标签: KYA322

物理代写|固体物理代写Solid-state physics代考|Electron Band Calculationsin Three Dimensions

如果你也在 怎样代写固体物理Solid Physics PHYS881这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。固体物理Solid Physics是通过量子力学、晶体学、电磁学和冶金学等方法研究刚性物质或固体。它是凝聚态物理学的最大分支。固体物理学研究固体材料的大尺度特性是如何产生于其原子尺度特性的。因此,固态物理学构成了材料科学的理论基础。它也有直接的应用,例如在晶体管和半导体的技术中。

固体物理Solid Physics是由密密麻麻的原子形成的,这些原子之间有强烈的相互作用。这些相互作用产生了固体的机械(如硬度和弹性)、热、电、磁和光学特性。根据所涉及的材料及其形成的条件,原子可能以有规律的几何模式排列(晶体固体,包括金属和普通水冰)或不规则地排列(非晶体固体,如普通窗玻璃)。

statistics-lab™ 为您的留学生涯保驾护航 在代写固体物理Solid-state physics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写固体物理Solid-state physics代写方面经验极为丰富,各种代写固体物理Solid-state physics相关的作业也就用不着说。

物理代写|固体物理代写Solid-state physics代考|Electron Band Calculationsin Three Dimensions

物理代写|固体物理代写Solid-state physics代考|Electron Band Calculationsin Three Dimensions

So far we have looked at the wave function of one electron in fixed external potential. In solids, however, the potential energy felt by an electron arises from the interaction of each electron with all the nuclei and all the other electrons. The potential energy felt by an electron is not only given by the positively charged nuclei, but also by the average negative charge of all the other electrons.

If a crystal has a certain periodicity, then the potential created from all these particles will have that periodicity, so all of the above theorems for periodic potentials still apply. Determining the exact nature of the electron bands, however, is a difficult task. We cannot simply solve for the eigenstate of a single electron in a fixed potential; we must solve for the eigenstates of the whole set of electrons, taking into account exchange between the identical electrons, which must be treated according to Fermi statistics. Methods of treating the Fermi statistics of electrons will be discussed in Chapter 8 .

In general, the calculation of band structure is not an exact science. Typically, determining the band structure of a given solid involves interaction between experiment and theory – the crystal symmetry is determined by x-ray scattering, a band structure is calculated, this is corrected by other experiments such as optical absorption and reflectivity, etc. Many band structure calculations use experimental inputs from chemistry such as the electronegativity of ions, bond lengths, and so on. Calculating band structures from first principles, using nothing but the charge and masses of the nuclei, is still an area of frontier research, involving high-level math and supercomputers.

In this book, we will typically treat the electron bands as known functions for a given solid. Band diagrams have been published for many solids and tabulated in books, for example, Madelung (1996). At the same time, there are several useful approximation methods which allow us to write simple mathematical formulas for the bands without needing to go through all of the calculations to generate a band structure. The value of these approximations is not so much to predict the actual band structures quantitatively; rather, these models help to give us physical intuition about the nature of electron bands.

物理代写|固体物理代写Solid-state physics代考|How to Read a Band Diagram

In a three-dimensional crystal, the full calculation of all the band energies involves finding the energy of each band at every point in the three-dimensional Brillouin zone. This is a large amount of information, which we need to present in a simple fashion for it to be useful.

As discussed in Section 1.6, there are certain critical points in the Brillouin zone which correspond to the points on the surfaces of the zone that are half way between the origin and another reciprocal lattice vector. Figure 1.25 gives the standard labeling of these critical points for common lattice structures. Typically, band structure calculations give the band energies along lines from the center of the Brillouin zone to one of these points, or from one of these points to another one. Figure 1.26(a) shows a typical band structure plot for silicon, a cubic crystal. The critical points are labeled according to the drawing shown in Figure $1.25(\mathrm{~b})$. Note that the diagram is not symmetric about the $\Gamma$ point because two different paths away from this point are plotted. Note also that the $\mathrm{U} / \mathrm{K}$ point is not the midpoint between two reciprocal lattice points, and therefore the slope of the bands is not zero in every direction there; in particular, the slope is not zero along lines that are not normal to the zone boundary. The $\mathrm{L}$ and $\mathrm{X}$ points are critical points, and therefore if the bands are plotted with enough detail, one will see that they have zero slope at those points.

Figure 1.26(b) shows the density of states for the same crystal. As seen in this figure, van Hove singularities (discontinuities in the slope) correspond to critical points in the band structure. When bands overlap in energy, the density of states is just the sum of the density of states of the two bands. Notice that there is a gap in the density of states which corresponds to the energy gap in one band at the $\Gamma$ point (zone center) and the minimum of the next higher band at the $X$ point (the zone boundary in the [100] direction).

物理代写|固体物理代写Solid-state physics代考|Electron Band Calculationsin Three Dimensions

固体物理代写

物理代写|固体物理代写Solid-state physics代考|Electron Band Calculationsin Three Dimensions

到目前为止,我们已经研究了一个电子在固定外电位下的波函数。然而,在固体中,电子感受到的势能来自于每个电子与所有原子核和所有其他电子的相互作用。电子感受到的势能不仅是由带正电的原子核给出的,而且是由所有其他电子的平均负电荷给出的。

如果晶体具有一定的周期性,那么所有这些粒子形成的势也具有周期性,所以上面所有关于周期势的定理仍然适用。然而,确定电子带的确切性质是一项艰巨的任务。我们不能简单地解出固定势下单个电子的本征态;我们必须解出整个电子组的本征态,考虑到相同电子之间的交换,这必须根据费米统计来处理。处理电子费米统计量的方法将在第8章讨论。

一般来说,谱带结构的计算并不是一门精确的科学。通常,确定给定固体的能带结构涉及实验和理论之间的相互作用-通过x射线散射确定晶体对称性,计算能带结构,并通过其他实验如光吸收和反射率等进行校正。许多能带结构计算使用化学实验输入,如离子的电负性、键长等。从第一性原理计算能带结构,只使用原子核的电荷和质量,仍然是一个前沿研究领域,涉及高级数学和超级计算机。

在本书中,我们通常将电子带视为给定固体的已知函数。已经出版了许多实体的带图,并将其制成表格,例如《Madelung》(1996年)。同时,有几种有用的近似方法,使我们能够写出简单的带的数学公式,而不需要通过所有的计算来生成带结构。这些近似值并不能定量地预测实际的能带结构;相反,这些模型帮助我们对电子带的性质有了物理上的直观认识。

物理代写|固体物理代写Solid-state physics代考|How to Read a Band Diagram

在三维晶体中,所有能带能量的完整计算包括在三维布里渊带的每个点上找到每个能带的能量。这是大量的信息,我们需要以一种简单的方式来呈现它,以使其有用。

如1.6节所述,在布里渊区存在某些临界点,这些临界点对应于该区域表面上位于原点和另一个倒晶格向量中间的点。图1.25给出了常见晶格结构的这些临界点的标准标记。典型地,能带结构计算给出从布里渊带中心到其中一个点的能带能量,或者从其中一个点到另一个点的能带能量。图1.26(a)显示了立方体晶体硅的典型能带结构图。根据图$1.25(\ mathm {~b})$所示的绘图标记临界点。注意,该图对于$\Gamma$点不是对称的,因为从该点出发的两条不同路径被绘制出来。还要注意$\mathrm{U} / \mathrm{K}$点不是两个互反晶格点之间的中点,因此带的斜率在每个方向上都不是零;特别是,在不垂直于区域边界的直线上,斜率不为零。$\mathrm{L}$和$\mathrm{X}$点是临界点,因此,如果波段被绘制得足够详细,人们会看到它们在这些点上的斜率为零。

图1.26(b)显示了同一晶体的态密度。如图所示,van Hove奇点(斜率中的不连续点)对应于带结构中的临界点。当能带在能量上重叠时,态密度就是两个能带的态密度之和。请注意,态密度中存在一个缺口,对应于$\Gamma$点(区域中心)的一个能带的能量缺口,以及$X$点([100]方向的区域边界)的下一个更高能带的最小值。

物理代写|固体物理代写Solid-state physics代考| 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

物理代写|固体物理代写Solid-state physics代考|Electron Band Calculationsin Three Dimensions

如果你也在 怎样代写固体物理Solid Physics PHYS881这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。固体物理Solid Physics是通过量子力学、晶体学、电磁学和冶金学等方法研究刚性物质或固体。它是凝聚态物理学的最大分支。固体物理学研究固体材料的大尺度特性是如何产生于其原子尺度特性的。因此,固态物理学构成了材料科学的理论基础。它也有直接的应用,例如在晶体管和半导体的技术中。

固体物理Solid Physics是由密密麻麻的原子形成的,这些原子之间有强烈的相互作用。这些相互作用产生了固体的机械(如硬度和弹性)、热、电、磁和光学特性。根据所涉及的材料及其形成的条件,原子可能以有规律的几何模式排列(晶体固体,包括金属和普通水冰)或不规则地排列(非晶体固体,如普通窗玻璃)。

statistics-lab™ 为您的留学生涯保驾护航 在代写固体物理Solid-state physics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写固体物理Solid-state physics代写方面经验极为丰富,各种代写固体物理Solid-state physics相关的作业也就用不着说。

物理代写|固体物理代写Solid-state physics代考|Electron Band Calculationsin Three Dimensions

物理代写|固体物理代写Solid-state physics代考|Electron Band Calculationsin Three Dimensions

So far we have looked at the wave function of one electron in fixed external potential. In solids, however, the potential energy felt by an electron arises from the interaction of each electron with all the nuclei and all the other electrons. The potential energy felt by an electron is not only given by the positively charged nuclei, but also by the average negative charge of all the other electrons.

If a crystal has a certain periodicity, then the potential created from all these particles will have that periodicity, so all of the above theorems for periodic potentials still apply. Determining the exact nature of the electron bands, however, is a difficult task. We cannot simply solve for the eigenstate of a single electron in a fixed potential; we must solve for the eigenstates of the whole set of electrons, taking into account exchange between the identical electrons, which must be treated according to Fermi statistics. Methods of treating the Fermi statistics of electrons will be discussed in Chapter 8 .

In general, the calculation of band structure is not an exact science. Typically, determining the band structure of a given solid involves interaction between experiment and theory – the crystal symmetry is determined by x-ray scattering, a band structure is calculated, this is corrected by other experiments such as optical absorption and reflectivity, etc. Many band structure calculations use experimental inputs from chemistry such as the electronegativity of ions, bond lengths, and so on. Calculating band structures from first principles, using nothing but the charge and masses of the nuclei, is still an area of frontier research, involving high-level math and supercomputers.

In this book, we will typically treat the electron bands as known functions for a given solid. Band diagrams have been published for many solids and tabulated in books, for example, Madelung (1996). At the same time, there are several useful approximation methods which allow us to write simple mathematical formulas for the bands without needing to go through all of the calculations to generate a band structure. The value of these approximations is not so much to predict the actual band structures quantitatively; rather, these models help to give us physical intuition about the nature of electron bands.

物理代写|固体物理代写Solid-state physics代考|How to Read a Band Diagram

In a three-dimensional crystal, the full calculation of all the band energies involves finding the energy of each band at every point in the three-dimensional Brillouin zone. This is a large amount of information, which we need to present in a simple fashion for it to be useful.

As discussed in Section 1.6, there are certain critical points in the Brillouin zone which correspond to the points on the surfaces of the zone that are half way between the origin and another reciprocal lattice vector. Figure 1.25 gives the standard labeling of these critical points for common lattice structures. Typically, band structure calculations give the band energies along lines from the center of the Brillouin zone to one of these points, or from one of these points to another one. Figure 1.26(a) shows a typical band structure plot for silicon, a cubic crystal. The critical points are labeled according to the drawing shown in Figure $1.25(\mathrm{~b})$. Note that the diagram is not symmetric about the $\Gamma$ point because two different paths away from this point are plotted. Note also that the $\mathrm{U} / \mathrm{K}$ point is not the midpoint between two reciprocal lattice points, and therefore the slope of the bands is not zero in every direction there; in particular, the slope is not zero along lines that are not normal to the zone boundary. The $\mathrm{L}$ and $\mathrm{X}$ points are critical points, and therefore if the bands are plotted with enough detail, one will see that they have zero slope at those points.

