物理代写|固体物理代写Solid-state physics代考|PHYSICS7544

如果你也在 怎样代写固体物理Solid-state physics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

固态物理学是通过量子力学、晶体学、电磁学和冶金学等方法研究刚性物质或固体。它是凝聚态物理学的最大分支。

statistics-lab™ 为您的留学生涯保驾护航 在代写固体物理Solid-state physics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写固体物理Solid-state physics代写方面经验极为丰富,各种代写固体物理Solid-state physics相关的作业也就用不着说。

我们提供的固体物理Solid-state physics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
物理代写|固体物理代写Solid-state physics代考|PHYSICS7544

物理代写|固体物理代写Solid-state physics代考|Parabolic bands approximation

If we concentrate on considering only the band portions close to the VB top and the CB bottom, we recognise that in these regions the bands have a trend that, in very good approximation, can be described as parabolic (see figures $8.7$ and $8.8$ at the $\Gamma$ point). Therefore, whenever we are interested in studying the physics of electrons in the proximity of the forbidden gap, we can meaningfully use the so called parabolic bands approximation.

This approximation is straightforwardly applied in the one-dimensional case by taking the limit of $k \rightarrow 0$ of equations (8.20) and (8.21)
$$
\begin{aligned}
& \lim {k \rightarrow 0} E{\mathrm{VB}}(k)=E_{\mathrm{a}}+2 \gamma\left[1-\frac{(k a)^2}{2}\right] \
& \lim {k \rightarrow 0} E{\mathrm{CB}}(k)=E_{\mathrm{a}}^{\prime}-2 \delta\left[1-\frac{(k a)^2}{2}\right] .
\end{aligned}
$$
Taking this limit is justified by the fact that at $k=0$ we found both the VB top and the CB bottom, as shown in figure 8.6. A general remarkable feature is drawn: the thermal excitation of electrons basically occurs within a parabolic band scheme.

It is very convenient to address electron dynamics within a semi-classical scheme according to which: (i) electron energy states are described quantum mechanically,but (ii) their equations of motion are classical. This approximated scheme is trustworthy when one wants to study the motion of the electrons over a length scale much larger than the interatomic distances. This is, for instance, the relevant case of motion under the action of an externally applied and slowly varying electric field, that is an electric field which is practically constant over the length scale of interatomic lattice distances. On the other hand, the results of this approximation can hardly be extended to the case of nanostructures [16, 17], that is to solid state systems whose structural features display on the $10^{-9} \mathrm{~m}$ scale: here a full quantum theory of electron transport is needed, as detailed elsewhere [12, 17-19].

物理代写|固体物理代写Solid-state physics代考|Electric field effects

Let us now apply a constant and uniform electric field $\mathbf{E}$ along a one-dimensional crystal. Within the semi-classical scheme a driving force
$$
F=-e|\mathbf{E}|=\hbar \frac{d k}{d t},
$$
is calculated, governing the drift motion of the electron. The solution of this equation of motion is
$$
k(t)=k_0-\frac{e|\mathbf{E}|}{\hbar} t,
$$
where $k_0$ is the electron wavevector at time $t=0$, that is, when the electric field is turned on. By making use of equation (8.29) this result reflects in a time-dependent electron velocity
$$
v_n(k, t)=\frac{1}{\hbar} \frac{d E_n}{d k(t)}
$$

suggesting the practical rule that under the action of an electric field, the electron velocity at time $t$ is calculated by evaluating the slope of band tangent at the point $k(t)$ given in equation (8.32). This result has a quite interesting implication, as we easily understand by considering the case of an electron in the valence band: under the action of the electric field, which we consider oriented to the left with no loss of generality, the wavevector varies linearly with time, assuming gradually increasing values and, therefore, it will sooner or later end up reaching the right edge of the 1BL. However, given the crystalline periodicity, the $k=+\pi / a$ value defines a quantum state equivalent to the one described by $k^{\prime}=k+G$ with $G=-2 \pi / a$ a reciprocal lattice vector. This is tantamount to saying that the electron, once it reaches the right edge, is flipped back to a state corresponding the left one. Next, as time goes by, the electron will again assume increasing wavevector values, as before eventually reaching the right edge of $1 \mathrm{BZ}$ : here its wavevector will be flipped back once more. And so on … This periodic back-and-forth variation of $k(t)$ in the Brillouin zone will continue as long as the electric field is present. This phenomenon is described by saying that under the action of an electric field a band electron is subjected to Bloch oscillations: their graphical rendering is reported in figure $8.10$.
We remark that this result has been obtained by guessing the equation of motion (8.31) where no scattering phenomena appear, contrarily to what we discussed in section 7.1. This is of course a very crude approximation: in practice, it is very difficult to experimentally observe Bloch oscillations in real materials just because ionic motions and defects disturb the electron motion. Such oscillations are only detected at low temperature and in chemically pure systems, since the occurrence of such circumstances makes the periodic variation of $k(t)$ only marginally affected by electron-phonon and electron-defect scattering events or, equivalently, the friction term appearing in equation (7.3) to play a marginal role.

