### 数学代写|线性代数代写linear algebra代考|MTH2106

statistics-lab™ 为您的留学生涯保驾护航 在代写线性代数linear algebra方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写线性代数linear algebra代写方面经验极为丰富，各种代写线性代数linear algebra相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• Advanced Probability Theory 高等概率论
• Advanced Mathematical Statistics 高等数理统计学
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 数学代写|线性代数代写linear algebra代考|MATRIX MULTIPLICATION

Here, we present another operation applicable in $M_{m n}$ in which the inputs are two matrices and the output is another matrix. Although this is not an operation indicative of a vector space, it is an essential ingredient in what will follow.

Definition $1.11$ Let $A=\left[a_{i j}\right] \in M_{m n}$ and $B=\left[b_{i j}\right] \in M_{n r}$. Then the product $C=\left[c_{i j}\right]=A B \in M_{m r}$ is defined as follows:
$$c_{i j}=\sum_{k=1}^n a_{i k} b_{k j} .$$
Notice that to perform matrix multiplication on matrices, it is necessary that the number of columns in $A$ be equal to the number of rows in $B$ and the resulting matrix has the same number of rows as $A$ and the same number of columns as $B$. Perhaps a simpler way to remember the entries of $C$ is that the ijth entry of $C$ is obtained by taking the dot product of the $i$ th row of $A$ with the $j$ th column of $B$. Conversely, one can define dot product in terms of matrix multiplication. Indeed, if $v, w \in \mathbb{R}^n$, then $v \cdot w=v^T w$, where $v$ and $w$ are viewed as $n \times 1$ column matrices. This is sometimes a useful representation of dot product when demonstrating certain proofs.
Example $1.10$
$$\left[\begin{array}{lll} 1 & 2 & 3 \ 4 & 5 & 6 \end{array}\right]\left[\begin{array}{rrr} 1 & -1 & 1 \ -1 & 0 & 1 \ 0 & 1 & 1 \end{array}\right]$$
$$=\left[\begin{array}{lll} (1)(1)+(2)(-1)+(3)(0) & (1)(-1)+(2)(0)+(3)(1) & (1)(1)+(2)(1)+(3)(1) \ (4)(1)+(5)(-1)+(6)(0) & (4)(-1)+(5)(0)+(6)(1) & (4)(1)+(5)(1)+(6)(1) \end{array}\right]$$
$$=\left[\begin{array}{rrr} -1 & 2 & 6 \ -1 & 2 & 15 \end{array}\right]$$

## 数学代写|线性代数代写linear algebra代考|GAUSSIAN ELIMINATION

We are ready to present a systematic way for solving systems of linear equations. This method is simple and will be used quite regularly throughout the remainder of the book. First, recall that every system of linear equations has an associated augmented matrix:
Example 2.2 The augmented matrix associated with the linear system
$$\left{\begin{array}{rlr} 2 x_1+x_2-x_3 & =0 \ x_1-3 x_2+x_3 & =7 \ -3 x_1+x_2+x_3 & = & -5 \end{array}\right.$$
is
$$\left[\begin{array}{rrr|r} 2 & 1 & -1 & 0 \ 1 & -3 & 1 & 7 \ -3 & 1 & 1 & -5 \end{array}\right]$$
In solving a linear system we wish to manipulate the equations without altering the solution set and arrive at a more “desirable” system of equations for which we can readily identify the solution set. The operations below achieve this goal.

Definition 2.3 The following three operations are called elementary row operations which can be applied to a system of linear equations or the associated augmented matrix:

1. Multiplying the ith equation (or ith row of the augmented matrix) by a non-zero scalar $a$. The notation is a$R_i$.
2. Switching the $i$ th and $j$ th equation (or ith and $j$ th row of the augmented matrix). The notation is $R_i \leftrightarrow R_j$.
3. Adding a scalar a times the ith equation to the $j$ th equation (or adding a times the ith row to the $j$ th row of the augmented matrix). The notation is a $R_i+R_j$.

# 线性代数代考

## 数学代写|线性代数代写linear algebra代考|MATRIX MULTIPLICATION

$$c_{i j}=\sum_{k=1}^n a_{i k} b_{k j} .$$

$v \cdot w=v^T w$ ，在哪里 $v$ 和 $w$ 被视为 $n \times 1$ 列矩阵。在演示某些证明时，这有时是点积的有用 表示。

\begin{aligned} & =[(1)(1)+(2)(-1)+(3)(0) \quad(1)(-1)+(2)(0)+(3)(1) \quad(1)(1)+(2)(1)+(3) \ & \end{aligned}

## 数学代写|线性代数代写linear algebra代考|GAUSSIAN ELIMINATION

$\$ \$$Veft {$$
2 x_1+x_2-x_3=0 x_1-3 x_2+x_3=7-3 x_1+x_2+x_3=-5
$$、正确的。 is 剩下[$$
\begin{array}{lll|l|l|l|ll|l|l|l}
2 & 1 & -1 & 0 & 1 & -3 & 1 & 7-3 & 1 & 1 & -5
\end{array}
$$Iright] \ \$$

1. 将第 $\mathrm{i}$ 个方程 (或增广矩阵的第 $\mathrm{i}$ 行) 乘以非零标量 $a$. 该符号是 $R_i$.
2. 切换 $i$ 和 $j$ 第方程 (或第 $\mathrm{i}$ 和 $j$ 增广矩阵的第 th 行) 。符号是 $R_i \leftrightarrow R_j$.
3. 添加一个标量 $a$ 乘以第 $\mathrm{i}$ 个方程到 $j$ th 等式 (或将第 $\mathrm{i}$ 行的 $a$ 乘以 $j$ 增广矩阵的第 th 行)。该符号是 $R_i+R_j$.

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。