Figure 1.26(b) shows the density of states for the same crystal. As seen in this figure, van Hove singularities (discontinuities in the slope) correspond to critical points in the band structure. When bands overlap in energy, the density of states is just the sum of the density of states of the two bands. Notice that there is a gap in the density of states which corresponds to the energy gap in one band at the $\Gamma$ point (zone center) and the minimum of the next higher band at the $X$ point (the zone boundary in the [100] direction).

物理代写|固体物理代写Solid-state physics代考|Electron Band Calculationsin Three Dimensions

固体物理代写

物理代写|固体物理代写Solid-state physics代考|Electron Band Calculationsin Three Dimensions

到目前为止,我们已经研究了一个电子在固定外电位下的波函数。然而,在固体中,电子感受到的势能来自于每个电子与所有原子核和所有其他电子的相互作用。电子感受到的势能不仅是由带正电的原子核给出的,而且是由所有其他电子的平均负电荷给出的。

如果晶体具有一定的周期性,那么所有这些粒子形成的势也具有周期性,所以上面所有关于周期势的定理仍然适用。然而,确定电子带的确切性质是一项艰巨的任务。我们不能简单地解出固定势下单个电子的本征态;我们必须解出整个电子组的本征态,考虑到相同电子之间的交换,这必须根据费米统计来处理。处理电子费米统计量的方法将在第8章讨论。

一般来说,谱带结构的计算并不是一门精确的科学。通常,确定给定固体的能带结构涉及实验和理论之间的相互作用-通过x射线散射确定晶体对称性,计算能带结构,并通过其他实验如光吸收和反射率等进行校正。许多能带结构计算使用化学实验输入,如离子的电负性、键长等。从第一性原理计算能带结构,只使用原子核的电荷和质量,仍然是一个前沿研究领域,涉及高级数学和超级计算机。

在本书中,我们通常将电子带视为给定固体的已知函数。已经出版了许多实体的带图,并将其制成表格,例如《Madelung》(1996年)。同时,有几种有用的近似方法,使我们能够写出简单的带的数学公式,而不需要通过所有的计算来生成带结构。这些近似值并不能定量地预测实际的能带结构;相反,这些模型帮助我们对电子带的性质有了物理上的直观认识。

物理代写|固体物理代写Solid-state physics代考|How to Read a Band Diagram

在三维晶体中,所有能带能量的完整计算包括在三维布里渊带的每个点上找到每个能带的能量。这是大量的信息,我们需要以一种简单的方式来呈现它,以使其有用。

如1.6节所述,在布里渊区存在某些临界点,这些临界点对应于该区域表面上位于原点和另一个倒晶格向量中间的点。图1.25给出了常见晶格结构的这些临界点的标准标记。典型地,能带结构计算给出从布里渊带中心到其中一个点的能带能量,或者从其中一个点到另一个点的能带能量。图1.26(a)显示了立方体晶体硅的典型能带结构图。根据图$1.25(\ mathm {~b})$所示的绘图标记临界点。注意,该图对于$\Gamma$点不是对称的,因为从该点出发的两条不同路径被绘制出来。还要注意$\mathrm{U} / \mathrm{K}$点不是两个互反晶格点之间的中点,因此带的斜率在每个方向上都不是零;特别是,在不垂直于区域边界的直线上,斜率不为零。$\mathrm{L}$和$\mathrm{X}$点是临界点,因此,如果波段被绘制得足够详细,人们会看到它们在这些点上的斜率为零。

图1.26(b)显示了同一晶体的态密度。如图所示,van Hove奇点(斜率中的不连续点)对应于带结构中的临界点。当能带在能量上重叠时,态密度就是两个能带的态密度之和。请注意,态密度中存在一个缺口,对应于$\Gamma$点(区域中心)的一个能带的能量缺口,以及$X$点([100]方向的区域边界)的下一个更高能带的最小值。

物理代写|固体物理代写Solid-state physics代考| 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

物理代写|固体物理代写Solid-state physics代考|X-rayScattering

如果你也在 怎样代写固体物理Solid Physics PHYS881这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。固体物理Solid Physics是通过量子力学、晶体学、电磁学和冶金学等方法研究刚性物质或固体。它是凝聚态物理学的最大分支。固体物理学研究固体材料的大尺度特性是如何产生于其原子尺度特性的。因此,固态物理学构成了材料科学的理论基础。它也有直接的应用,例如在晶体管和半导体的技术中。

固体物理Solid Physics是由密密麻麻的原子形成的,这些原子之间有强烈的相互作用。这些相互作用产生了固体的机械(如硬度和弹性)、热、电、磁和光学特性。根据所涉及的材料及其形成的条件,原子可能以有规律的几何模式排列(晶体固体,包括金属和普通水冰)或不规则地排列(非晶体固体,如普通窗玻璃)。

statistics-lab™ 为您的留学生涯保驾护航 在代写固体物理Solid-state physics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写固体物理Solid-state physics代写方面经验极为丰富,各种代写固体物理Solid-state physics相关的作业也就用不着说。

物理代写|固体物理代写Solid-state physics代考|X-rayScattering

物理代写|固体物理代写Solid-state physics代考|X-rayScattering

The reciprocal lattice has a natural connection to $\mathrm{x}$-ray scattering. Suppose a plane wave with wave vector $\vec{k}0$ impinges on a crystal, as shown in Figure 1.17. We write this plane wave as $$ A{\text {in }}=e^{i\left(\vec{k}_0 \cdot \vec{r}-\omega t\right)}
$$
Atoms in the crystal will lead to scattering of the incoming wave. In the Fraunhofer limit, a scattered wave far away can also be approximated by a plane wave with wave vector $\vec{k}$. We define the scattering vectoras the difference between the incoming and outgoing (scattered) wave vectors:
$$
\vec{s}=\vec{k}-\vec{k}_0 .
$$

If $\vec{a}$ is the vector from one atom to another, then the phase difference between the scattered waves from these two atoms will be
$$
\delta=\vec{k} \cdot \vec{a}-\overrightarrow{k_0} \cdot \vec{a}=\left(\vec{k}-\overrightarrow{k_0}\right) \cdot \vec{a}=\vec{s} \cdot \vec{a} .
$$
The amplitude of the scattered wave from these two atoms will be proportional to
$$
A_{\mathrm{sum}}=\left(e^{i(0)}+e^{i \vec{s} \cdot \vec{a}}\right) e^{-i \omega t}
$$
and therefore the intensity will be proportional to
$$
\begin{aligned}
I=A_{\mathrm{sum}}^* A_{\mathrm{sum}} & =\left(1+e^{-i \vec{s} \cdot \vec{a}}\right)\left(1+e^{i \vec{s} \cdot \vec{a}}\right) \
& =2(1+\cos \vec{s} \cdot \vec{a}) .
\end{aligned}
$$

物理代写|固体物理代写Solid-state physics代考|General Properties of Bloch Functions

Even without knowing anything about the periodic potential in a particular crystal, Bloch’s theorem allows us to make several general statements about the eigenstates of the system.

Bloch theorem as a Fourier serißse can use Fourier transform theory to express the cell function $u_{n \vec{k}}(\vec{r})$ in terms of the reciprocal lattice vectors. Since this function has the same periodicity as the lattice, we can use the Fourier transform formula
$$
\begin{aligned}
F_u(\vec{q}) & =\int_{-\infty}^{\infty} d^3 r u_{n \vec{k}}(\vec{r}) e^{i \vec{q} \cdot \vec{r}} \
& =\sum_{\vec{R}} e^{i \vec{q} \cdot \vec{R}}\left(\int_{\text {cell }} d^3 r_b u_{n \vec{k}}\left(\vec{r}_b\right) e^{i \vec{q} \cdot \vec{r}_b}\right),
\end{aligned}
$$
where in the second line we have written $\vec{r}=\vec{R}+\vec{r}_b$, and have broken the integral over all space into a sum over all Bravais lattice positions $\vec{R}$ and an integral over the relative coordinate $\vec{r}_b$ within each primitive cell. We have introduced a new reciprocal-space variable $\vec{q}$ because we are leaving $\vec{k}$ constant.

As discussed in Section 1.4, the Fourier transform (1.6.1) has nonzero values only when $\vec{q}$ is equal to a reciprocal lattice vector $\vec{Q}$. The cell function $u_{n \vec{k}}(\vec{r})$, which is the inverse Fourier transform of $F_u$, can therefore be written as a sum over the full set of reciprocal lattice vectors,
$$
u_{n \vec{k}}(\vec{r})=\sum_{\vec{Q}} C_{n \vec{k}}(\vec{Q}) e^{-i \vec{Q} \cdot \vec{r}},
$$
where $C_{n \vec{k}}(\vec{Q})$ is a weight factor. ${ }^2$ The dependence of $C_{n \vec{k}}(\vec{Q})$ on $\vec{k}$ gives an overall multiplier for the whole set of weight factors.
The full Bloch functions are then given by
$$
\begin{aligned}
\psi_{n \vec{k}}(\vec{r}) & =\frac{1}{\sqrt{V}} u_{n \vec{k}}(\vec{r}) e^{i \vec{k} \cdot \vec{r}} \
& =\frac{1}{\sqrt{V}} \sum_{\vec{Q}} C_{n \vec{k}}(\vec{Q}) e^{i(\vec{k}-\vec{Q}) \cdot \vec{r}}
\end{aligned}
$$

物理代写|固体物理代写Solid-state physics代考|X-rayScattering

固体物理代写

物理代写|固体物理代写Solid-state physics代考|X-rayScattering

倒易晶格与$\mathrm{x}$射线散射有自然的联系。假设波矢量$\vec{k}0$的平面波撞击晶体,如图1.17所示。我们把这个平面波写成$$ A{\text {in }}=e^{i\left(\vec{k}_0 \cdot \vec{r}-\omega t\right)}
$$
晶体中的原子将导致入射波的散射。在弗劳恩霍夫极限下,远处的散射波也可以近似为波矢量$\vec{k}$的平面波。我们将散射矢量定义为入射和出射(散射)波矢量之差:
$$
\vec{s}=\vec{k}-\vec{k}_0 .
$$

如果$\vec{a}$是从一个原子到另一个原子的矢量,那么这两个原子散射波之间的相位差将是
$$
\delta=\vec{k} \cdot \vec{a}-\overrightarrow{k_0} \cdot \vec{a}=\left(\vec{k}-\overrightarrow{k_0}\right) \cdot \vec{a}=\vec{s} \cdot \vec{a} .
$$
这两个原子发出的散射波的振幅将成正比
$$
A_{\mathrm{sum}}=\left(e^{i(0)}+e^{i \vec{s} \cdot \vec{a}}\right) e^{-i \omega t}
$$
因此强度与
$$
\begin{aligned}
I=A_{\mathrm{sum}}^* A_{\mathrm{sum}} & =\left(1+e^{-i \vec{s} \cdot \vec{a}}\right)\left(1+e^{i \vec{s} \cdot \vec{a}}\right) \
& =2(1+\cos \vec{s} \cdot \vec{a}) .
\end{aligned}
$$

