care about what percentage of the gene sequence is shared with each offspring.

For more complex problems requiring thousands or millions of generations we may prefer more balanced crossover strategies rather than this random selection method. We will further cover the strategies we can use to define this operation later in the chapter.

In code the crossover operation first makes a copy of themselves to create the raw children. Then we randomly determine if there is a crossover operation using the variable crossover_rate. If there is a crossover operation then a random point along the gene sequence is generated as the crossover point. This point is used to split the gene sequence and then the children are generated by combining the gene sequences of both parents.

There are several variations and ways in which crossover may be applied to the gene sequence. For this example, selecting a random crossover point and then simply combining the sequences at the split point works. However, in some cases, particular gene sequences may or may not make sense in which case we may need other methods to preserve gene sequences.

计算机代写|深度学习代写deep learning代考|STAT3007

深度学习代写

计算机代写|深度学习代写deep learning代考|Some Background on Darwin and Evolution

查尔斯达尔文根据他在南美洲大陆的航行形成了他最初的自然选择概念和理论。从达尔文的工作中,我们对理解进化的渴望驱使我们探索地球上的生命如何使用遗传学共享和传递选择性特征。

1859 年,达尔文花了 2 年的时间写作,发表了他最著名的著作《物种起源》,这是一部颠覆自然科学的开创性著作。他的工作挑战了智能创造者的想法,并构成了我们今天大部分自然科学和生物科学的基础。以下摘自那本书,用达尔文的话描述了自然选择理论:

“一个普遍的规律,导致所有有机生物的进步,即繁殖,变异,让最强者生存,让最弱者死亡。”
查尔斯·达尔文——论物种起源
达尔文根据这条定律构建了他的进化论以及生命通过将更成功的特征传给后代来生存的必要性。虽然他不了解细胞有丝分裂和遗传学的过程,但他确实观察到了多个物种性状的选择性传递。直到 1865 年,一位名叫格雷戈尔·孟德尔 (Gregor Mendel) 的德国僧侣才通过观察豌豆植物的 7 个性状,概述了他的基因遗传理论。

孟德尔使用术语因子或特征来描述我们现在所理解的基因。又过了将近 3 年,他的工作才得到认可,遗传学领域诞生了。从那时起,我们对遗传学的理解已经从基因治疗和黑客攻击发展到解决复杂问题和进化代码。

计算机代写|深度学习代写deep learning代考|Applying Crossover – Reproduction

选择父母后,我们可以继续应用交叉或本质上创造后代的繁殖过程。与生物学中的细胞分裂过程一样,我们通过交叉操作模拟染色体的组合。每个父母共享其基因序列的一部分并将其与其他父母结合。

数字2.9显示了使用 2 个父代应用的交叉操作。在交叉中,随机选择一个点或使用基因序列中的某种策略。正是在这一点上,父母的基因序列被分裂,然后重新组合。在这个简单的例子中,我们不关心每个后代共享基因序列的百分比。

对于需要数千或数百万代的更复杂的问题,我们可能更喜欢更平衡的交叉策略,而不是这种随机选择方法。我们将在本章后面进一步介绍可用于定义此操作的策略。

在代码中,交叉操作首先复制自己以创建原始子代。然后我们使用变量 crossover_rate 随机确定是否存在交叉操作。如果存在交叉操作,则沿着基因序列生成一个随机点作为交叉点。这个点用来分割基因序列,然后通过结合父母双方的基因序列生成孩子。

有多种变体和方式可以将交叉应用于基因序列。对于这个例子,选择一个随机的交叉点,然后简单地在分割点组合序列就可以了。然而,在某些情况下,特定的基因序列可能有意义也可能没有意义,在这种情况下我们可能需要其他方法来保存基因序列。

计算机代写|深度学习代写deep learning代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写