物理代写|电动力学代写electromagnetism代考|PHYC20014

如果你也在 怎样代写电动力学electrodynamics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

电动力学是物理学的一个分支,处理快速变化的电场和磁场。

statistics-lab™ 为您的留学生涯保驾护航 在代写电动力学electrodynamics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写电动力学electrodynamics代写方面经验极为丰富,各种代写电动力学electrodynamics相关的作业也就用不着说。

我们提供的电动力学electrodynamics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
物理代写|电动力学代写electromagnetism代考|PHYC20014

物理代写|电动力学代写electromagnetism代考|HISTORICAL BACKGROUND

Flectromagnetic field theory is really the result of the union of three distinct sciences. The oldest of these is electrostatics, which was first studied by the Greeks. They discovered that if they rubbed certain substances, they were able to attract lighter bodies to them. One of these substances was amber, whose Greek name is electron – this is where we get the name ‘electricity’. It was in 1785 that French physicist, Charles Augustin de Coulomb (1736-1806), showed that electrically charged materials sometimes attract and sometimes repel each other. This was the first indication that there were two types of charge – positive and negative.

In the late $1700 \mathrm{~s}$, two Italians were working on the new science of current electricity. One, Luigi Galvani (1737-1798), was a physiologist and physician who thought that animal tissues generate electricity. Although he was later proved wrong, his experiments stimulated Count Alessandro Volta (1745-1827) to invent the first electric battery in 1800 . Most of the early experiments in current electricity were performed on frog’s legs – this was a result of Galvani’s work.

Later, a favourite party trick was to get a group of people to hold hands and then connect them to a voltaic cell (a battery). The cell produced quite a large voltage, which then caused current to flow through the guests. This made them jump uncontrollably! It wasn’t until 1833 that the British experimenter Michael Faraday (17911867) showed that the current electricity of Volta and Galvani was the same as the electrostatic electricity of Coulomb. Rather than linking these two phenomena, it was shown that the current and electrostatic electricity were one and the same thing.

(Faraday’s contribution is all the more remarkable when it is realized that his theories were formulated by direct experimentation and not by manipulating mathematics!)
Although the ancient Greeks also knew about magnetism in the form of lodestone, the Chinese invented the magnetic compass, and in 1600, William Gilbert of Gloucester laid down some fundamentals. However, it was not until 1785 that Coulomb formulated his law relating the strengths of two magnetic poles to the force between them. Magnetism may have been laid to rest here if it wasn’t for the Danish physicist Hans Christian Oersted (1777-1851). It was Oersted who demonstrated to a group of students that a current-carrying wire produces a magnetic field. This was the first sign that electricity and magnetism could he interlinked. This link was strengthened in 1831 by the work of Faraday who showed that a changing magnetic field could induce a current into a wire. It was a French physicist André Marie Ampèree who first formulated the idea that the field of a permannent magnent could be due to currents in the material. (We now accept that electrons orbiting the nucleus constitute a current, and this produces the magnetic field.)

物理代写|电动力学代写electromagnetism代考|VECTORS AND COORDINATE SYSTEMS

When we use a thermometer, we read the temperature off a graduated scale. The temperature of a body is independent of direction (it is simply measured at a certain point), and so it is known as a scalar quantity. Scalar quantities are those that have no direction associated with them.

If we push an object, we have to exert a force on it. This force has direction associated with it – we could push the object to the left, to the right or in any direction we choose. The force is a vector quantity because it has magnitude and direction.

At this point, we could launch into a discussion of vector theory – addition, multiplication, etc. Unfortunately this would complicate matters, and mask the underlying ideas. Instead, we will avoid vector algebra in favour of discussion and reasoning. In spite of this, Figure $1.3$ shows the standard Cartesian, spherical and cylindrical systems that we will use as we progress with our studies. (We will use unit vectors in most of the text, however. This is to help readers get used to vector notation, which will aid future studies.)

物理代写|电动力学代写electromagnetism代考|PHYC20014

电动力学代考

物理代写|电动力学代写electromagnetism代考|HISTORICAL BACKGROUND

反射磁场理论实际上是三种不同科学结合的结果。其中最古老的是静电学,最早是由希腊人研究的。他们发现,如果摩擦某些物质,它们就能吸引较轻的物体。其中一种物质是琥珀,它的希腊名字是电子——这就是我们得名“电”的地方。正是在 1785 年,法国物理学家查尔斯·奥古斯丁·德·库伦 (Charles Augustin de Coulomb,1736-1806) 表明,带电材料有时会相互吸引,有时会相互排斥。这是第一个迹象表明有两种类型的电荷——正电荷和负电荷。

在后期1700 s,两名意大利人正在研究电流电的新科学。其中一位是 Luigi Galvani (1737-1798),他是一位生理学家和医生,他认为动物组织可以发电。尽管他后来被证明是错误的,但他的实验还是刺激了亚历山德罗·沃尔塔伯爵(1745-1827)在 1800 年发明了第一块电池。大多数早期的电流电实验都是在青蛙的腿上进行的——这是伽伐尼工作的结果。

后来,一个最喜欢的派对技巧是让一群人手牵手,然后将他们连接到一个伏打电池(电池)。电池产生相当大的电压,然后导致电流流过客人。这让他们不受控制地跳了起来!直到 1833 年,英国实验者迈克尔·法拉第(17911867)才证明,伏打和伽伐尼电流的电流与库仑的静电电相同。不是将这两种现象联系起来,而是表明电流和静电是一回事。

(当意识到他的理论是通过直接实验而不是通过操纵数学来制定时,法拉第的贡献就更加显着了!)
虽然古希腊人也以磁石的形式知道磁性,但中国人发明了磁罗盘,1600 年,格洛斯特的威廉吉尔伯特奠定了一些基本原理。然而,直到 1785 年,库仑才制定了将两个磁极的强度与它们之间的力联系起来的定律。如果不是丹麦物理学家汉斯·克里斯蒂安·奥斯特(Hans Christian Oersted,1777-1851 年),磁性可能已经在这里安息。奥斯特向一群学生展示了载流电线会产生磁场。这是电和磁可以相互联系的第一个迹象。1831 年,法拉第的工作加强了这种联系,他表明变化的磁场可以在电线中感应出电流。法国物理学家安德烈·玛丽·安培(André Marie Ampèree)首先提出了永久磁体的场可能是由材料中的电流引起的观点。(我们现在接受绕原子核运行的电子构成电流,这会产生磁场。)

物理代写|电动力学代写electromagnetism代考|VECTORS AND COORDINATE SYSTEMS

当我们使用温度计时,我们会从刻度上读取温度。物体的温度与方向无关(它只是在某个点测量),因此它被称为标量。标量是那些没有与它们相关的方向的量。

如果我们推动一个物体,我们必须对它施加一个力。这种力有与之相关的方向——我们可以将物体向左、向右或我们选择的任何方向推动。力是一个向量,因为它有大小和方向。

在这一点上,我们可以开始讨论向量理论——加法、乘法等。不幸的是,这会使事情复杂化,并掩盖潜在的想法。相反,我们将避免使用向量代数来支持讨论和推理。尽管如此,图1.3显示了我们在研究进展过程中将使用的标准笛卡尔、球形和圆柱形系统。(然而,我们将在大部分文本中使用单位向量。这是为了帮助读者习惯向量表示法,这将有助于未来的研究。)

物理代写|电动力学代写electromagnetism代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注