物理代写|量子力学代写quantum mechanics代考|PHYS3034

如果你也在 怎样代写量子力学quantum mechanics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

量子力学是物理学的一个基本理论,它在原子和亚原子粒子的尺度上对自然界的物理特性进行了描述。它是所有量子物理学的基础,包括量子化学、量子场论、量子技术和量子信息科学。

statistics-lab™ 为您的留学生涯保驾护航 在代写量子力学quantum mechanics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写量子力学quantum mechanics代写方面经验极为丰富,各种代写量子力学quantum mechanics相关的作业也就用不着说。

我们提供的量子力学quantum mechanics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
物理代写|量子力学代写quantum mechanics代考|PHYS3034

物理代写|量子力学代写quantum mechanics代考|Limits Between Different Theories

Quite often in the literature we can find a usual comparison between einsteinian Classical Mechanics and galilean Classical Mechanics by taking the limit $c \rightarrow \infty$ and between Quantum Mechanics and Classical Mechanics by taking the limit $\hbar \rightarrow 0$.

Indeed, such limits of scaled quantities are heuristically useful, but cannot be taken too seriously, as their true physical meaning is much more questionable than it might appear at a first insight.

In fact, the basic mathematical settings of the above theories are rather “rigid”, as there is no true continuous transformation which maps one into another one. For instance, there is no observer independent continuous transformation which maps a metric with signature $(-+++)$ into a metric with signature $(0+++)$. Indeed, there is a jump between these two metrics.

Moreover, just as an example, let us consider an equation, in a lorentzian framework, which involves the electric field $E$, the magnetic field $B$ and the speed of light c. From a pure mathematical viewpoint, it might be possible to parametrise such an equation by substituting the fixed value $c$ with a parametrised value $\lambda c$ and compute the limit of the equation for $\lambda \rightarrow \infty$. But, while we change the value of $\lambda$, the physical meaning of $E$ and $B$ pursues to be achieved in the lorentzian framework. So, at the limit $\lambda \rightarrow \infty$, we cannot say that the electric field $E$ and the magnetic field $B$ are the corresponding classical fields; in fact, in the galilean framework they are physically defined in a rather different way.

So, in the present book, we do not pay great attention to the limits $c \rightarrow \infty$ and $\hbar \rightarrow 0$, but we give more credit to a comparison of the structural differences of the different frameworks.

物理代写|量子力学代写quantum mechanics代考|Scales

A characteristic feature of the mathematical language of the present book (and of further related literature on Covariant Quantum Mechanics, as well) is the systematic explicit use of “scale spaces” representing the units of measurement.

We stress that the world “scales” used in the present book has a conventional meaning, which should not be confused with other meanings used in the standard engineering literature.

Indeed, we stress that the literature dealing with units of measurements, under different perspectives, is very huge; here, we would like to quote, for instance [32, $175,232,239,296,389,398]$
So, let us explain what we mean.
In standard literature, one usually represents many physical objects as tensors. For instance, just to fix the ideas, the metric and electromagnetic fields, are usually represented by tensors of the type $g: \boldsymbol{M} \rightarrow T^* \boldsymbol{M} \otimes T^* \boldsymbol{M}$ and $F: \boldsymbol{M} \rightarrow \Lambda^2 T^* \boldsymbol{M}$.
However, to be more precise, such representations depend on the choice of units of measurement. In fact, if we change the units of measurement, then the above tensors change by a numerical factor determined by the ratio of those units of measurement. For instance, the scalar product of two vectors should be regarded as a number multiplied by the square of the unit of measurement of lengths.

So, it would be more appropriate to introduce the above tensors as a “scaled tensors” of the type $g: M \rightarrow \mathbb{L}^2 \otimes\left(T^* M \otimes T^* \boldsymbol{M}\right)$ and $F: \boldsymbol{M} \rightarrow \mathbb{F} \otimes \Lambda^2 T^* \boldsymbol{M}$, where $\mathbb{L}$ is suitable “scale space” representing the space of lengths and $\mathbb{F}$ a suitable “scale space” associated with the electromagnetic field.

