数学代写|数值分析代写numerical analysis代考|COSC2500

如果你也在 怎样代写数值分析numerical analysis这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

数值分析是数学的一个分支,使用数字近似法解决连续问题。它涉及到设计能给出近似但精确的数字解决方案的方法,这在精确解决方案不可能或计算成本过高的情况下很有用。

statistics-lab™ 为您的留学生涯保驾护航 在代写数值分析numerical analysis方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写数值分析numerical analysis代写方面经验极为丰富,各种代写数值分析numerical analysis相关的作业也就用不着说。

我们提供的数值分析numerical analysis及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|数值分析代写numerical analysis代考|COSC2500

数学代写|数值分析代写numerical analysis代考|Floating point arithmetic

A computer must store a finite amount of data – and as such, all numbers and arithmetic are done with some error. At times, this ‘finite precision’ issue is minor, and the theory can largely ignore it (accepting there will be error in the practical answer). We will typically develop theory without too much concern for rounding error unless it really matters.

It is important to be able to recognize rounding error and understand how it manifests (and have some intuition for when it is important – e.g. the catastrophic cancellation example above).

Let us define the set of machine numbers to be the number system used by a typical computer/language – that is, a ‘double precision’ number (a double in $\mathrm{C} / \mathrm{C++}$, and the default numeric type in python/matlab). ${ }^2$ Such a number is stored in memory in the ‘floating point’ form
$$
\text { (base 2) } \pm 1 . d_1 d_2 \cdots d_N \times 2^e=\left(1+\sum_{k=1}^n d_k 2^{-k}\right) 2^e, \quad m \leq e \leq M
$$
where the $d_i$ ‘s are binary digits (zero or one) and $N=52$ and $m, M$ are limits for the exponent. ${ }^3$

Further, let us define the ’rounding’ operation
$$
\mathrm{fl}(x)=\text { ‘nearest’ machine number (2) to } x \in \mathbb{R} \text {. }
$$
Because there are only $N$ binary digits in the machine number, the numbers are a finite sequence. Starting from 1, the first few values are
$$
\text { 1, 1. } \underbrace{00 \cdots 0}_{N-1 \text { zeros }} 1=1+2^{-N}, \quad \cdots
$$
The distance from 1 to the next largest number is important and has a special name:
$$
\text { machine epsilon }=\epsilon_m:=2^{-N} \quad\left(\approx 2.2 \times 10^{-16} \text { for a double }\right)
$$
The ’rounding error’ incurred by representing a real number $x$ by a machine number $\mathrm{fl}(x)$ is bounded above by half this distance, as the sketch below indicates.

数学代写|数值分析代写numerical analysis代考|Condition

Suppose we wish to solve a problem with an input $x$ and output $f(x)$. If the value of $x$ is changed by an amount $\delta x$ of size $|\delta x| \leq \epsilon$, then the output $f$ changes by an amount $\delta f=f(x+\delta x)-f(x)$.
Conditioning: A problem is called well-conditioned if small changes in the input lead to small changes in the output $(\delta x$ small implies $\delta f$ small, with ‘small’ in whatever sense is relevant).

If the problem is sensitive to small changes in $\delta x-$ to the point of computational difficulty – the problem is called ill-conditioned.
For each type of problem, there is a measure of condition – the condition number). Given $\delta x$ of this small size, we have that
$$
\text { relative sensitivity to } \delta x=\sup {|\delta x| \leq \epsilon}\left|\frac{\delta f / f}{\delta x / x}\right| \text {. } $$ Taking the limit as $\epsilon \rightarrow 0$ gives the desired measure of the system’s sensitivity: $$ \text { (relative) condition number }=\lim {\epsilon \backslash 0} \sup _{|\delta x| \leq \epsilon}\left|\frac{(f(x+\delta x)-f(x)) / f(x)}{\delta x / x}\right|
$$
The problem is ill-conditioned if this number is large, since then a small error made in the input can lead to a drastic difference in the output.

Key point (ill-conditioned problems): Unfortunately, the poor condition is inherent to the problem, so a correct algorithm would likely inherit the same sensitivity. For this reason, illconditioned problems are hard to solve numerically (and best avoided if possible!).
For example, consider the problem of evaluating
$$
f(x)=\tan x, \quad x \approx \pi / 2 .
$$
Suppose, say, we take $x_1=\pi / 2-0.001$ and $x_2=\pi / 2-0.002$. Then
$$
\left|x_1-x_2\right|=0.001, \quad\left|f\left(x_1\right)-f\left(x_2\right)\right|=500
$$
so the small difference in the $x$-values leads to large differences in $f$.