物理代写|固体物理代写Solid-state physics代考|General Properties of Bloch Functions

即使不知道特定晶体的周期势,布洛赫定理也能让我们对系统的特征态做出几个一般的表述。

作为傅里叶级数的布洛赫定理ßse可以用傅里叶变换理论来表示细胞函数$u_{n \vec{k}}(\vec{r})$用互反晶格向量表示。因为这个函数和晶格有相同的周期性,我们可以用傅里叶变换公式
$$
\begin{aligned}
F_u(\vec{q}) & =\int_{-\infty}^{\infty} d^3 r u_{n \vec{k}}(\vec{r}) e^{i \vec{q} \cdot \vec{r}} \
& =\sum_{\vec{R}} e^{i \vec{q} \cdot \vec{R}}\left(\int_{\text {cell }} d^3 r_b u_{n \vec{k}}\left(\vec{r}_b\right) e^{i \vec{q} \cdot \vec{r}_b}\right),
\end{aligned}
$$
在第二行中,我们写了$\vec{r}=\vec{R}+\vec{r}_b$,并将整个空间的积分分解为对所有Bravais晶格位置的和$\vec{R}$和对每个原始单元内的相对坐标$\vec{r}_b$的积分。我们引入了一个新的往复式空间变量$\vec{q}$因为我们让$\vec{k}$保持不变。

正如第1.4节所讨论的,傅里叶变换(1.6.1)只有在$\vec{q}$等于倒易晶格向量$\vec{Q}$时才具有非零值。细胞函数$u_{n \vec{k}}(\vec{r})$,也就是$F_u$的傅里叶反变换,因此可以写成对整个互反晶格向量集合的和,
$$
u_{n \vec{k}}(\vec{r})=\sum_{\vec{Q}} C_{n \vec{k}}(\vec{Q}) e^{-i \vec{Q} \cdot \vec{r}},
$$
$C_{n \vec{k}}(\vec{Q})$是一个权重因子。${ }^2$$C_{n \vec{k}}(\vec{Q})$对$\vec{k}$的依赖给出了一组权重因子的总体乘数。
完整的布洛赫函数由
$$
\begin{aligned}
\psi_{n \vec{k}}(\vec{r}) & =\frac{1}{\sqrt{V}} u_{n \vec{k}}(\vec{r}) e^{i \vec{k} \cdot \vec{r}} \
& =\frac{1}{\sqrt{V}} \sum_{\vec{Q}} C_{n \vec{k}}(\vec{Q}) e^{i(\vec{k}-\vec{Q}) \cdot \vec{r}}
\end{aligned}
$$

物理代写|固体物理代写Solid-state physics代考| 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

物理代写|统计物理代写Statistical Physics of Matter代考|The Poiseuille Flow

如果你也在 怎样代写统计物理Statistical Physics of Matter这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

统计物理学是在统计力学的基础上发展起来的一个物理学分支,它在解决物理问题时使用了概率论和统计学的方法,特别是处理大群体和近似的数学工具。

statistics-lab™ 为您的留学生涯保驾护航 在代写统计物理Statistical Physics of Matter方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写统计物理Statistical Physics of Matter代写方面经验极为丰富,各种代写统计物理Statistical Physics of Matter相关的作业也就用不着说。

我们提供的统计物理Statistical Physics of Matter及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础

物理代写|统计物理代写Statistical Physics of Matter代考|The Poiseuille Flow

The flow of the fluid within a narrow cylindrical channel (tube) of radius $R$ (Fig. 19.5) is driven by a pressure gradient $\partial p / \partial z=-\Delta p / L$ along the $z$ axis. Equation (19.33) for the steady state in cylindrical $(r, z)$ coordinate is given by
$$
\frac{\eta}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u_z(r)}{\partial r}\right)=-\frac{\Delta p}{L} .
$$

Multiplying the above by $r$ and integrating it over $r$, we have the equation
$$
\frac{\partial u_z(r)}{\partial r}=-\frac{\Delta p}{2 \eta L}\left(r+\frac{c}{r}\right)
$$
where the constant $c$ vanishs to assure a finite value for $\partial u_z(r) / \partial r$ at $r=0$. We note that the equation for the shear stress is
$$
\sigma_{z r}=-\eta \partial u_z(r) / \partial r=\Delta p r /(2 L)
$$
Integrating (19.54) subject to the no-slip $\mathrm{BC}, u_z(r=R)=0$, leads to the parabolic velocity profile
$$
u_z(r)=-\frac{\Delta p}{4 \eta L}\left(r^2-R^2\right)
$$
Using this, one can obtain the volume flow per unit time (volumetric flow rate) per length along the flow:
$$
Q=\int_0^R d r 2 \pi r u_z(r)=\frac{\pi \Delta p}{8 \eta L} R^4,
$$
This is the famous formula called the Hagen-Poiseuille’s law.

物理代写|统计物理代写Statistical Physics of Matter代考|The Low Reynolds Number Approximation

In the Navier-Stokes equation, there are two competing terms, the nonlinear inertia term $\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}$ and the viscous dissipation term $\eta \nabla^2 \boldsymbol{u}$. The ratio of the inertia term to the viscous term is called the Reynolds number: $\operatorname{Re}=|\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}| /\left|\eta \nabla^2 \boldsymbol{u}\right| \approx \rho U R / \eta$, where $U$ and $R$ are characteristic velocity and characteristic length of the flow. If $R e$ is above a certain critical value so that the nonlinear inertia term is important, the flow tends to be unpredictable, called turbulent. The turbulence is important in many practical problems such as large scale weather predictions and airplane designs, but its fundamental understanding has remained a long standing problem in physics.

If the $R e$ is lower than 1 so that the viscous term dominates over the nonlinear term, the flow tends to be laminar. The laminar flow is mathematically more tractable. Furthermore for the flows of biological organisms or complexes (of small $R$ ) in overdamping and viscous fluids (of high $\eta$ ), the laminar or low Reynolds number flows will be relevant. For example a bacterium of $1 \mu \mathrm{m}$ diameter that swims in water with a velocity of $2 \mu \mathrm{m}$ per second has the $\operatorname{Re} \approx 10^{-5}$. In this case the Navier-Stokes equation is simplified to equations for flow velocity
$$
\nabla \cdot \boldsymbol{u}=0
$$
and
$$
\rho \frac{\partial}{\partial t} \boldsymbol{u}=-\nabla \cdot \boldsymbol{\sigma}=-\nabla p+\eta \nabla^2 \boldsymbol{u}
$$
In the steady state the above becomes the Stokes equation
$$
\nabla \cdot \boldsymbol{\sigma}=\nabla p-\eta \nabla^2 \boldsymbol{u}=0
$$
which we study below.

统计物理代考

物理代写|统计物理代写Statistical Physics of Matter代考|The Poiseuille Flow

半径狭窄的圆柱形通道 (管) 内的流体流动 $R$ (图 19.5) 由压力梯度驱动 $\partial p / \partial z=-\Delta p / L$ 沿着 $z$ 轴。 圆柱形稳态方程 $(19.33)(r, z)$ 坐标由
$$
\frac{\eta}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u_z(r)}{\partial r}\right)=-\frac{\Delta p}{L} .
$$
将以上乘以 $r$ 并将其整合 $r$ ,我们有方程
$$
\frac{\partial u_z(r)}{\partial r}=-\frac{\Delta p}{2 \eta L}\left(r+\frac{c}{r}\right)
$$
其中常量 $c$ 消失以确保有限值 $\partial u_z(r) / \partial r$ 在 $r=0$. 我们注意到剪切应力的方程是
$$
\sigma_{z r}=-\eta \partial u_z(r) / \partial r=\Delta p r /(2 L)
$$
积分 (19.54) 服从无滑移 $\mathrm{BC}, u_z(r=R)=0$, 导致抛物线速度剖面
$$
u_z(r)=-\frac{\Delta p}{4 \eta L}\left(r^2-R^2\right)
$$
使用它,可以获得沿流的每长度单位时间的体积流量(体积流量):
$$
Q=\int_0^R d r 2 \pi r u_z(r)=\frac{\pi \Delta p}{8 \eta L} R^4
$$
这就是著名的哈根-泊肃叶定律。

物理代写|统计物理代写Statistical Physics of Matter代考|The Low Reynolds Number Approximation

在 Navier-Stokes 方程中,有两个相互竞争的项,即非线性惯性项 $\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}$ 和粘性耗散项 $\eta \nabla^2 \boldsymbol{u}$. 惯性项 与粘性项的比值称为雷诺数: $\operatorname{Re}=|\rho \boldsymbol{u} \cdot \nabla \boldsymbol{u}| /\left|\eta \nabla^2 \boldsymbol{u}\right| \approx \rho U R / \eta$ ,在哪里 $U$ 和 $R$ 是流动的特征速 度和特征长度。如果 $R e$ 高于某个临界值使得非线性惯性项很重要,流动趋于不可预测,称为湍流。湍流 在许多实际问题中很重要,例如大规模天气预报和飞机设计,但其基本理解仍然是物理学中长期存在的问 题。
如果 $R e$ 小于 1,因此粘性项支配非线性项,流动趋于层流。层流在数学上更容易处理。此外,对于生物 有机体或复合物(小的 $R$ ) 在过阻尼和粘性流体 (高 $\eta$ ), 层流或低雷诺数流动将是相关的。例如一种细菌 $1 \mu \mathrm{m}$ 在水中游泳的直径为 $2 \mu \mathrm{m}$ 每秒有 $R e \approx 10^{-5}$. 在这种情况下,Navier-Stokes 方程被简化为流速方 程
$$
\nabla \cdot \boldsymbol{u}=0
$$

$$
\rho \frac{\partial}{\partial t} \boldsymbol{u}=-\nabla \cdot \boldsymbol{\sigma}=-\nabla p+\eta \nabla^2 \boldsymbol{u}
$$
在稳定状态下,上面变成斯托克斯方程
$$
\nabla \cdot \boldsymbol{\sigma}=\nabla p-\eta \nabla^2 \boldsymbol{u}=0
$$
我们在下面研究。

物理代写|统计物理代写Statistical Physics of Matter代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

物理代写|统计物理代写Statistical Physics of Matter代考|Boltzmann Equation Explains Transport Equations

如果你也在 怎样代写统计物理Statistical Physics of Matter这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

统计物理学是在统计力学的基础上发展起来的一个物理学分支,它在解决物理问题时使用了概率论和统计学的方法,特别是处理大群体和近似的数学工具。

statistics-lab™ 为您的留学生涯保驾护航 在代写统计物理Statistical Physics of Matter方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写统计物理Statistical Physics of Matter代写方面经验极为丰富,各种代写统计物理Statistical Physics of Matter相关的作业也就用不着说。

我们提供的统计物理Statistical Physics of Matter及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础

物理代写|统计物理代写Statistical Physics of Matter代考|Boltzmann Equation Explains Transport Equations

Solutions to the transport equations above can be used to describe a variety of hydrodynamic phenomena such as diffusion, laminar flow, and heat transport. Fundamentally, these macroscopic transport equations are derived from a microscopic kinetic equations, e.g., the Boltzmann equation for the case of dilute gas. The Boltzmann equation is an equation for evolution of the probability density of a particle at velocity $\boldsymbol{v}$ and position $\boldsymbol{r}$, which reads
$$
\frac{\partial f(\boldsymbol{r v}, t)}{\partial t}+\boldsymbol{v} \cdot \nabla f(\boldsymbol{r v}, t)=J(f f)
$$
Here $J(f f)$ denotes the so-called collision integral that describes the temporal change of the probability density caused by two-particle collisions. The hydrodynamic densities, which are proportional to the velocity moments of $f(\boldsymbol{r} v, t)$, e.g., $\rho \boldsymbol{u}=m \int d \boldsymbol{v} \boldsymbol{v} f(\boldsymbol{r v}, t)$, are shown to satisfy the continuity equations. It took a long time before Chapmann and Enskog formulated the Boltzmann equation’s particular solutions to derive the hydrodynamic transport equations along with the transport coefficients therein in terms of molecular parameters and collision mechanics of two interacting particles. The derivations of Boltzmann equation and the transport phenomena of gases therefrom mark an important page in history of non-equilibrium statistical mechanics.

