数学代写|交换代数代写commutative algebra代考|Dedekind-Mertens Lemma

如果你也在 怎样代写交换代数Commutative Algebra 这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。交换代数Commutative Algebra是计划的局部研究中的主要技术工具。对不一定是换元的环的研究被称为非换元代数;它包括环理论、表示理论和巴拿赫代数的理论。

交换代数Commutative Algebra换元代数本质上是对代数数论和代数几何中出现的环的研究。在代数理论中,代数整数的环是Dedekind环,因此它构成了一类重要的换元环。与模块化算术有关的考虑导致了估值环的概念。代数场扩展对子环的限制导致了积分扩展和积分封闭域的概念,以及估值环扩展的公理化概念。

statistics-lab™ 为您的留学生涯保驾护航 在代写交换代数commutative algebra方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写交换代数commutative algebra代写方面经验极为丰富,各种代写交换代数commutative algebra相关的作业也就用不着说。

数学代写|交换代数代写commutative algebra代考|Dedekind-Mertens Lemma

数学代写|交换代数代写commutative algebra代考|Dedekind-Mertens Lemma

Recall that for a polynomial $f$ of $\mathbf{A}\left[X_1, \ldots, X_n\right]=\mathbf{A}[X]$, we call the “content of $f$ ” and denote by $\mathrm{c}_{\mathbf{A}, X}(f)$ or $\mathrm{c}(f)$ the ideal generated by the coefficients of $f$.

Note that we always have $\mathrm{c}(f) \mathrm{c}(g) \supseteq \mathrm{c}(f g)$ and thus $\mathrm{c}(f)^{k+1} \mathrm{c}(g) \supseteq \mathrm{c}(f)^k \mathrm{c}(f g)$ for all $k \geqslant 0$. For $k$ large enough this inclusion becomes an equality.

Dedekind-Mertens Lemma
For $f, g \in \mathbf{A}[T]$ with $m \geqslant \operatorname{deg} g$ we have $\mathrm{c}(f)^{m+1} \mathrm{c}(g)=\mathrm{c}(f)^m \mathrm{c}(f g)$.
D First of all, notice that the products $f_i g_j$ are the coefficients of the polynomial $f(Y) g(X)$. Similarly, for some indeterminates $Y_0, \ldots, Y_m$, the content of the polynomial $f\left(Y_0\right) \cdots f\left(Y_m\right) g(X)$ is equal to $\mathrm{c}(f)^{m+1} \mathrm{c}(g)$.

Let $h=f g$. Imagine that in the ring $\mathbf{B}=\mathbf{A}\left[X, Y_0, \ldots, Y_m\right]$ we are able to show the membership of the polynomial $f\left(Y_0\right) \cdots f\left(Y_m\right) g(X)$ in the ideal
$$
\sum_{j=0}^m\left(h\left(Y_j\right) \prod_{k, k \neq j}\left\langle f\left(Y_k\right)\right\rangle\right) .
$$
We would immediately deduce that $\mathrm{c}(f)^{m+1} \mathrm{c}(g) \subseteq \mathrm{c}(f)^m \mathrm{c}(h)$.
This is more or less what is going to happen. We get rid of the denominators in Lagrange’s interpolation formula (we need at least $1+\operatorname{deg} g$ interpolation points):
$$
g(X)=\sum_{j=0}^m \quad \frac{\prod_{k, k \neq j}\left(X-Y_k\right)}{\prod_{k, k \neq j}\left(Y_j-Y_k\right)} g\left(Y_j\right) .
$$
In the ring $\mathbf{B}$, by letting $\Delta=\prod_{j \neq k}\left(Y_j-Y_k\right)$, we get:
$$
\Delta \cdot g(X) \in \sum_{j=0}^m\left\langle g\left(Y_j\right)\right\rangle
$$
Thus by multiplying by $f\left(Y_0\right) \cdots f\left(Y_m\right)$ :
$$
\Delta \cdot f\left(Y_0\right) \cdots f\left(Y_m\right) \cdot g(X) \in \sum_{j=0}^m h\left(Y_j\right) \prod_{k, k \neq j}\left\langle f\left(Y_k\right)\right\rangle .
$$

数学代写|交换代数代写commutative algebra代考|A-algebras and Integral Elements

We first introduce the terminology of A-algebras. The algebras that we consider in this work are associative, commutative and unitary, unless stated otherwise.
3.1 Definition

An A-algebra is a commutative ring $\mathbf{B}$ with a homomorphism of commutative rings $\rho: \mathbf{A} \rightarrow \mathbf{B}$. That makes $\mathbf{B}$ an $\mathbf{A}$-module. When $\mathbf{A} \subseteq \mathbf{B}$, or more generally if $\rho$ is injective, we say that $\mathbf{B}$ is an extension of $\mathbf{A}$.