物理代写|固体物理代写Solid-state physics代考|PHYSICS7544

固体物理代写

物理代写|固体物理代写Solid-state physics代考|Parabolic bands approximation

如果我们只专注于考虑靠近 VB 顶部和 CB 底部的波段部分,我们会认识到在这些区域中,波 段有一个趋势,在非常近似的情况下,可以描述为抛物线 (见图 $8.7$ 和 $8.8$ 在 $\Gamma$ 观点) 。因此, 每当我们有兴趣研究禁带附近的电子物理时,我们都可以有意义地使用所谓的抛物线近似。
该近似值直接应用于一维情况,取的极限是 $k \rightarrow 0$ 等式 (8.20) 和 (8.21)
$$
\lim k \rightarrow 0 E \operatorname{VB}(k)=E_{\mathrm{a}}+2 \gamma\left[1-\frac{(k a)^2}{2}\right] \quad \lim k \rightarrow 0 E \operatorname{CB}(k)=E_{\mathrm{a}}^{\prime}-2 \delta[1
$$
采取这个限制是合理的,因为在 $k=0$ 我们找到了 $\mathrm{VB}$ 顶部和 $\mathrm{CB}$ 底部,如图 $8.6$ 所示。得出一 个普㴜的显着特征: 电子的热激发基本上发生在抛物线带方案内。
在半经典方案中解决电子动力学非常方便,根据该方案: (i) 电子能态用量子力学描述,但 (ii) 它们的运动方程是经典的。当人们想要研究电子在比原子间距离大得多的长度尺度上的运动 时,这种近似方案是值得信赖的。例如,这是在外部施加的缓曼变化的电场作用下运动的相关 情况,该电场在原子间晶格距离的长度尺度上实际上是恒定的。另一方面,这种近似的结果很 难扩展到纳米结构的情况 [16,17],即结构特征显示在 $10^{-9} \mathrm{~m}$ 规模: 这里需要一个完整的电 子传输量子理论,正如其他地方详述的那样 [12, 17-19]。

物理代写|固体物理代写Solid-state physics代考|Electric field effects

现在让我们施加一个恒定且均匀的电场E沿着一维晶体。在半经典方案中,驱动力
$$
F=-e|\mathbf{E}|=\hbar \frac{d k}{d t},
$$
计算,控制电子的漂移运动。这个运动方程的解是
$$
k(t)=k_0-\frac{e|\mathbf{E}|}{\hbar} t
$$
在哪里 $k_0$ 是时刻的电子波矢 $t=0$ ,也就是说,当电场打开时。通过使用等式 (8.29),该结果 反映在时间相关的电子速度中
$$
v_n(k, t)=\frac{1}{\hbar} \frac{d E_n}{d k(t)}
$$
表明在电场作用下,电子速度随时间变化的实际规律 $t$ 通过评估带切线在该点的斜率来计算 $k(t)$ 在等式 (8.32) 中给出。这个结果有一个非常有趣的含义,正如我们通过考虑价带中电子的 情况很容易理解的那样: 在不失一般性的情况下我们认为向左取向的电场的作用下,波矢量线 性变化时间,假设值逐渐增加,因此迟早会到达 1BL 的右边缘。然而,考虑到晶体的周期性, $k=+\pi / a$ value 定义了一个量子态,等价于由 $k^{\prime}=k+G$ 和 $G=-2 \pi / a$ 倒数点阵向量。 这无异于说电子一旦到达右边缘,就会翻转回与左边缘对应的状态。接下来,随着时间的流 逝,电子将再次呈现增加的波矢值,就像之前最终到达右边缘一样 $1 \mathrm{BZ}$ :这里它的波向量将再 次翻转回来。依此类推……这种周期性的来回变化 $k(t)$ 只要存在电场,布里渊区的光就会继 续。这种现象的描述是,在电扬的作用下,带电子受到布洛赫振荡:它们的图形洹染如图所示 $8.10$.
我们注意到这个结果是通过猜测没有出现散射现象的运动方程 (8.31) 获得的,这与我们在 $7.1$ 节中讨论的相反。这当然是一个非常粗略的近似值:在实践中,很难仅仅因为离子运动和缺陷 干扰电子运动而通过实验观察真实材料中的布洛赫振荡。这种振荡仅在低温和化学纯系统中检 测到,因为这种情况的发生使得 $k(t)$ 仅受电子声子和电子缺陷散射事件的轻微影响,或者等效 地,等式 (7.3) 中出现的摩擦项起着微不足道的作用。

物理代写|固体物理代写Solid-state physics代考| 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注