数学代写|数值分析代写numerical analysis代考|COSC2500

数值分析代考

数学代写|数值分析代写numerical analysis代考|Floating point arithmetic

计算机必须存储有限数量的数据一一因此,所有数字和算术运算都会出现一些错误。有时,这个”有限精 度”问题很小,理论上可以在很大程度上忽略它(接受实际答案中会有错误)。我们通常会发展理论而不太 关心舍入误差,除非它真的很重要。
重要的是能够识别舍入误差并理解它是如何表现的(并且对它何时重要有一些直觉一一例如上面的灾难性 取消示例)。
让我们将机器数字集定义为典型计算机/语言使用的数字系统一一即“双精度”数字 (双精度 $\mathrm{C} / \mathrm{C}++$ ,以 及 python/matlab 中的默认数字类型) 。 ${ }^2$ 这样的数字以“浮点”形式存储在内存中
$$
\text { (base 2) } \pm 1 . d_1 d_2 \cdots d_N \times 2^e=\left(1+\sum_{k=1}^n d_k 2^{-k}\right) 2^e, \quad m \leq e \leq M
$$
在哪里 $d_i$ 是二进制数字 (䨒或一) 和 $N=52$ 和 $m, M$ 是指数的极限。 3
此外,让我们定义”舍入”操作
$$
\mathrm{fl}(x)=\text { ‘nearest’ machine number (2) to } x \in \mathbb{R} .
$$
因为只有 $N$ 机器号中的二进制数字,数字是一个有限序列。从1开始,前几个值是
$$
\text { 1, 1. } \underbrace{00 \cdots 0}_{N-1 \text { zeros }} 1=1+2^{-N}, \quad \cdots
$$
从 1 到下一个最大数字的距离很重要,并且有一个特殊的名称:
$$
\text { machine epsilon }=\epsilon_m:=2^{-N} \quad\left(\approx 2.2 \times 10^{-16} \text { for a double }\right)
$$
表示实数引起的”舍入误差” $x$ 按机器号fl $(x)$ 被限制在这个距离的一半之上,如下图所示。

数学代写|数值分析代写numerical analysis代考|Condition

假设我们布望解决一个输入问题 $x$ 和输出 $f(x)$. 如果值 $x$ 改变了一个数量 $\delta x$ 尺寸 $|\delta x| \leq \epsilon$ ,然后输出 $f$ 变化 量 $\delta f=f(x+\delta x)-f(x)$.
调节: 如果输入的微小变化导致输出的微小变化,则问题被称为良好条件 $(\delta x$ 小暗示 $\delta f$ 小,在任何意义上 都是相关的 ${ }^{\prime \prime}$ 小”)。
如果问题对小的变化很敏感 $\delta x$ 一到了计算困难的地步一一这个问题被称为病态的。
对于每种类型的问题,都有一个条件度量一一条件数)。鉴于 $\delta x$ 这么小的尺寸,我们有
$$
\text { relative sensitivity to } \delta x=\sup |\delta x| \leq \epsilon\left|\frac{\delta f / f}{\delta x / x}\right| \text {. }
$$
取极限为 $\epsilon \rightarrow 0$ 给出系统灵敏度的所需度量:
$$
\text { (relative) condition number }=\lim \epsilon \backslash 0 \sup _{|\delta x| \leq \epsilon}\left|\frac{(f(x+\delta x)-f(x)) / f(x)}{\delta x / x}\right|
$$
如果这个数字很大,问题就是病态的,因为输入中的一个小错误可能会导致输出中的巨大差异。
关键点(病态问题) : 不幸的是,不良条件是问题固有的,因此正确的算法可能会继承相同的敏感性。出 于这个原因,病态问题很难用数值求解(如果可能,最好避免!)。 例如,考虑评估问题
$$
f(x)=\tan x, \quad x \approx \pi / 2 .
$$
假设,说,我们采取 $x_1=\pi / 2-0.001$ 和 $x_2=\pi / 2-0.002$. 然后
$$
\left|x_1-x_2\right|=0.001, \quad\left|f\left(x_1\right)-f\left(x_2\right)\right|=500
$$
所以差别很小 $x$-价值观导致很大的差异 $f$.

数学代写|数值分析代写numerical analysis代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注