One important feature of the transport phenomena is the time irreversibility. Consider that the particles initially confined in a volume freely diffuse to a region of lower particle density. The process is irreversible; in the lifetime of universe, the particle will never get back into the initial volume, by the second law of thermodynamics. The irreversibility can be seen from the diffusion equation for the density, $\partial n(r, t) / \partial t=D \nabla^2 n(r, t)$, which is not invariant with respect to the time reversal operation, $t \rightarrow-t$, but becomes $-\partial n(r,-t) / \partial t=D \nabla^2 n(r,-t)$. Because of the impossibility of this equation, the time reversed motion is not natural. There is only one direction, time arrow, from the past to the future. But look at the more fundamental, microscopic equation of the motion for the constituent particles, that is, the Newton’s equation, $m d v_i / d t=\boldsymbol{F}\left{r_j\right}$ for all particles labeled as $i$. This equation is invariant with respect to time reversal upon which $v_i \rightarrow-v_i$. Indeed a “time-backward” trajectory cannot be distinguished from a “time-forward” trajectory; the particles move just as well “backwards” as they do “forwards”. This is fundamentally at odds with the natural phenomena we observe macroscopically! The problem is called the time irreversibility paradox.

物理代写|统计物理代写Statistical Physics of Matter代考|A Simple Shear and Planar Flow

Consider a fluid between two large plates, each with an area $A$, separated by a distance $D$. The upper plate is in steady motion at a constant velocity $V$, while the other is at rest (Fig. 19.3). The fluid undergoes a shear flow (called the Couette flow) along $z$-axis on a $(y, z)$ plane, $\boldsymbol{u}=u_z(x) \hat{z}$, causing the stress $\sigma_{x z}=-\eta \partial u_z / \partial x$. The above relations reduce (19.33) to a remarkably simple form
$$
\rho \frac{\partial}{\partial t} u_z(x, t)=-\frac{\partial p}{\partial z}+\eta \frac{\partial^2 u_z}{\partial x^2}
$$
Furthermore, in the Couette flow situation, the pressure is uniform along $z$-direction, so
$$
\rho \frac{\partial u_z}{\partial t}=\eta \frac{\partial^2 u_z}{\partial x^2}
$$
The velocity $u_z$ satisfies the diffusion equation, akin to the equation which we already studied for the mass and heat diffusions.

P19.6 Consider an unbounded fluid above a plane at $x=0$ that moves in the $z$ direction with a time dependent velocity $V(t)=V_0 \cos \omega t$. Show that the fluid velocity for $x>0$ is given by
$$
u_z(t)=V_0 \cos \left{\omega t-\left(\frac{\omega \rho}{2 \eta}\right)^{1 / 2} x\right} \exp \left{-\left(\frac{\omega \rho}{2 \eta}\right)^{1 / 2} x\right} .
$$
In a steady state (19.45) is
$$
\eta \frac{\partial^2 u_z}{\partial x^2}=0
$$
This equation is to be solved subject to two $\mathrm{BC}$, usually the no slip $\mathrm{BC}$, according to which the fluid velocity on a surface is same as that of the surface: $u_z=V$ at $x=D$ and $u_z=0$ at $x=0$. Thus we find the solution
$$
u_z=\frac{V}{D} x
$$
which shows that the fluid velocity is sheared at a uniform rate $V / D$ along the $z$ direction.

统计物理代考

物理代写|统计物理代写Statistical Physics of Matter代考|Boltzmann Equation Explains Transport Equations

上述传输方程的解可用于描述各种流体动力学现象,例如扩散、层流和热传输。从根本上说,这些宏观输 运方程是从微观动力学方程推导出来的,例如稀气体情况下的玻尔兹熳方程。玻尔兹曼方程是粒子在一定 速度下概率密度的演化方程 $\boldsymbol{v}$ 和位置 $\boldsymbol{r}$ ,上面写着
$$
\frac{\partial f(\boldsymbol{r} \boldsymbol{v}, t)}{\partial t}+\boldsymbol{v} \cdot \nabla f(\boldsymbol{r} \boldsymbol{v}, t)=J(f f)
$$
这里 $J(f f)$ 表示所谓的碰撞积分,它描述了由两粒子碰噇引起的概率密度的时间变化。流体动力学密度, 与速度矩成正比 $f(\boldsymbol{r} v, t)$ ,例如, $\rho \boldsymbol{u}=m \int d \boldsymbol{v} \boldsymbol{v} f(\boldsymbol{r} \boldsymbol{v}, t)$, 被证明满足连续性方程。Chapmann 和 Enskog 花了很长时间才制定了玻尔兹谩方程的特定解,以根据分子参数和两个相互作用粒子的碰撞力学 推导出流体动力学输运方程以及其中的输运系数。玻尔兹畋方程的推导和由此产生的气体输运现象,在非 平衡态统计力学的历史上写下了重要的一页。
输运现象的一个重要特征是时间不可逆性。考虑最初限制在体积内的粒子自由扩散到粒子密度较低的区 域。这个过程是不可逆的;根据热力学第二定律,在宇宙的生命周期中,粒子永远不会回到初始体积。从 密度的扩散方程可以看出不可逆性, $\partial n(r, t) / \partial t=D \nabla^2 n(r, t)$ ,这对于时间反转操作不是不变的, $t \rightarrow-t$, 但变成 $-\partial n(r,-t) / \partial t=D \nabla^2 n(r,-t)$. 由于这个方程的不可能性,时间反转运动是不自然 的。只有一个方向,时间箭头,从过去到末来。但是看看组成粒子运动的更基本的微观方程,即牛顿方 程, $\mathrm{mdv} v_{-} \mathrm{i} / \mathrm{d} \mathrm{t}=\backslash$ boldsymbol ${F} \backslash$ eft ${$ __jlright $}$ 对于标记为的所有粒子 $i$. 这个方程对于时间反转是不变的 $v_i \rightarrow-v_i$. 事实上,“时间倒退”轨迹与“时间向前”轨迹无法区分;粒子“向后”移动和“向前”移动一样好。 这与我们宏观观察的自然现象根本不符! 这个问题被称为时间不可逆悖论。

物理代写|统计物理代写Statistical Physics of Matter代考|A Simple Shear and Planar Flow

考虑两个大板之间的流体,每个板都有一个面积 $A$ ,相隔一段距离 $D$. 上板以恒定速度平稳运动 $V$ ,而另一 个处于静止状态 (图 19.3) 。流体经历剪切流 (称为 Couette 流) 沿 $z$ – 轴上 $(y, z)$ 飞机, $\boldsymbol{u}=u_z(x) \hat{z}$ , 引起压力 $\sigma_{x z}=-\eta \partial u_z / \partial x$. 上述关系将 (19.33) 简化为一个非常简单的形式
$$
\rho \frac{\partial}{\partial t} u_z(x, t)=-\frac{\partial p}{\partial z}+\eta \frac{\partial^2 u_z}{\partial x^2}
$$
此外,在 Couette 流动情况下,压力沿 $z$-方向,所以
$$
\rho \frac{\partial u_z}{\partial t}=\eta \frac{\partial^2 u_z}{\partial x^2}
$$
速度 $u_z$ 满足扩散方程,类似于我们已经研究过的质量和热扩散方程。
P19.6 考虑平面上方的无界流体 $x=0$ 在 $z$ 方向与时间相关的速度 $V(t)=V_0 \cos \omega t$. 表明流体速度为 $x>0$ 是 (谁) 给的
在稳定状态下 (19.45) 是
$$
\eta \frac{\partial^2 u_z}{\partial x^2}=0
$$
这个等式要解决两个问题 $\mathrm{BC}$ ,通常是防滑 $\mathrm{BC}$ ,根据它,表面上的流体速度与表面的速度相同: $u_z=V$ 在 $x=D$ 和 $u_z=0$ 在 $x=0$. 这样我们就找到了解决方案
$$
u_z=\frac{V}{D} x
$$
这表明流体速度以均匀速率被剪切 $V / D$ 沿蒠 $z$ 方向。

物理代写|统计物理代写Statistical Physics of Matter代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

物理代写|统计物理代写Statistical Physics of Matter代考|Macroscopic Consideration

如果你也在 怎样代写统计物理Statistical Physics of Matter这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

统计物理学是在统计力学的基础上发展起来的一个物理学分支,它在解决物理问题时使用了概率论和统计学的方法,特别是处理大群体和近似的数学工具。

statistics-lab™ 为您的留学生涯保驾护航 在代写统计物理Statistical Physics of Matter方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写统计物理Statistical Physics of Matter代写方面经验极为丰富,各种代写统计物理Statistical Physics of Matter相关的作业也就用不着说。

我们提供的统计物理Statistical Physics of Matter及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础

物理代写|统计物理代写Statistical Physics of Matter代考|Macroscopic Consideration

In Chap. 9, we studied the static linear response theory, in which the change of a systems’ variable $\Delta X_i$ caused by a small static force or field $f_i$ conjugate to the variable is given by its fluctuation $\left\langle\left(\Delta \mathcal{X}_i\right)^2\right\rangle_0$. For example, the change in average extension of an elastic rod $\Delta X$ in response to a small applied tension $f$ is given by $\Delta X=\chi_s f$, where a constant $\chi_s$ is the static response function given by the fluctuation of the microscopic extension $\mathcal{X}$ at equilibrium in the absence of the force, $\chi_s=\beta\left\langle(\Delta \mathcal{X})^2\right\rangle_0$. The response function here is called stretch modulus.

Here we generalize the theory for the time-dependent situations questioning: how will the elastic rod extend dynamically in response to a small force acting on the system $f(t)$, which has an arbitrary time dependence? A naïve generalization may suggest $\Delta X(t)=\chi f(t)$, or $\Delta X(t)=\chi(t) f(t)$, either of which is wrong! Considering the linearity with respect to $f(t)$, we can deduce that the true relation is
$$
\Delta X(t)=\int_{-\infty}^t \chi\left(t, t^{\prime}\right) f\left(t^{\prime}\right) d t^{\prime}
$$
$\chi\left(t, t^{\prime}\right)$ is a time-dependent dynamic response function which is an intrinsic property of the system at the unperturbed state. Because the property is invariant with respect to time-translation, $\chi$ only depends on the difference $t-t^{\prime}$ connecting the response $\Delta X(t)$ and the cause $f\left(t^{\prime}\right): \chi\left(t, t^{\prime}\right)=\chi\left(t-t^{\prime}\right)$. Equation (17.1) signifies that system’s response to the force in general is delayed. Only in the limit $\chi\left(t-t^{\prime}\right) \rightarrow \chi_s \delta\left(t-t^{\prime}\right)$, the response is instantaneous, $\Delta X(t)=\chi_s f(t)$. Second,$\chi\left(t-t^{\prime}\right)$ is non-vanishing only when $t>t^{\prime}$, dictated by the principle of causality that the effect follows the cause. Thus (17.1) can be replaced by
$$
\Delta X(t)=\int_{-\infty}^{\infty} \chi\left(t-t^{\prime}\right) f\left(t^{\prime}\right) d t^{\prime}
$$
The linear response $\Delta X(t)$ to an oscillatory force $f\left(t^{\prime}\right)=a \cos \Omega t^{\prime}=\operatorname{Re}\left[a e^{-i \Omega t^{\prime}}\right]$ reads
$$
\begin{aligned}
\Delta X(t) & =\int_{-\infty}^t d t^{\prime} \chi\left(t-t^{\prime}\right) \operatorname{Re}\left[a e^{-i \Omega t^{\prime}}\right] \
& =\operatorname{Re}\left[\int_{-\infty}^t d t^{\prime} \chi\left(t-t^{\prime}\right) a e^{i \Omega\left(t-t^{\prime}\right)} e^{-i \Omega t}\right] \
& =\operatorname{Re}\left[\int_0^{\infty} d s \chi(s) a e^{i \Omega s} e^{-i \Omega t}\right]=\operatorname{Re}\left[\chi(\Omega) e^{-i \Omega t}\right],
\end{aligned}
$$
where
$$
\chi(\Omega)=\int_0^{\infty} d t e^{i \Omega t} \chi(t)=\int_{-\infty}^{\infty} d t e^{i \Omega t} \chi(t),
$$
is a time-Fourier transform of $\chi(t)$, which vanishes for $t<0$.

