### 物理代写|电动力学代写electromagnetism代考|PHYC20014

statistics-lab™ 为您的留学生涯保驾护航 在代写电动力学electrodynamics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写电动力学electrodynamics代写方面经验极为丰富，各种代写电动力学electrodynamics相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 物理代写|电动力学代写electromagnetism代考|HISTORICAL BACKGROUND

Flectromagnetic field theory is really the result of the union of three distinct sciences. The oldest of these is electrostatics, which was first studied by the Greeks. They discovered that if they rubbed certain substances, they were able to attract lighter bodies to them. One of these substances was amber, whose Greek name is electron – this is where we get the name ‘electricity’. It was in 1785 that French physicist, Charles Augustin de Coulomb (1736-1806), showed that electrically charged materials sometimes attract and sometimes repel each other. This was the first indication that there were two types of charge – positive and negative.

In the late $1700 \mathrm{~s}$, two Italians were working on the new science of current electricity. One, Luigi Galvani (1737-1798), was a physiologist and physician who thought that animal tissues generate electricity. Although he was later proved wrong, his experiments stimulated Count Alessandro Volta (1745-1827) to invent the first electric battery in 1800 . Most of the early experiments in current electricity were performed on frog’s legs – this was a result of Galvani’s work.

Later, a favourite party trick was to get a group of people to hold hands and then connect them to a voltaic cell (a battery). The cell produced quite a large voltage, which then caused current to flow through the guests. This made them jump uncontrollably! It wasn’t until 1833 that the British experimenter Michael Faraday (17911867) showed that the current electricity of Volta and Galvani was the same as the electrostatic electricity of Coulomb. Rather than linking these two phenomena, it was shown that the current and electrostatic electricity were one and the same thing.

(Faraday’s contribution is all the more remarkable when it is realized that his theories were formulated by direct experimentation and not by manipulating mathematics!)
Although the ancient Greeks also knew about magnetism in the form of lodestone, the Chinese invented the magnetic compass, and in 1600, William Gilbert of Gloucester laid down some fundamentals. However, it was not until 1785 that Coulomb formulated his law relating the strengths of two magnetic poles to the force between them. Magnetism may have been laid to rest here if it wasn’t for the Danish physicist Hans Christian Oersted (1777-1851). It was Oersted who demonstrated to a group of students that a current-carrying wire produces a magnetic field. This was the first sign that electricity and magnetism could he interlinked. This link was strengthened in 1831 by the work of Faraday who showed that a changing magnetic field could induce a current into a wire. It was a French physicist André Marie Ampèree who first formulated the idea that the field of a permannent magnent could be due to currents in the material. (We now accept that electrons orbiting the nucleus constitute a current, and this produces the magnetic field.)

## 物理代写|电动力学代写electromagnetism代考|VECTORS AND COORDINATE SYSTEMS

When we use a thermometer, we read the temperature off a graduated scale. The temperature of a body is independent of direction (it is simply measured at a certain point), and so it is known as a scalar quantity. Scalar quantities are those that have no direction associated with them.

If we push an object, we have to exert a force on it. This force has direction associated with it – we could push the object to the left, to the right or in any direction we choose. The force is a vector quantity because it has magnitude and direction.

At this point, we could launch into a discussion of vector theory – addition, multiplication, etc. Unfortunately this would complicate matters, and mask the underlying ideas. Instead, we will avoid vector algebra in favour of discussion and reasoning. In spite of this, Figure $1.3$ shows the standard Cartesian, spherical and cylindrical systems that we will use as we progress with our studies. (We will use unit vectors in most of the text, however. This is to help readers get used to vector notation, which will aid future studies.)

## 物理代写|电动力学代写electromagnetism代考|HISTORICAL BACKGROUND

（当意识到他的理论是通过直接实验而不是通过操纵数学来制定时，法拉第的贡献就更加显着了！）

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。