A morphism of the $\mathbf{A}$-algebra $\mathbf{A} \stackrel{\rho}{\longrightarrow} \mathbf{B}$ to the $\mathbf{A}$-algebra $\mathbf{A} \stackrel{\rho^{\prime}}{\longrightarrow} \mathbf{B}^{\prime}$ is a homomorphism of rings $\mathbf{B} \stackrel{\varphi}{\longrightarrow} \mathbf{B}^{\prime}$ satisfying $\varphi \circ \rho=\rho^{\prime}$. The set of morphisms of $\mathbf{A}$-algebras of $\mathbf{B}$ to $\mathbf{B}^{\prime}$ is denoted by $\operatorname{Hom}_{\mathbf{A}}\left(\mathbf{B}, \mathbf{B}^{\prime}\right)$.

Remarks
1) We chose not to reserve the terminology “extension” for the case of fields. This will require us to use in the cases of fields statements such as ” $\mathbf{L}$ is a field extension of $\mathbf{K}$ ” or ” $\mathbf{L}$ is a field, extending $\mathbf{K}$ ” from this point on.
2) Every ring is uniquely a $\mathbb{Z}$-algebra and every homomorphism of rings is a morphism of the corresponding $\mathbb{Z}$-algebras. The category of commutative rings can be regarded as a special case among the categories of algebras defined above.

Notation If $b \in \mathbf{B}$ and $M$ is a $\mathbf{B}$-module, we denote by $\mu_{M, b}$ or $\mu_b$ the multiplication by $b$ in $M: y \mapsto b y, M \rightarrow M$. This can be regarded as a $\mathbf{B}$-linear map, or, if $\mathbf{B}$ is an A-algebra, as an A-linear map for the A-module structure of $M$.
3.2 Definition Let $\mathbf{A} \subseteq \mathbf{B}$ be rings.

  1. An element $x \in \mathbf{B}$ is said to be integral over $\mathbf{A}$ if there exists some integer $k \geqslant 1$ such that $x^k=a_1 x^{k-1}+a_2 x^{k-2}+\cdots+a_k$ with each $a_h \in \mathbf{A}$. If $\mathbf{A}$ is a discrete field, we also say that $x$ is algebraic over $\mathbf{A}$.
  2. In this case, the monic polynomial $P=X^k-\left(a_1 X^{k-1}+a_2 X^{k-2}+\cdots+a_k\right)$ is called an integral dependence relation of $x$ over $\mathbf{A}$. In fact, by abuse of language we also say that the equality $P(x)=0$ is an integral dependence relation. If $\mathbf{A}$ is a discrete field, we also speak of an algebraic dependence relation.
  3. The ring $\mathbf{B}$ is said to be integral over $\mathbf{A}$ if every element of $\mathbf{B}$ is integral over $\mathbf{A}$. We will also say that the $\mathbf{A}$-algebra $\mathbf{B}$ is integral. If $\mathbf{A}$ and $\mathbf{B}$ are discrete fields, we say that $\mathbf{B}$ is algebraic over $\mathbf{A}$.
  4. If $\rho: \mathbf{C} \rightarrow \mathbf{B}$ is a $\mathbf{C}$-algebra with $\rho(\mathbf{C})=\mathbf{A}$, we say that the algebra $\mathbf{B}$ is integral over $\mathbf{C}$ if it is integral over $\mathbf{A}$.
数学代写|交换代数代写commutative algebra代考|Dedekind-Mertens Lemma

交换代数代考

数学代写|交换代数代写commutative algebra代考|Dedekind-Mertens Lemma

回想一下,对于$\mathbf{a}\left[X_1, \ldots, X_n\right]=\mathbf{a}[X]$的多项式$f$,我们称其为“$f$的内容”,并用$\ mathm {c}_{\mathbf{a}, X}(f)$或$\ mathm {c}(f)$表示由$f$的系数产生的理想值。

注意,对于所有$k \ geqslant0 $,我们总是有$\mathrm{c}(f) \mathrm{c}(g) \supseteq \mathrm{c}(f) $和$\mathrm{c}(f)^ (k+1) \mathrm{c}(g) \supseteq \mathrm{c}(f)^k \mathrm{c}(f) $。对于足够大的$k$,这个包含变成了一个等式。

Dedekind-Mertens引理
美元的f, g \ \ mathbf{一}[T]与m美元\ geqslant \ operatorname{度}g我们有美元\ mathrm {c} (f) ^ {m + 1} \ mathrm {c} (g) = \ mathrm {c} (f) ^ m \ mathrm {c} (f (g)美元。
首先,注意乘积f_i g_j是多项式f(Y) g(X)的系数。类似地,对于一些不确定的$Y_0, \ldots, Y_m$,多项式$f\left(Y_0\right) \cdots f\left(Y_m\right) g(X)$的内容等于$\mathrm{c}(f)^{m+1} \mathrm{c}(g)$。