物理代写|统计物理代写Statistical Physics of Matter代考|Statistical Mechanics of Dynamic Response Function

Now let us obtain $\chi(t)$ using statistical mechanics based on the microscopic view, for a stepwise unloading of $f_i$, which is not limited to the tension but can include a variety of forces and fields. Conjugate to $f_i$ is the system variable $\mathcal{X}_i$, whose average can not only be the macroscopic displacement $X_i$ introduced in (Table 2.1) but also be mesoscopic variables, e.g., the displacement of a Brownian particle.
We consider that from the distant past our system, viewed as a classical many-body system, is brought to an equilibrium state under a constant force $f_i$ until $t=0$, after which the force is turned off. At $t=0$ (initially), the system’s Hamiltonian is
$$
\mathcal{H}(\Gamma(0))=\mathcal{H}0(\Gamma(0))-f_i \mathcal{X}_i(\Gamma(0)) $$ where $\Gamma(0)$ is the systems’ many-particle phase space point descriptive of the initial state and evolves to $\Gamma(t)$ at a later time $t$ (Fig. 17.2b). The macroscopic displacement $X_j(t)$ at $t$ is the average of the corresponding microscopic variable of the system $\mathcal{X}_j(t)=\mathcal{X}_j(\Gamma(t))$ over all microstates initially prepared with the distribution $e^{-\beta \mathcal{H}(\Gamma(0))} / \sum{\mathcal{M}} e^{-\beta \mathcal{H}(\Gamma(0))}$
$$
X_j(t)=\left\langle\mathcal{X}j(t)\right\rangle=\frac{\int d \Gamma(0)\left{\mathcal{X}_j(\Gamma(t)) e^{-\beta \mathcal{H}(\Gamma(0))}\right}}{\int d \Gamma(0) e^{-\beta \mathcal{H}(\Gamma(0))}} $$ Because $\mathcal{H}^{\prime}=-f_i \mathcal{X}_i$ is a perturbation, $e^{-\beta \mathcal{H}(\Gamma(0))} \approx e^{-\beta \mathcal{H}_0}\left(1+\beta f_i \mathcal{X}_i(0)\right)$, and $$ \begin{aligned} \left\langle\mathcal{X}_j(t)\right\rangle & \approx \frac{\int d \Gamma(0)\left{\mathcal{X}_j(\Gamma(t)) e^{-\beta \mathcal{H}_0}\left(1+\beta f_i \mathcal{X}_i(0)\right)\right}}{\int d \Gamma(0) e^{-\beta \mathcal{H}_0}\left(1+\beta f_i \mathcal{X}_i(0)\right)} \ & =\frac{\left\langle\mathcal{X}_j(t)\right\rangle_0+\beta f_i\left\langle\mathcal{X}_j(t) \mathcal{X}_i(0)\right\rangle_0}{1+\beta f_i\left\langle\mathcal{X}_i(0)\right\rangle_0} \end{aligned} $$ where $\langle\cdots\rangle_0$ is the average over the equilibrium ensemble in the absence of the force with the distribution $e^{-\beta \mathcal{H}_0} / \int d \Gamma(0) e^{-\beta \mathcal{H}_0(\Gamma(0))}$. Because, for time $t>0$, the perturbation is turned off and the time evolution is generated by $\mathcal{H}_0,\left\langle\mathcal{X}_j(t)\right\rangle_0 \equiv$ $\left\langle\mathcal{X}_j(\Gamma(t))\right\rangle_0$ is equal to $\left\langle\mathcal{X}_j(0)\right\rangle_0 \equiv\left\langle\mathcal{X}_j\right\rangle_0$, which is time-independent. If we retain in (17.17) the term linear in $f_i$, which is small, we arrive at an important result: $$ \begin{aligned} \Delta X_j(t) & \equiv\left\langle\mathcal{X}_j(t)\right\rangle-\left\langle\mathcal{X}_j\right\rangle_0 \ & =\beta f_i\left\langle\Delta \mathcal{X}_j(t) \Delta \mathcal{X}_i(0)\right\rangle_0=\beta f_i C{j i}(t)
\end{aligned}
$$

统计物理代考

物理代写|统计物理代写Statistical Physics of Matter代考|Macroscopic Consideration

在第一章 9 ,我们研究了静态线性响应理论,其中系统变量的变化 $\Delta X_i$ 由小的静力或场引起 $f_i$ 与变量共 轭由其波动给出 $\left\langle\left(\Delta \mathcal{X}i\right)^2\right\rangle_0$. 例如,弹性杆平均伸长的变化 $\Delta X$ 响应小的施加张力 $f$ 是 (谁) 给的 $\Delta X=\chi_s f$, 其中一个常数 $\chi_s$ 是由微观扩展的波动给出的静态响应函数 $\mathcal{X}$ 在没有力的情况下处于平衡状 态, $\chi_s=\beta\left\langle(\Delta \mathcal{X})^2\right\rangle_0$. 这里的响应函数称为拉伸模量。 在这里,我们概括了时间相关情况问题的理论:弹性杆将如何动态延伸以响应作用在系统上的小力 $f(t)$ , 它具有任意时间依赖性? 天真的概括可能表明 $\Delta X(t)=\chi f(t)$ ,或者 $\Delta X(t)=\chi(t) f(t)$ ,两者都是 错误的!考虑到线性度 $f(t)$ ,我们可以推断出真正的关系是 $$ \Delta X(t)=\int{-\infty}^t \chi\left(t, t^{\prime}\right) f\left(t^{\prime}\right) d t^{\prime}
$$
$\chi\left(t, t^{\prime}\right)$ 是时间相关的动态响应函数,它是系统在末受扰动状态下的固有属性。因为该属性对于时间平移 是不变的, $\chi$ 只取决于差异 $t-t^{\prime}$ 连接响应 $\Delta X(t)$ 和原因 $f\left(t^{\prime}\right): \chi\left(t, t^{\prime}\right)=\chi\left(t-t^{\prime}\right)$. 等式 (17.1) 表 示系统对一般力的响应是延迟的。只在极限 $\chi\left(t-t^{\prime}\right) \rightarrow \chi_s \delta\left(t-t^{\prime}\right)$ ,响应是瞬时的,
$\Delta X(t)=\chi_s f(t)$. 第二, $\chi\left(t-t^{\prime}\right)$ 仅当 $t>t^{\prime}$ ,遵循因果关系原则,即因果关系。因此 (17.1) 可以替 换为
$$
\Delta X(t)=\int_{-\infty}^{\infty} \chi\left(t-t^{\prime}\right) f\left(t^{\prime}\right) d t^{\prime}
$$
线性响应 $\Delta X(t)$ 到一个振荡力 $f\left(t^{\prime}\right)=a \cos \Omega t^{\prime}=\operatorname{Re}\left[a e^{-i \Omega t^{\prime}}\right]$ 读
$$
\Delta X(t)=\int_{-\infty}^t d t^{\prime} \chi\left(t-t^{\prime}\right) \operatorname{Re}\left[a e^{-i \Omega t^{\prime}}\right] \quad=\operatorname{Re}\left[\int_{-\infty}^t d t^{\prime} \chi\left(t-t^{\prime}\right) a e^{i \Omega\left(t-t^{\prime}\right)} e^{-i \Omega t}\right]=\operatorname{Re}
$$
在哪里
$$
\chi(\Omega)=\int_0^{\infty} d t e^{i \Omega t} \chi(t)=\int_{-\infty}^{\infty} d t e^{i \Omega t} \chi(t)
$$
是时间傅立叶变换 $\chi(t)$ ,它消失了 $t<0$.

物理代写|统计物理代写Statistical Physics of Matter代考|Statistical Mechanics of Dynamic Response Function

现在让我们得到 $\chi(t)$ 使用基于微观视图的统计力学,逐步卸载 $f_i$ ,这不仅限于张力,还可以包括各种力 和场。结合到 $f_i$ 是系统变量 $\mathcal{X}i$ ,其平均值不仅可以是宏观位移 $X_i$ 在(表 2.1)中引入,但也可以是介观变 量,例如,布朗粒子的位移。 我们认为,从遥远的过去开始,我们的系统被视为经典的多体系统,在恒定力的作用下达到平衡状态 $f_i$ 直 到 $t=0$ ,之后力被关闭。在 $t=0$ (最初),系统的哈密顿量是 $$ \mathcal{H}(\Gamma(0))=\mathcal{H} 0(\Gamma(0))-f_i \mathcal{X}_i(\Gamma(0)) $$ 在哪里 $\Gamma(0)$ 是系统的多粒子相空间点,描述了初始状态并演化为 $\Gamma(t)$ 晩些时候 $t$ (图 17.2b) 。宏观位移 $X_j(t)$ 在 $t$ 是系统相应微观变量的平均值 $\mathcal{X}_j(t)=\mathcal{X}_j(\Gamma(t))$ 在最初使用分布准备的所有微观状态 $e^{-\beta \mathcal{H}(\Gamma(0))} / \sum \mathcal{M} e^{-\beta \mathcal{H}(\Gamma(0))}$ $X{-j}(t)=\backslash$ left \langle $\backslash$ mathcal ${X} j(t) \backslash r i g h t \backslash r a n g l e=\backslash f r a c\left{\backslash\right.$ int $d \backslash G a m m a(0) \backslash$ fft $\left{\backslash m a t h c a \mid{X} __(\backslash G a m m a(t)) e^{\wedge}{-\backslash b e t a \backslash m\right.$.
因为 $\mathcal{H}^{\prime}=-f_i \mathcal{X}_i$ 是一个扰动, $e^{-\beta \mathcal{H}(\Gamma(0))} \approx e^{-\beta \mathcal{H}_0}\left(1+\beta f_i \mathcal{X}_i(0)\right)$ ,和
在哪里 $\langle\cdots\rangle_0$ 是在没有分布力的情况下平衡整体的平均值 $e^{-\beta \mathcal{H}_0} / \int d \Gamma(0) e^{-\beta \mathcal{H}_0(\Gamma(0))}$. 因为,为了时间 $t>0$ ,扰动被关闭,时间演化由 $\mathcal{H}_0,\left\langle\mathcal{X}_j(t)\right\rangle_0 \equiv\left\langle\mathcal{X}_j(\Gamma(t))\right\rangle_0$ 等于 $\left\langle\mathcal{X}_j(0)\right\rangle_0 \equiv\left\langle\mathcal{X}_j\right\rangle_0$ ,这是时间无 关的。如果我们在 (17.17) 中保留线性项 $f_i$ ,很小,我们得出一个重要的结果:
$$
\Delta X_j(t) \equiv\left\langle\mathcal{X}_j(t)\right\rangle-\left\langle\mathcal{X}_j\right\rangle_0 \quad=\beta f_i\left\langle\Delta \mathcal{X}_j(t) \Delta \mathcal{X}_i(0)\right\rangle_0=\beta f_i C j i(t)
$$

物理代写|统计物理代写Statistical Physics of Matter代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

物理代写|统计物理代写Statistical Physics of Matter代考|Flux-Over Population Method

如果你也在 怎样代写统计物理Statistical Physics of Matter这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

统计物理学是在统计力学的基础上发展起来的一个物理学分支,它在解决物理问题时使用了概率论和统计学的方法,特别是处理大群体和近似的数学工具。

statistics-lab™ 为您的留学生涯保驾护航 在代写统计物理Statistical Physics of Matter方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写统计物理Statistical Physics of Matter代写方面经验极为丰富,各种代写统计物理Statistical Physics of Matter相关的作业也就用不着说。

我们提供的统计物理Statistical Physics of Matter及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础

物理代写|统计物理代写Statistical Physics of Matter代考|Flux-Over Population Method

Finding the MPFT being often problematic in some cases, much easier and more direct way is to find crossing rate via the flux over population method. As shown by Reimann et al. (1999), the rate calculated this way is equal to the inverse of the Kramers time. In this method, we visualize a steady state where particles are constantly injected into the region at the reflecting boundary with a uniform current $J$ and are annihilated at the absorbing boundary. The rate of crossing the barrier is obtained by
$$
R=\frac{J}{\wp_s}
$$
where $\wp_s$ is the probability of the particle residing within the region:
$$
\wp_s=\int_{\Omega} d q P(q) .
$$
We revisit the simplest problem of one-dimensional free diffusion between a reflecting wall at $x=0$, and an absorbing wall at $x=L$. Although the real situation may be unsteady, to use the flux-over-population method, we imagine as if that particles are constantly injected at $x=0$ to induce a steady current $J$. The solution of $D \partial^2 P / \partial x^2=0$, is $P=a x+b$ yielding $J=-D \partial P / \partial x=-D a$. The solution subject to the absorbing $\mathrm{BC}$ at $x=L$ is $P(x)=-J(x-L) / D$. Because pre-transitional probability is $\wp_s=\int_0^L d x P(x)=\left(J L^2\right) / 2 D$, the rate is $J / \wp_s=$ $2 D / L^2$, which is the inverse of the MFPT, $\tau_0=L^2 / 2 D$.