We stress that such kind of considerations apply to many other classical objects, such as volumes, velocities, accelerations, forces, and so on (see Proposition 3.2.4, Definitions 2.4.1, 7.1.3, and 5.7.1, and so on). And also to quantum objects, such as the hermitian quantum metric. In fact, the quantum metric is not properly valued in $\mathbb{C}$, because it yields objects which should be integrated, hence should have the scale dimension of a volume (see Proposition 14.3.1).

物理代写|量子力学代写quantum mechanics代考|PHYS3034

量子力学代考

物理代写|量子力学代写quantum mechanics代考|Limits Between Different Theories

在文献中,我们经常可以通过极限找到爱因斯坦经典力学和伽利略经典力学之间的通常比较C→∞并且在量子力学和经典力学之间通过取极限ℏ→0.

确实,这种缩放量的限制在启发式上很有用,但不能太认真,因为它们的真正物理意义比第一次洞察时可能出现的问题要多得多。

事实上,上述理论的基本数学设置相当“僵化”,因为没有真正的连续变换将一个映射到另一个。例如,没有观察者独立的连续变换将度量与签名映射(−+++)带签名的度量(0+++). 事实上,这两个指标之间存在跳跃。

此外,作为一个例子,让我们考虑一个方程,在洛伦兹框架中,它涉及电场和, 磁场乙和光速 C. 从纯数学的角度来看,可以通过替换固定值来参数化这样的方程C具有参数化值lC并计算方程的极限l→∞. 但是,虽然我们改变了l, 的物理意义和和乙追求在洛伦兹框架中实现。所以,在极限l→∞,我们不能说电场和和磁场乙是对应的经典场;事实上,在伽利略框架中,它们的物理定义方式完全不同。

所以,在本书中,我们并没有特别注意极限C→∞和ℏ→0,但我们更多地相信不同框架的结构差异的比较。

物理代写|量子力学代写quantum mechanics代考|Scales

本书的数学语言 (以及有关协变量子力学的其他相关文献) 的一个特征是系统明确地使用表示测量单位 的“尺度空间”。
我们强调,本书中使用的世界“尺度”具有传统含义,不应与标准工程文献中使用的其他含义混湃。
事实上,我们强调,从不同的角度来看,关于测量单位的文献非常庞大。在这里,我们想引用,例如 $[32,175,232,239,296,389,398]$
所以,让我们解释一下我们的意思。
在标准文献中,通常将许多物理对象表示为张量。例如,为了固定概念,度量和电磁场通常由以下类型 的张量表示 $g: \boldsymbol{M} \rightarrow T^* \boldsymbol{M} \otimes T^* \boldsymbol{M}$ 和 $F: \boldsymbol{M} \rightarrow \Lambda^2 T^* \boldsymbol{M}$.
然而,更准确地说,这种表示取决于测量单位的选择。事实上,如果我们改变测量单位,那么上述张量 会改变一个由这些测量单位的比率决定的数值因子。例如,两个向量的标量积应该被视为一个数字乘以 长度测量单位的平方。
因此,将上述张量作为类型的“缩放张量”引入会更合适 $g: M \rightarrow \mathbb{L}^2 \otimes\left(T^* M \otimes T^* M\right)$ 和 $F: \boldsymbol{M} \rightarrow \mathbb{F} \otimes \Lambda^2 T^* \boldsymbol{M}$ ,在哪里旦是合适的“尺度空间”,表示长度空间和 $\mathbb{F}$ 与电磁场相关的合适的 “尺度空间”。
我们强调这种考虑适用于许多其他经典对象,例如体积、速度、加速度、力等(见命题 3.2.4,定义 2.4.1、7.1.3 和 5.7.1 等) 上)。也适用于量子对象,例如厄米量子度量。事实上,量子度量在 $\mathbb{C}$ ,因 为它产生的对象应该被整合,因此应该具有体积的尺度维度(见命题 14.3.1)。

物理代写|量子力学代写quantum mechanics代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注