### 数学代写|离散数学作业代写discrete mathematics代考|MATH-UA120

statistics-lab™ 为您的留学生涯保驾护航 在代写离散数学discrete mathematics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写离散数学discrete mathematics代写方面经验极为丰富，各种代写离散数学discrete mathematics相关的作业也就用不着说。

• Statistical Inference 统计推断
• Statistical Computing 统计计算
• (Generalized) Linear Models 广义线性模型
• Statistical Machine Learning 统计机器学习
• Longitudinal Data Analysis 纵向数据分析
• Foundations of Data Science 数据科学基础

## 数学代写|离散数学作业代写discrete mathematics代考|Random vectors

We will now more closely study random variables taking values in $\mathbb{R}^d$, with $d \geq 2$. This concept has already been defined in Definition 1.9. We will now look at the relations between the random vector and its coordinates. When $d=2$, we then speak of a random couple.

PROPOSITION 1.9.-Let $X$ be a real random vector on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, taking values in $\mathbb{R}^d$. Then,
$$X(w)=\left(\begin{array}{c} X_1(w) \ \vdots \ X_n(w) \end{array}\right)$$
is such that for any $i \in{1, \ldots, d}, X_i$ is a real random variable.
DEFINITION 1.15.-A random vector is said to be discrete if each of its components, $X_i$, is a discrete random variable.
DEFINITION 1.16.- Let $X=\left(\begin{array}{l}X_1 \ X_2\end{array}\right)$ be a discrete random couple such that
$$X_1(\Omega)=\left{x_{1 j}, j \in I_1\right} \text { et } X_2(\Omega)=\left{x_{2 k}, k \in I_2\right} .$$
The conjoint distribution (or joint distribution or, simply, the distribution) of $X$ is given by the family
$$\left{\mathbb{P}\left(X_1=x_{1 j}, X_2=x_{2 k}\right) ;(j, k) \in I_1 \times I_2\right} .$$
The marginal distributions of $X$ are the distributions of $X_1$ and $X_2$. These distributions may be derived from the conjoint distribution of $X$ through:
$$\forall j \in I_1, \quad \mathbb{P}\left(X_1=x_{1 j}\right)=\sum_{k \in I_2} \mathbb{P}\left(X_1=x_{1 j}, X_2=x_{2 k}\right)$$
and
$$\forall k \in I_2, \quad \mathbb{P}\left(X_2=x_{2 k}\right)=\sum_{j \in I_1} \mathbb{P}\left(X_1=x_{1 j}, X_2=x_{2 k}\right)$$

## 数学代写|离散数学作业代写discrete mathematics代考|Stochastic processes

The main objective of this book is to study certain families of stochastic (or random) processes in discrete time. There are two ways of seeing such objects:

• as a sequence $\left(X_n\right)_{n \in \mathbb{N}}$ of real random variables;
• as a single random variable $X$ taking values in the set of real sequences.
The index $n$ represents time. Since $n \in \mathbb{N}$, we speak of processes in discrete time. In the rest of this book, unless indicated otherwise, we will only consider processes taking discrete real values. The notation $E$ thus denotes a finite or countable subset of $\mathbb{R}$ and $\mathcal{E}=\mathcal{P}(E)$, the set of subsets of $E$.

DEFINITION 1.18.-A stochastic process is a sequence $X=\left(X_n\right)_{n \in \mathbb{N}}$ of random variables taking values in $(E, \mathcal{E})$. The process $X$ is then a random variable taking values in $\left(E^{\mathbb{N}}, \mathcal{E}^{\otimes \mathbb{N}}\right)$.

EXAMPLE 1.22.- A coin is tossed an infinite number of times. This experiment is modeled by $\bar{\Omega}-{T, H}^{\mathbb{N}^}$. For $n \in \mathbb{N}^$, consider the mappings $X_n$ to $\bar{\Omega}$ in $\mathbb{R}$ defined by
$$X_n\left(\omega_1, \omega_2, \ldots, \omega_n, \ldots\right)=1_{{T}}\left(\omega_n\right),$$
the number of tails at the nth toss. Therefore, $X_n, n \in \mathbb{N}^*$ are discrete, real random variables and the sequence $X=\left(X_n\right)_{n \in \mathbb{N}}$ is a stochastic process.

DEFINITION 1.19. – Let $X=\left(X_n\right){n \in \mathbb{N}}$ be a stochastic process. For all $n \in \mathbb{N}$, the distribution of the vector $\left(X_0, X_1, \ldots, X_n\right)$ is denoted by $\mu_n$. The probability distributions $\left(\mu_n\right){n \in \mathbb{N}}$ are called finite-dimensional distributions or finite-dimensional marginal distributions of the process $X=\left(X_n\right)_{n \in \mathbb{N}}$.