For the case with a potential, we start with the equation for a constant flux, $(15.44)$
$$
J=-\mathcal{D}(q) e^{-\Phi} \frac{\partial}{\partial q}\left(e^{\Phi} P\right)
$$
which is integrated to:
$$
J \int_{q_A}^q d q^{\prime} e^{\Phi\left(q^{\prime}\right)} / \mathcal{D}\left(q^{\prime}\right)=-\left[e^{\Phi(q)} P(q)-e^{\Phi\left(q_A\right)} P\left(q_A\right)\right]
$$

物理代写|统计物理代写Statistical Physics of Matter代考|The Kramers Problem for Polymer

The dynamics of polymer crossing barriers is a basic problem in soft matter; it is also important in various biological applications such as polymer transport across membranes and within channels, DNA gel electrophoresis, etc. We consider that each segment of the polymer is subject to a piece-wise harmonic potential $U(x)$ (Fig. 16.3) such that the distance between well bottom and barrier top is larger than the polymer’s radius of gyration. How can the Kramers rate (16.35) for a Brownian particle be extended to the linear chain of $N$ beads each with the same friction coefficient $\gamma$ ?

First suppose that a flexible polymer crosses the barrier in globular conformation. For the globule, we can adopt the single particle rate (16.35) with rescaling $U(x) \rightarrow N U(x)$ and thus $\omega_m \rightarrow N^{1 / 2} \omega_m, \omega_M \rightarrow N^{1 / 2} \omega_M$, as well as $\gamma \rightarrow N \gamma$ neglecting the hydrodynamic interactions between the beads, and find the crossing rate:

$$
R_0=\frac{\omega_m \omega_M}{2 \pi \gamma} e^{-\beta N \Delta U}
$$
Compared with the single bead case, the prefactor $\left(\omega_m \omega_M\right) / 2 \pi \gamma$ remains unchanged whereas the activation energy is multiplied by $N$ times: the crossing rate of the polymer in globular state is vanishingly small.

Now consider that the polymer in crossing the barrier is unfolded into a flexible chain. With the reaction coordinate chosen to be the center of mass $(\mathrm{CM})$ of the chain, $X$, we then expect the rate to be modified to
$$
R=\frac{\omega_m \omega_M}{2 \pi \gamma} e^{-\beta \Delta \mathcal{F}}=\frac{\omega_m \omega_M}{2 \pi \gamma} e^{-\beta\left(N \Delta U+\Delta \mathcal{F}^{\prime}\right)}
$$
Here $\Delta \mathcal{F}=N \Delta U+\Delta \mathcal{F}^{\prime}$ is the free energy barrier for the chain to surmount, $\Delta \mathcal{F}^{\prime}=\mathcal{F}_M-\mathcal{F}_m$, where $\mathcal{F}_M, \mathcal{F}_m$ are the polymer conformational free energies with its CM fixed at the barrier top and well bottom, respectively. The free energy barrier $\Delta \mathcal{F}$ is much less than $N \Delta U$, due to the polymer flexibility, as will be shown below. Equation (16.37) was derived on the basis of multidimensional barrier crossing theory applied to $N$ beads interconnected by harmonic springs (Park and Sung 1999). The detailed derivation and expressions for $\mathcal{F}_M$ and $\mathcal{F}_m$ are quite involved, so here we present simple scaling theory arguments for long chains.
With the center of mass positioned at the well bottom, the flexible chain experiences confinement within the harmonic well, costing the conformational free energy, which is the sum of harmonic energy and the confinement-induced entropic contribution $(10.122)$ :
$$
\mathcal{F}_m \sim \frac{1}{2} N \omega_m^2 \xi^2+\left(\frac{R_G}{\xi}\right)^2 k_B T
$$

统计物理代考

物理代写|统计物理代写Statistical Physics of Matter代考|Flux-Over Population Method

发现 MPFT 在某些情况下经常出现问题,更简单和更直接的方法是通过人口通量法找到交叉率。正如 Reimann 等人所示。(1999),以这种方式计算的速率等于 Kramers 时间的倒数。在这种方法中,我们将 粒子以均匀电流不断注入反射边界区域的稳态可视化 $J$ 并在吸收边界处湮灭。穿过障碍的速率由下式获得
$$
R=\frac{J}{\wp_s}
$$
在哪里 $\wp_s$ 是粒子驻留在该区域内的概率:
$$
\wp_s=\int_{\Omega} d q P(q)
$$
我们重新审视反射墙之间的一维自由扩散的最简单问题 $x=0$ ,吸收壁位于 $x=L$. 虽然实际情况可能不 稳定,但使用通量超过布居方法,我们可以想象好像粒子不断注入 $x=0$ 感应稳定电流 $J$. 的解决方案 $D \partial^2 P / \partial x^2=0$ , 是 $P=a x+b$ 屈服 $J=-D \partial P / \partial x=-D a$. 溶液受吸收 $\mathrm{BC}$ 在 $x=L$ 是 $P(x)=-J(x-L) / D$. 因为过渡前概率是 $\wp_s=\int_0^L d x P(x)=\left(J L^2\right) / 2 D$, 比率是 $J / \wp_s=$ $2 D / L^2$ ,这是 MFPT 的倒数, $\tau_0=L^2 / 2 D$.
对于有势的情况,我们从恒定通量的方程开始,(15.44)
$$
J=-\mathcal{D}(q) e^{-\Phi} \frac{\partial}{\partial q}\left(e^{\Phi} P\right)
$$
集成到:
$$
J \int_{q_A}^q d q^{\prime} e^{\Phi\left(q^{\prime}\right)} / \mathcal{D}\left(q^{\prime}\right)=-\left[e^{\Phi(q)} P(q)-e^{\Phi\left(q_A\right)} P\left(q_A\right)\right]
$$

物理代写|统计物理代写Statistical Physics of Matter代考|The Kramers Problem for Polymer

聚合物穿越势垒的动力学是软物质的一个基本问题;它在各种生物应用中也很重要,例如跨膜和通道内的 聚合物传输、DNA 凝胶电泳等。我们认为聚合物的每个部分都受到分段皆波势的影响 $U(x)$ (图 16.3) 使得井底和屏障顶部之间的距离大于聚合物的回转半径。布朗粒子的 Kramers 率 (16.35) 如何扩展到线性 链 $N$ 每个珠子具有相同的摩擦系数 $\gamma$ ?
首先假设柔性聚合物以球状构象穿过屏障。对于小球,我们可以采用重新缩放的单粒子率 (16.35) $U(x) \rightarrow N U(x)$ 因此 $\omega_m \rightarrow N^{1 / 2} \omega_m, \omega_M \rightarrow N^{1 / 2} \omega_M$ ,也 $\gamma \rightarrow N \gamma$ 忽略珠子之间的流体动力学 相互作用,并找到交叉率:
$$
R_0=\frac{\omega_m \omega_M}{2 \pi \gamma} e^{-\beta N \Delta U}
$$
与单珠案相比,前因 $\left(\omega_m \omega_M\right) / 2 \pi \gamma$ 保持不变,而活化能乘以 $N$ 次:球状聚合物的交叉率小得几乎可以 忽略不计。
现在考虑穿过屏障的聚合物展开成一条柔性链。选择反应坐标作为质心 $(\mathrm{CM})$ 的链条, $X$ ,然后我们期望 利率被修改为
$$
R=\frac{\omega_m \omega_M}{2 \pi \gamma} e^{-\beta \Delta \mathcal{F}}=\frac{\omega_m \omega_M}{2 \pi \gamma} e^{-\beta\left(N \Delta U+\Delta \mathcal{F}^{\prime}\right)}
$$
这里 $\Delta \mathcal{F}=N \Delta U+\Delta \mathcal{F}^{\prime}$ 是链条要克服的自由能壁垒, $\Delta \mathcal{F}^{\prime}=\mathcal{F}_M-\mathcal{F}_m$ , 在哪里 $\mathcal{F}_M, \mathcal{F}_m$ 是聚 合物的构象自由能,其 CM 分别固定在势垒顶部和井底。自由能垒 $\Delta \mathcal{F}$ 远小于 $N \Delta U$ ,由于聚合物的柔 㓞性,如下所示。等式 (16.37) 是基于多维障碍穿越理论推导出来的 $N$ 由谐波弹簧相互连接的珠子 (Park 和 Sung 1999) 。的详细推导和表达式 $\mathcal{F}_M$ 和 $\mathcal{F}_m$ 非常复杂,所以在这里我们为长链提出简单的缩放理论 论证。
由于质心位于井底,柔性链在谐波井内受到限制,消耗了构象自由能,它是皆波能量和限制引起的熵贡献 的总和 $(10.122)$ :
$$
\mathcal{F}_m \sim \frac{1}{2} N \omega_m^2 \xi^2+\left(\frac{R_G}{\xi}\right)^2 k_B T
$$

物理代写|统计物理代写Statistical Physics of Matter代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

物理代写|固体物理代写Solid-state physics代考|KYA322

如果你也在 怎样代写固体物理Solid-state physics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

固态物理学是通过量子力学、晶体学、电磁学和冶金学等方法研究刚性物质或固体。它是凝聚态物理学的最大分支。

statistics-lab™ 为您的留学生涯保驾护航 在代写固体物理Solid-state physics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写固体物理Solid-state physics代写方面经验极为丰富,各种代写固体物理Solid-state physics相关的作业也就用不着说。

我们提供的固体物理Solid-state physics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础

物理代写|固体物理代写Solid-state physics代考|Reciprocal Lattice

The vectors $a^, b^$ and $c^$ can be used as a basis for a new lattice whose vectors are given by $$ \boldsymbol{G}=u a^+v \boldsymbol{b}^+w \boldsymbol{c}^
$$
where $u, v$ and $w$ are any set of integers. The lattice defined by $\boldsymbol{G}$ is known as reciprocal lattice, and $\boldsymbol{a}^, \boldsymbol{b}^$ and $\boldsymbol{c}^$ are called reciprocal basis vectors. The relations (5.7)-(5.9) are still valid if we replace lattice vectors by reciprocal lattice vectors and inversely reciprocal lattice vectors by lattice vectors. If $V^$ is the volume of the reciprocal unit cell, then $V * V$ $=1$ is also valid.

The vector $\boldsymbol{a}^$ is normal to the plane defined by the vectors $\boldsymbol{b}$ and $\boldsymbol{c} ; \boldsymbol{b}^$ is normal to the plane defined by the vectors $c$ and $a$, and $c^$ is normal to the plane defined by $a$ and $\boldsymbol{b}$. The relation between reciprocal lattice vectors and primitive lattice vectors may be obtained as follows. Let us consider $$ \begin{gathered} a^ \cdot \boldsymbol{a}=\frac{2 \pi(b \times c)}{V} \cdot \boldsymbol{a}=2 \pi \frac{a \cdot(b \times c)}{\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})}=2 \pi \
a^* \cdot b=\frac{2 \pi(b \times c)}{V} \cdot b=2 \pi \frac{\boldsymbol{b} \cdot(\boldsymbol{b} \times \boldsymbol{c})}{\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})}=0
\end{gathered}
$$
Similarly
$$
\begin{gathered}
b^* \cdot b=c^* \cdot c=2 \pi \
a^* \cdot c=b^* \cdot a=b^* \cdot c=c^* \cdot a=c^* \cdot b=0
\end{gathered}
$$
The reciprocal lattice possesses the same rotational symmetry as the direct lattice. The reciprocal lattice always falls in the same crystal system as its direct lattice. The reciprocal lattice for hexagonal, monoclinic, …, triclinic lattices is also hexagonal, monoclinic,…. triclinic, respectively.