令$h=f g$。想象一下,在环$\mathbf{B}=\mathbf{A}\left[X, Y_0, \ldots, Y_m\right]$中,我们能够在理想情况下显示多项式$f\left(Y_0\right) \cdots f\left(Y_m\right) g(X)$的隶属性
$ $
\sum_{j=0}^m\left(h\left(Y_j\right) \prod_{k, k\ neq j}\left\langle f\left(Y_k\right)\right\rangle\right)。
$ $
我们将立即推导出$\ mathm {c}(f)^{m+1} \ mathm {c}(g) \subseteq \ mathm {c}(f)^m \ mathm {c}(h)$。
这或多或少是将要发生的事情。我们去掉拉格朗日插值公式中的分母(我们至少需要$1+\operatorname{deg} g$插值点):
$ $
g (X) = \ sum_ j = {0} ^ m \四\压裂{\ prod_ {k, k \ neq j} \离开(X-Y_k \右)}{\ prod_ {k, k \ neq j} \离开(Y_j-Y_k \右)}g \ (Y_j \右)。
$ $
在环$\mathbf{B}$中,让$\Delta=\prod_{j \neq k}\left(Y_j-Y_k\right)$,我们得到:
$ $
\Delta \cdot g(X) \in \sum_{j=0} \ m\left\langle \ g\left(Y_j\right)\right\rangle
$ $
因此,通过乘以$f\left(Y_0\right) \cdots f\left(Y_m\right)$:
$ $
\ δ \cdot f\left(Y_0\right) \cdots f\left(Y_m\right) \cdot g(X) \in \sum_{j=0}^m h\left(Y_j\right) \prod_{k, k\ neq j}\left\langle f\left(Y_k\right)\right\rangle。
$ $

数学代写|交换代数代写commutative algebra代考|A-algebras and Integral Elements

我们首先介绍a -代数的术语。除非另有说明,我们在这项工作中考虑的代数是结合的,交换的和酉的。
3.1定义

一个a代数是一个交换环$\mathbf{B}$,它具有交换环的同态$\rho: \mathbf{A} \rightarrow \mathbf{B}$。这使得$\mathbf{B}$成为$\mathbf{A}$模块。当$\mathbf{A} \subseteq \mathbf{B}$,或者更一般地说$\rho$是内射时,我们说$\mathbf{B}$是$\mathbf{A}$的扩展。

$\mathbf{A}$ -代数$\mathbf{A} \stackrel{\rho}{\longrightarrow} \mathbf{B}$到$\mathbf{A}$ -代数$\mathbf{A} \stackrel{\rho^{\prime}}{\longrightarrow} \mathbf{B}^{\prime}$的态射是满足$\varphi \circ \rho=\rho^{\prime}$的环$\mathbf{B} \stackrel{\varphi}{\longrightarrow} \mathbf{B}^{\prime}$的同态。$\mathbf{B}$到$\mathbf{B}^{\prime}$的$\mathbf{A}$ -代数的态射集合用$\operatorname{Hom}_{\mathbf{A}}\left(\mathbf{B}, \mathbf{B}^{\prime}\right)$表示。

备注
1)我们选择不为字段的情况保留术语“扩展”。这将要求我们在字段语句的情况下使用,如“$\mathbf{L}$是$\mathbf{K}$的字段扩展”或“$\mathbf{L}$是字段,扩展$\mathbf{K}$”。
2)每个环都是唯一的$\mathbb{Z}$ -代数,每个环的同态是对应的$\mathbb{Z}$ -代数的态射。交换环的范畴可以看作是上述代数范畴中的一个特例。

如果$b \in \mathbf{B}$和$M$是$\mathbf{B}$ -模块,我们用$\mu_{M, b}$或$\mu_b$表示$M: y \mapsto b y, M \rightarrow M$中与$b$的乘法。这可以视为$\mathbf{B}$ -线性映射,或者,如果$\mathbf{B}$是a -代数,则可以视为$M$的a -模块结构的a -线性映射。
3.2定义设$\mathbf{A} \subseteq \mathbf{B}$为环。

如果存在一个整数$k \geqslant 1$,使得每个$a_h \in \mathbf{A}$对应一个整数$x^k=a_1 x^{k-1}+a_2 x^{k-2}+\cdots+a_k$,则称元素$x \in \mathbf{B}$是对$\mathbf{A}$的整数。如果$\mathbf{A}$是一个离散域,我们也说$x$是对$\mathbf{A}$的代数。

在这种情况下,一元多项式$P=X^k-\left(a_1 X^{k-1}+a_2 X^{k-2}+\cdots+a_k\right)$被称为$x$ / $\mathbf{A}$的积分依赖关系。其实,滥用语言,我们也可以说等式$P(x)=0$是一种整体依赖关系。如果$\mathbf{A}$是一个离散域,我们也说代数依赖关系。

如果$\mathbf{B}$的每一个元素都是$\mathbf{A}$的积分,那么这个环$\mathbf{B}$就是对$\mathbf{A}$的积分。我们也可以说$\mathbf{A}$ -代数$\mathbf{B}$是积分。如果$\mathbf{A}$和$\mathbf{B}$是离散域,我们说$\mathbf{B}$是对$\mathbf{A}$的代数。

如果$\rho: \mathbf{C} \rightarrow \mathbf{B}$和$\rho(\mathbf{C})=\mathbf{A}$是一个$\mathbf{C}$ -代数,我们说$\mathbf{B}$是对$\mathbf{C}$的积分如果它是对$\mathbf{A}$的积分。

数学代写|交换代数代写commutative algebra代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注