PROPOSITION 1.10.- Let $X=\left(X_n\right){n \in \mathbb{N}}$ be a stochastic process and let $\left(\mu_n\right){n \in \mathbb{N}}$ be its finite-dimensional distributions. Then, for all $n \in \mathbb{N}^*$ and $\left(A_0, \ldots, A_{n-1}\right) \in \mathcal{E}^n$, we have
$$\mu_{n-1}\left(A_0 \times \ldots \times A_{n-1}\right)=\mu_n\left(A_0 \times \ldots \times A_{n-1} \times E\right)$$
In other words, the restriction of the marginal distribution of the vector $\left(X_0, \ldots, X_n\right)$ to its first $n$ coordinates is exactly the distribution of the vector $\left(X_0, \ldots, X_{n-1}\right)$

# 离散数学代写

## 数学代写|离散数学作业代写discrete mathematics代考|Random vectors

$$X(w)=\left(X_1(w) \vdots X_n(w)\right)$$

$$\forall j \in I_1, \quad \mathbb{P}\left(X_1=x_{1 j}\right)=\sum_{k \in I_2} \mathbb{P}\left(X_1=x_{1 j}, X_2=x_{2 k}\right)$$

$$\forall k \in I_2, \quad \mathbb{P}\left(X_2=x_{2 k}\right)=\sum_{j \in I_1} \mathbb{P}\left(X_1=x_{1 j}, X_2=x_{2 k}\right)$$

## 数学代写|离散数学作业代写discrete mathematics代考|Stochastic processes

• 作为一个序列 $\left(X_n\right)_{n \in \mathbb{N}}$ 真正的随机变量；
• 作为单个随机变量 $X$ 在真实序列的集合中取值。
指标 $n$ 代表时间。自从 $n \in \mathbb{N}$ ，我们谈论离散时间的过程。在本书的其余部分，除非另有说明，否则我们 将只考虑采用离散实数值的过程。符号 $E$ 因此表示一个有限的或可数的子集 $\mathbb{R}$ 和 $\mathcal{E}=\mathcal{P}(E)$ ，子集的集合 $E$.
定义 1.18.- 随机过程是一个序列 $X=\left(X_n\right){n \in \mathbb{N}}$ 取值的随机变量 $(E, \mathcal{E})$. 过程 $X$ 那么是一个随机变量取值 $\left(E^{\mathbb{N}}, \mathcal{E}^{\otimes \mathbb{N}}\right)$ 示例 1.22.- 硬币被抛出无数次。这个实验的模型是 $\backslash$ bar{{1Omega $}-{T, H} \wedge{\backslash m a t h b b{N} \wedge}$. 为了 $n \backslash i n \backslash m a t h b b{N} \wedge$, 考虑映射 $X_n$ 至 $\bar{\Omega}$ 在 $\mathbb{R}$ 被定义为 $$X_n\left(\omega_1, \omega_2, \ldots, \omega_n, \ldots\right)=1_T\left(\omega_n\right),$$ 第 $\mathrm{n}$ 次抛出的反面数。所以， $X_n, n \in \mathbb{N}^$ 是离散的、实随机变量和序列 $X=\left(X_n\right){n \in \mathbb{N}}$ 是一个随机过程。
定义 1.19。-让 $X=\left(X_n\right) n \in \mathbb{N}$ 是一个随机过程。对所有人 $n \in \mathbb{N}$, 向量的分布 $\left(X_0, X_1, \ldots, X_n\right)$ 表示为 $\mu_n$. 概率分布 $\left(\mu_n\right) n \in \mathbb{N}$ 称为过程的有限维分布或有限维边际分布 $X=\left(X_n\right){n \in \mathbb{N}}$. 命题 1.10.- 让 $X=\left(X_n\right) n \in \mathbb{N}$ 是一个随机过程，让 $\left(\mu_n\right) n \in \mathbb{N}$ 是它的有限维分布。那么，对于所有 $n \in \mathbb{N}^$ 和 $\left(A_0, \ldots, A{n-1}\right) \in \mathcal{E}^n$ ， 我们有
$$\mu_{n-1}\left(A_0 \times \ldots \times A_{n-1}\right)=\mu_n\left(A_0 \times \ldots \times A_{n-1} \times E\right)$$
也就是说，向量的边缘分布的限制 $\left(X_0, \ldots, X_n\right)$ 到它的第一个 $n$ 坐标正好是向量的分布 $\left(X_0, \ldots, X_{n-1}\right)$

## 有限元方法代写

tatistics-lab作为专业的留学生服务机构，多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务，包括但不限于Essay代写，Assignment代写，Dissertation代写，Report代写，小组作业代写，Proposal代写，Paper代写，Presentation代写，计算机作业代写，论文修改和润色，网课代做，exam代考等等。写作范围涵盖高中，本科，研究生等海外留学全阶段，辐射金融，经济学，会计学，审计学，管理学等全球99%专业科目。写作团队既有专业英语母语作者，也有海外名校硕博留学生，每位写作老师都拥有过硬的语言能力，专业的学科背景和学术写作经验。我们承诺100%原创，100%专业，100%准时，100%满意。

## MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中，其中问题和解决方案以熟悉的数学符号表示。典型用途包括：数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发，包括图形用户界面构建MATLAB 是一个交互式系统，其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题，尤其是那些具有矩阵和向量公式的问题，而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问，这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展，得到了许多用户的投入。在大学环境中，它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域，MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要，工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数（M 文件）的综合集合，可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。