物理代写|固体物理代写Solid-state physics代考|BRAGG’s Law

For diffraction, this path difference must be equal to an integral multiple of wavelength, that is,
$$
S Q+Q T=n \lambda
$$
From Fig. 5.2
$$
S Q=Q T=d \sin \theta
$$
Substituting Eqs. (5.18) in (5.17)
$$
2 d \sin \theta=n \lambda
$$
This relation is known as Bragg’s law, $n$ is order of reflection which may be integer ( $n$ $=1,2,3, \ldots)$ consistent with $\sin \theta$ not exceeding unity. From Eq. (5.19), it is seen that diffraction intensities can be built only at certain values of $\theta$, corresponding to a specific value of $\lambda$ and $d$. From Eq. (5.19), we have
$$
\theta=\sin ^{-1} \frac{n \lambda}{2 d}
$$
From this, it is seen that rays diffracted by a crystal are given off in different directions corresponding to different values of the interplanar spacing $d$. From the experimentally observed diffraction angles, it is possible to determine the $d$ of a crystal. From a list of such spacing, it is then possible to determine the lattice of the crystal.
The highest possible order can be determined by the condition $$
\sin \theta_{\max .}=1 \text { or } \frac{n \lambda}{2 d} \leq 1
$$
This indicates that $\lambda$ must not be greater than twice the interplanar spacing otherwise no diffraction will occur. Since each plane reflects $10^{-3}$ to $10^{-5}$ of the incident radiation so that $10^3$ to $10^5$ planes may contribute to the formation of Bragg reflected beam in a perfect crystal. Bragg’s law is a consequence of the periodicity of the lattice.

固体物理代写

物理代写|固体物理代写Solid-state physics代考|Reciprocal Lattice

载体^、人和齐可以用作新格的基础,其向量由下式给出
$$
\left.\backslash \text { boldsymbol }{G}=u a^{\wedge}+\mathrm{v} \backslash \text { boldsymbol }{b}^{\wedge}+\mathrm{W} \backslash \text { boldsymbol{c }\right}^{\wedge}
$$
在哪里 $u, v$ 和 $w$ 是任意整数集。由定义的晶格 $G$ 被称为倒易格,并且 \boldsymbol{a}^, \boldsymbol{b $}^{\wedge}$ 和 \boldsymbol{c}^ 称为倒数基向量。如果我们用倒数点阵向量代替点阵向量,用点阵向量代替倒数点阵向 量,则关系式 (5.7) – (5.9) 仍然有效。如果 $\mathrm{V}^{\wedge}$ 是倒数晶胞的体积,则 $V * V=1$ 也是有效的。
载体 $\backslash$ boldsymbol ${a}^{\wedge}$ 垂直于向量定义的平面 $b$ 和 $\backslash b o l d s y m b o l{c} ; \backslash b o l d s y m b o \mid{b}^{\wedge}$ 垂直于向量定义的平面 $c$ 和 $a$ ,和 $\mathrm{c}^{\wedge}$ 垂直于由定义的平面 $a$ 和 $b$. 倒数点阵向量和本原点阵向量之间的关系可以如下获得。让我们 考虑一下
$$
a \cdot \frac{2 \pi(b \times c)}{V} \cdot \boldsymbol{a}=2 \pi \frac{a \cdot(b \times c)}{\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})}=2 \pi a^* \cdot b=\frac{2 \pi(b \times c)}{V} \cdot b=2 \pi \frac{\boldsymbol{b} \cdot(\boldsymbol{b} \times \boldsymbol{c})}{\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})}=0
$$
相似地
$$
b^* \cdot b=c^* \cdot c=2 \pi a^* \cdot c=b^* \cdot a=b^* \cdot c=c^* \cdot a=c^* \cdot b=0
$$
倒易晶格与正晶格具有相同的旋转对称性。倒晶格总是与其正晶格属于同一晶系。六角、单斜、……、三 斜晶格的倒易点阵也是六角、单斜、……。分别为三斜晶系。

物理代写|固体物理代写Solid-state physics代考|BRAGG’s Law

对于衍射,这个路径差必须等于波长的整数倍,即
$$
S Q+Q T=n \lambda
$$
从图 5.2
$$
S Q=Q T=d \sin \theta
$$
代入方程式。(5.18) 在 (5.17)
$$
2 d \sin \theta=n \lambda
$$
这种关系被称为布拉格定律, $n$ 是反射阶数,可以是整数 $(n=1,2,3, \ldots)$ 是一致的 $\sin \theta$ 不超过统一。 从等式。(5.19),可以看出衍射强度只能建立在某些值 $\theta$ ,对应于特定值 $\lambda$ 和 $d$. 从等式。(5.19),我们有
$$
\theta=\sin ^{-1} \frac{n \lambda}{2 d}
$$
由此可见,晶面间距的不同值对应于晶体的衍射射线在不同的方向发出 $d$. 从实验观察到的衍射角,可以 确定 $d$ 的一个水晶。从这样的间距列表中,可以确定晶体的晶格。 最高可能的顺序可以由条件确定
$$
\sin \theta_{\max .}=1 \text { or } \frac{n \lambda}{2 d} \leq 1
$$
这表明 $\lambda$ 不得大于晶面间距的两倍,否则不会发生衍射。由于每个平面反映 $10^{-3}$ 到 $10^{-5}$ 入射辐射使得 $10^3$ 到 $10^5$ 平面可能有助于在完美晶体中形成布拉格反射光束。布拉格定律是晶格周期性的结果。

物理代写|固体物理代写Solid-state physics代考| 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

物理代写|固体物理代写Solid-state physics代考|PHYSICS7544

如果你也在 怎样代写固体物理Solid-state physics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

固态物理学是通过量子力学、晶体学、电磁学和冶金学等方法研究刚性物质或固体。它是凝聚态物理学的最大分支。

statistics-lab™ 为您的留学生涯保驾护航 在代写固体物理Solid-state physics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写固体物理Solid-state physics代写方面经验极为丰富,各种代写固体物理Solid-state physics相关的作业也就用不着说。

我们提供的固体物理Solid-state physics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础

物理代写|固体物理代写Solid-state physics代考|Pauli Exclusion Principle

In 1925, W. Pauli discovered the fundamental principle that governs the electron configurations of multielectron atoms. His exclusion principle states that ‘in a multielectron atom there can never be more than one electron in the same quantum state. Each electron must have a different set of quantum numbers $n, l, m_l$ and $m_{\mathrm{s}}$ ‘. He established from the analysis of experimental data that the exclusion principle represents a property of electrons and not, particularly, of atoms. The exclusion principle operates in any system containing electrons.

It is seen that the complete wave function $\psi$ of the hydrogen atom can be expressed as the product of three separate wave functions, each describing that part of $\psi$, which is a function of one of the three, coordinates $r, \theta$ and $\varphi$. A multielectron system consisting of $\mathrm{n}$ non-interacting electrons can be expressed as the product of wave functions $\psi(1)$, $\psi(2), \ldots \psi(n)$ of the individual electrons, that is $$
\Psi(1,2, \ldots, n)=\psi(1) \psi(2) \ldots \psi(n)
$$
Each of the eigenfunction describing the electron require quantum numbers $n, l, m l$ to specify the mathematical form of its dependence on the three coordinates. In addition each require one more quantum number $m_s$ to specify the orientation of the spin of the electron. To designate a particular set of four quantum numbers, the symbols such as $a$, $b, c$, . etc. are used. Let us consider a wave function used to describe a system of two electrons. Suppose electron number 1 is in quantum state $a$ and electron number 2 is in state $b$. The wave function is
$$
\Psi_I=\psi_a(1) \psi_b(2)
$$
Because the electrons are identical, there is no physical way to distinguish the electron wave function given by Eq. (4.175) from the wave function
$$
\Psi_{\mathrm{II}}=\psi_a(2) \psi_b(1)
$$
in which electron number 2 now has quantum state $a$, etc. Similarly no conceivable physical experiment could distinguish the six three electron wave functions:
$$
\begin{aligned}
& \psi_a(1) \psi_b(2) \psi_c(3) ; \psi_a(3) \psi_b(1) \psi_c(2) ; \psi_a(2) \psi_b(3) \psi_c(1) \
& \psi_a(2) \psi_b(1) \psi_c(3) ; \psi_a(3) \psi_b(2) \psi_c(1) ; \psi_a(1) \psi_b(3) \psi_c(2)
\end{aligned}
$$

物理代写|固体物理代写Solid-state physics代考|X-Rays

X-rays are electromagnetic radiations of wavelength between $\sim 10 \mathrm{pm}$ and $\sim 10 \mathrm{~nm}$. X-rays are characterized by index of refraction very close to unity for all materials. X-rays are produced when a beam of highly accelerated particles such as electrons are allowed to strike a metal target. In the process, electrons suffer energy loss and this loss is emitted in the form of electromagnetic radiation. The X-rays are produced both by deceleration of electrons in the metal target and by the excitation of the core electrons in the atom of the target. The first process gives a broad continuous spectrum and the second gives sharp lines. When a moving electron is stopped suddenly, all its energy appears as photon of frequency $v$ of X-rays. The energy of an electron of charge $e$ in dropping through a potential difference $V$ is $e V$ and
$$
\begin{gathered}
E=h v=\frac{h c}{\lambda}=e V \
\lambda=\frac{h c}{E}=\frac{h c}{e V}
\end{gathered}
$$
An electron will not lose all its energy in this way; it will have a number of glancing collisions with the atoms that it collides and causing them to vibrate. As a result of this, the temperature of the target increases. Equation (5.1), therefore, gives the minimum value $\lambda$ can possibly have and accounts for the short wavelength cut-off. Larger wavelengths are more probable and so the rapid increase in the intensity. The intensity falls off gradually indicating that there is no upper limit. Figure 5.1 shows the X-ray spectrum that results when molybdenum target is bombarded by electron at $35 \mathrm{keV}$. The electron beam on striking the target not only gets decelerated but also a small fraction of electrons of the beam strikes the target and ejects the inner shell’s electrons. The atom is then unstable, and outer shell electrons in the same atom will drop into the hole (vacancy) caused by the ejection of the electron. In doing so, it loses energy and a photon is emitted. If $E$ is the energy lost, we have
$$
\lambda=\frac{h c}{E}
$$
$E$ is a definite quantity associated with the electron energy change in the atom. Therefore, the wavelength concerned is specific. Several wavelengths are possible, and they constitute the characteristic X-ray line spectrum shown as peaks in Fig. 5.1. The energy of the characteristic X-ray produced is very weakly dependent on the chemical structure in which the atom is bound indicating that non-bonding shells of atoms are the characteristic X-ray source. The resulting characteristic spectrum is superimposed on the continuum. An atom remains ionized for a very short time $\left(\sim 10^{-14} \mathrm{~s}\right)$, and thus, the incident electrons that arrive about every $\sim 10^{-17} \mathrm{~s}$ can repeatedly ionize an atom. However, not all outer electrons can fall into holes to provide X-rays.

