数学代写|有限元方法代写Finite Element Method代考|MECH ENG 4118

statistics-lab™ 为您的留学生涯保驾护航 在代写有限元方法Finite Element Method方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写有限元方法Finite Element Method代写方面经验极为丰富，各种代写有限元方法Finite Element Method相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

数学代写|有限元方法代写Finite Element Method代考|Space-time coupled methods using space-time

In space-time coupled methods for the whole space-time domain $\bar{\Omega}{x t}=$ $[0, L] \times[0, \tau]$, the computations can be intense and sometimes prohibitive if the final time $\tau$ is large. This problem can be easily overcome by using space-time strip or slab for an increment of time $\Delta t$ and then time-marching to obtain the entire evolution. Consider the space-time domain $$\bar{\Omega}{x t}=\Omega_{x t} \cup \Gamma ; \quad \Gamma=\bigcup_{i=1}^{4} \Gamma_{i}$$
shown in Fig. 1.3. For an increment of time $\Delta t$, that is for $0 \leq t \leq \Delta t$, consider the first space-time strip $\bar{\Omega}{x t}^{(1)}=[0, L] \times[0, \Delta t]$. If we are only interested in the evolution up to time $t=\Delta t$ and not beyond $t=\Delta t$, then the evolution in the space-time domain $[0, L] \times[\Delta t, \tau]$ has not taken place yet, hence does not influence the evolution for $\bar{\Omega}{x t}^{(1)}, t \in[0, \Delta t]$. We also note that for $\bar{\Omega}{x t}^{(1)}$, the boundary at $t=\Delta t$ is open boundary that is similar to the open boundary at $t=\tau$ for the whole space-time domain. We remark that BCs and ICs for $\bar{\Omega}{x t}$ and $\bar{\Omega}{x t}^{(1)}$ are identical in the sense of those that are known and those that are not known. For $\bar{\Omega}{x t}^{(2)}$, the second space-time strip, the BCs are the same as for $\bar{\Omega}{x t}^{(1)}$ but the ICs at $t=\Delta t$ are obtained from the computed evolution for $\bar{\Omega}{x t}^{(1)}$ at $t=\Delta t$. Now, with the known ICs at $t=\Delta t$, the second space-time strip $\bar{\Omega}{x t}^{(2)}$ is exactly similar to the first space-time strip $\bar{\Omega}{x t}^{(1)}$ in terms of BCs, ICs, and open boundary. For $\bar{\Omega}{x t}^{(1)}$, $t=\Delta t$ is open boundary whereas for $\bar{\Omega}{x t}^{(2)}, t=2 \Delta t$ is open boundary. Both open boundaries are at final values of time for the corresponding space-time strips.

In this process the evolution is computed for the first space-time strip $\bar{\Omega}{x t}^{(1)}=[0, L] \times[0, \Delta t]$ and refinements are carried out (in discretization and $p$ levels in the sense of finite element processes) until the evolution for $\bar{\Omega}{x t}^{(1)}$ is a converged solution. Using this converged solution for $\bar{\Omega}{x t}^{(1)}$, ICs are extracted at $t=\Delta t$ for $\bar{\Omega}{x t}^{(2)}$ and a converged evolution is computed for the second space-time strip $\bar{\Omega}_{x t}^{(2)}$. This process is continued until $t=\tau$ is reached.

数学代写|有限元方法代写Finite Element Method代考|Space-time decoupled or quasi methods

In space-time decoupled or quasi methods the solution $\phi=\phi(x, t)$ is assumed not to have simultaneous dependence on space coordinate $x$ and time $t$. Referring to the IVP (1.1) in spatial coordinate $x\left(\right.$ i.e. $\left.\mathbb{R}^{1}\right)$ and time $t$, the solution $\phi(x, t)$ is expressed as the product of two functions $g(x)$ and $h(t):$
$$\phi(x, t)=g(x) h(t)$$
where $g(x)$ is a known function that satisfies differentiability, continuity, and the completeness requirements (and others) as dictated by (1.1). We substitute (1.3) in (1.1) and obtain
$$A(g(x) h(t))-f(x, t)=0 \quad \forall x, t \in \Omega_{x t}$$
Integrating (1.4) over $\bar{\Omega}{x}=[0, L]$ while assuming $h(t)$ and its time derivatives to be constant for an instant of time, we can write $$\int{\Omega_{x}}(A(g(x) h(t))-f(x, t)) d x=0$$
Since $g(x)$ is known, the definite integral in (1.5) can be evaluated, thereby eliminating $g(x)$, its spatial derivatives (due to operator $A$ ), and more specifically spatial coordinate $x$ altogether. Hence, (1.5) reduces to
$$A h(t)-\underset{\sim}{f}(t)=0 \quad \forall t \in(0, \tau)$$
in which $A$ is a time differential operator and $f$ is only a function of time. In other words, (1.6) is an ordinary differential equation in time which can now be integrated using explicit or implicit time integration methods or finite element method in time to obtain $h(t) \forall t \in[0, \tau]$. Using this calculated $h(t)$ in (1.3), we now have the solution $\phi(x, t)$ :
$$\phi(x, t)=g(x) h(t) \quad \forall x, t \in \bar{\Omega}_{x t}=[0, L] \times[0, \tau]$$

数学代写|有限元方法代写Finite Element Method代考|Space-time coupled methods using space-time

$$\bar{\Omega} x t=\Omega_{x t} \cup \Gamma ; \quad \Gamma=\bigcup_{i=1}^{4} \Gamma_{i}$$

数学代写|有限元方法代写Finite Element Method代考|Space-time decoupled or quasi methods

$(1.1)$ $x\left(\mathbb{E} \mathbb{R}^{1}\right)$ 和时间 $t$ ，解决方案 $\phi(x, t)$ 表示为两个函数的乘积 $g(x)$ 和 $h(t)$ :
$$\phi(x, t)=g(x) h(t)$$

$$A(g(x) h(t))-f(x, t)=0 \quad \forall x, t \in \Omega_{x t}$$

$$\int \Omega_{x}(A(g(x) h(t))-f(x, t)) d x=0$$

$$A h(t)-\underset{\sim}{f}(t)=0 \quad \forall t \in(0, \tau)$$

$$\phi(x, t)=g(x) h(t) \quad \forall x, t \in \bar{\Omega}_{x t}=[0, L] \times[0, \tau]$$

有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。