固体物理代写

物理代写|固体物理代写Solid-state physics代考|Pauli Exclusion Principle

1925 年,W. 泡利 (W. Pauli) 发现了支配多电子原子电子构型的基本原理。他的不相容原理指出,“在一 个多电子原子中,处于同一量子态的电子永远不会超过一个”。每个电子必须有一组不同的量子数 $n, l, m_l$ 和 $m_{\mathrm{s}}$ ‘. 他通过对实验数据的分析确定,不相容原理代表了电子的特性,而不是原子的特性。排斥原理适 用于任何包含电子的系统。
可见完整的波函数 $\psi$ 氢原子的一部分可以表示为三个独立波函数的乘积,每个波函数都描述了氢原子的那 一部分 $\psi$, 这是三个坐标之一的函数 $r, \theta$ 和 $\varphi$. 多电子系统由 $\mathrm{n}$ 非相互作用的电子可以表示为波函数的乘积 $\psi(1), \psi(2), \ldots \psi(n)$ 单个电子的,即
$$
\Psi(1,2, \ldots, n)=\psi(1) \psi(2) \ldots \psi(n)
$$
描述电子的每个特征函数都需要量子数 $n, l, m l$ 指定其依赖于三个坐标的数学形式。另外每一个都需要多 一个量子数 $m_s$ 指定电子自旋的方向。为了指定一组特定的四个量子数,符号如 $a, b, c_r$. 等被使用。让我们 考虑用于描述两个电子系统的波函数。假设 1 号电子处于量子态 $a$ 电子数 2 处于状态 $b$. 波函数是
$$
\Psi_I=\psi_a(1) \psi_b(2)
$$
因为电子是相同的,所以没有物理方法来区分方程式给出的电子波函数。(4.175) 从波函数
$$
\Psi_{\mathrm{II}}=\psi_a(2) \psi_b(1)
$$
其中 2 号电子现在具有量子态 $a$ 等。同样,没有任何可以想象的物理实验可以区分六个三电子波函数:
$$
\psi_a(1) \psi_b(2) \psi_c(3) ; \psi_a(3) \psi_b(1) \psi_c(2) ; \psi_a(2) \psi_b(3) \psi_c(1) \quad \psi_a(2) \psi_b(1) \psi_c(3) ; \psi_a(3) \psi_b(2) \psi_c(1)
$$

物理代写|固体物理代写Solid-state physics代考|X-Rays

X射线是波长介于 $~ 10 \mathrm{pm}$ 和 $10 \mathrm{~nm}$. X射线的特征是所有材料的折射率都非常接近统一。当一束高度 加速的粒子 (例如电子) 撞击金属目标时,就会产生 X 射线。在此过程中,电子遭受能量损失,这种损失 以电磁辐射的形式发射。X射线是通过金属靶中电子的减速和靶原子中核心电子的激发产生的。第一个过 程给出了广泛的连续光谱,第二个过程给出了清晰的线条。当一个运动的电子突然停止时,它的所有能量 都表现为频率为光子 $v$ X射线。一个电荷电子的能量 $e$ 通过电位差下降 $V$ 是 $e V$ 和
$$
E=h v=\frac{h c}{\lambda}=e V \lambda=\frac{h c}{E}=\frac{h c}{e V}
$$
电子不会以这种方式失去所有能量;它会与它碰撞并导致它们振动的原子发生多次擦肩而过的碰撞。结 果,目标的温度升高。因此,等式 (5.1) 给出了最小值 $\lambda$ 可能具有并解释短波长截止。更大的波长更有可 能,因此强度会迅速增加。强度逐渐下降表明没有上限。图 5.1 显示了钼靶在 $35 \mathrm{keV}$. 撞击目标的电子束 不仅会减速,而且电子束中的一小部分电子会撞击目标并射出内壳的电子。然后原子不稳定,同一原子中 的外壳电子将落入由电子喷射引起的空穴 (空位) 中。这样做时,它会失去能量并发射光子。如果 $E$ 是能 量损失,我们有
$$
\lambda=\frac{h c}{E}
$$
$E$ 是与原子中电子能量变化相关的确定量。因此,所涉及的波长是特定的。几种波长是可能的,它们构成 了特征 $X$ 射线线谱,如图 5.1 中的峰值所示。产生的特征 $X$ 射线的能量非常微弱地依赖于原子所结合的化 学结构,这表明原子的非键合壳层是特征 X射线源。得到的特征光谱叠加在连续谱上。原子保持电离状态 的时间很短 $\left(\sim 10^{-14} \mathrm{~s}\right)$ ,因此,大约每个到达的入射电子 $~ 10^{-17} \mathrm{~s}$ 可以反复电离一个原子。然而, 并非所有的外层电子都能落入空穴以提供 X 射线。

物理代写|固体物理代写Solid-state physics代考| 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

物理代写|固体物理代写Solid-state physics代考|PHYSICS7544

如果你也在 怎样代写固体物理Solid-state physics这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

固态物理学是通过量子力学、晶体学、电磁学和冶金学等方法研究刚性物质或固体。它是凝聚态物理学的最大分支。

statistics-lab™ 为您的留学生涯保驾护航 在代写固体物理Solid-state physics方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写固体物理Solid-state physics代写方面经验极为丰富,各种代写固体物理Solid-state physics相关的作业也就用不着说。

我们提供的固体物理Solid-state physics及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
物理代写|固体物理代写Solid-state physics代考|PHYSICS7544

物理代写|固体物理代写Solid-state physics代考|Quantum Numbers for the Hydrogen Atom Wave Function

In the process of solving the Schrödinger wave equation for hydrogen like atoms, the integer $\mathrm{n}, l$ and $\mathrm{m}$ are introduced in a logical way. These integers are called quantum numbers. In Bohr’s theory the quantum number $n$ is introduced arbitrarily in the form of the quantized condition. The wave function $\Psi_{\operatorname{nlm}}(\theta, \varphi)$ is description of states of the system. They are related to $n, l$ and $m$. Thus the quantum number themselves may be said to describe the state of the system. The values of these quantum numbers are
$$
\begin{aligned}
n & =1,2,3, \ldots \
l & =0,1,2, \ldots, n-1 \
m & =0, \pm 1, \pm 2, \ldots, \pm l
\end{aligned}
$$
It is now shown that the quantum numbers $l$ and $m$ are related to the magnitude $L$ of the orbital angular momentum and $m$ is the $z$ component $L_z . Y_{l m}(\theta, \varphi)$ is simultaneously the eigenfunction of $L^2$ and $L_z$ operator. Therefore, $L^2$ and $L_z$ commute, i.e. corresponding observable can be precisely measured simultaneously. The magnitude of the orbital angular momentum is $\hbar \sqrt{l(l+1)}$ while that of $L_z$ is $m \mathrm{~h}$. Since $L^2$ and $L_z$ do not operate on the radial part of the wave function, $\Psi_{n l m}(\theta, \varphi)$ itself is a simultaneous eigenfunction of $L^2$ and $L_z$. The quantum number $l$ gives the magnitude of the angular momentum, $m$ the orientation of the angular momentum and $\mathrm{n}$ gives the quantization of energy. The quantum numbers $l$ and $m$ can be equal only for $l=0$.

物理代写|固体物理代写Solid-state physics代考|Harmonic Oscillator

The harmonic oscillator is a system in which a particle of mass $m$ subject to a linear restoring force $\mathbf{F}$ proportional to the displacement $x$ from the equilibrium position
$$
F=-k x
$$
The proportionality constant $k$ is known as force constant. The minus sign indicates that force is in the direction opposite to the direction of the displacement.
The potential energy is given by
$$
\begin{gathered}
V=\frac{1}{2} k x^2=\frac{1}{2} m \omega^2 x^2 \
\omega=\sqrt{\frac{k}{m}}
\end{gathered}
$$
One Dimensional Harmonic Oscillator
The Schrödinger wave equation in one dimension for a particle of mass $m$ is
$$
\frac{\mathrm{d}^2 \psi}{\mathrm{d} x^2}+\frac{2 m}{\hbar^2}[E-V] \psi=0
$$ where $E$ is the energy and $V$ is given by Eq. (4.124). Substituting the value of $V$ in Eq. $(4.126)$
$$
\frac{\mathrm{d}^2 \psi}{\mathrm{d} x^2}+\frac{2 m}{\hbar^2}\left[E-\frac{1}{2} k x^2\right] \psi=0
$$
Let
$$
\begin{gathered}
\lambda=\frac{2 m}{\hbar^2} E \
\alpha^2=\frac{m k}{\hbar^2}=\frac{m^2 \omega^2}{\hbar^2}
\end{gathered}
$$
Equation (4.127) is then written as
$$
\frac{d^2 \psi}{d x^2}+\left(\lambda^2-\alpha^2 x^2\right) \psi=0
$$
with the boundary condition $\psi \rightarrow 0$ as $|x| \rightarrow \infty$. Let us suppose $\alpha x$ to be very large in particular $\alpha x>>1$ and $\alpha x \gg \lambda$.

物理代写|固体物理代写Solid-state physics代考|PHYSICS7544

固体物理代写

物理代写|固体物理代写Solid-state physics代考|Quantum Numbers for the Hydrogen Atom Wave Function

在求解类氢原子薛定谔波动方程的过程中,整数 $\mathrm{n}, l$ 和 $\mathrm{m}$ 以合乎逻辑的方式介绍。这些整数称为量子数。 在玻尔的理论中,量子数 $n$ 以量化条件的形式任意引入。波函数 $\Psi_{\mathrm{nlm}}(\theta, \varphi)$ 是系统状态的描述。它们与 $n, l$ 和 $m$. 因此,可以说量子数本身描述了系统的状态。这些量子数的值是
$$
n=1,2,3, \ldots l=0,1,2, \ldots, n-1 m=0, \pm 1, \pm 2, \ldots, \pm l
$$
现在证明量子数l和 $m$ 与幅度有关 $L$ 轨道角动量和 $m$ 是个 $z$ 成分 $L_z . Y_{l m}(\theta, \varphi)$ 同时是的特征函数 $L^2$ 和 $L_z$ 操作员。所以, $L^2$ 和 $L_z$ 通勤,即可以同时精确测量相应的可观察值。轨道角动量的大小是 $\hbar \sqrt{l(l+1)}$ 而那个 $L_z$ 是 $m \mathrm{~h}$. 自从 $L^2$ 和 $L_z$ 不对波函数的径向部分进行操作, $\Psi_{n l m}(\theta, \varphi)$ 本身是同时的特征函数 $L^2$ 和 $L_z$. 量子数 $l$ 给出角动量的大小, $m$ 角动量的方向和 $\mathrm{n}$ 给出能量的量子化。量子数 $l$ 和 $m$ 只能等于 $l=0$.

物理代写|固体物理代写Solid-state physics代考|Harmonic Oscillator

谐振子是一个系统,其中一个质量粒子 $m$ 受到线性恢复力 $\mathbf{F}$ 与位移成正比 $x$ 从平衡位置
$$
F=-k x
$$
比例常数 $k$ 被称为力常数。负号表示力的方向与位移的方向相反。 势能由下式给出
$$
V=\frac{1}{2} k x^2=\frac{1}{2} m \omega^2 x^2 \omega=\sqrt{\frac{k}{m}}
$$
一维谐振子 质量
粒子的一维薛定谔波动方程 $m$ 是
$$
\frac{\mathrm{d}^2 \psi}{\mathrm{d} x^2}+\frac{2 m}{\hbar^2}[E-V] \psi=0
$$
在哪里 $E$ 是能量和 $V$ 由方程式给出。(4.124)。代入价值 $V$ 在等式中 (4.126)
$$
\frac{\mathrm{d}^2 \psi}{\mathrm{d} x^2}+\frac{2 m}{\hbar^2}\left[E-\frac{1}{2} k x^2\right] \psi=0
$$

$$
\lambda=\frac{2 m}{\hbar^2} E \alpha^2=\frac{m k}{\hbar^2}=\frac{m^2 \omega^2}{\hbar^2}
$$
方程 (4.127) 可以写成
$$
\frac{d^2 \psi}{d x^2}+\left(\lambda^2-\alpha^2 x^2\right) \psi=0
$$
与边界条件 $\psi \rightarrow 0$ 作为 $|x| \rightarrow \infty$. 让我们假设 $\alpha x$ 特别是非常大 $\alpha x>>1$ 和 $\alpha x \gg \lambda$.

物理代写|固体物理代写Solid-state physics代考| 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写