分类: 图论代考

数学代写|图论作业代写Graph Theory代考|MATH3V03

如果你也在 怎样代写图论Graph Theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

在数学中,图论是对图的研究,它是用来模拟对象之间成对关系的数学结构。这里,图由顶点(也称为节点或点)组成,这些顶点由边(也称为链接或线)连接。

statistics-lab™ 为您的留学生涯保驾护航 在代写图论Graph Theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写图论Graph Theory代写方面经验极为丰富,各种代写图论Graph Theory相关的作业也就用不着说。

我们提供的图论Graph Theory及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|图论作业代写Graph Theory代考|MATH3V03

数学代写|图论作业代写Graph Theory代考|Dijkstra’s Algorithm

Numerous versions of Dijkstra’s Algorithm exist, though two basic descriptions adhere to Dijkstra’s original design (see [22]). In one, a shortest path from your chosen starting and ending vertex is found. Though useful in its own right, we will study the more general version that finds the shortest path from a specific vertex to all other vertices in the graph (since if we only cared for the shortest path from $a$ to $b$, we could halt the algorithm once $b$ is reached).
Dijkstra’s Algorithm is a bit more complex than the algorithms we have studied so far. Each vertex is given a two-part label $L(v)=(x,(w(v))$. The first portion of the label is the name of the vertex used to travel to $v$. The second part is the weight of the path that was used to get to $v$ from the designated starting vertex. At each stage of the algorithm, we will consider a set of free vertices, denoted by an $F$ below. Free vertices are the neighbors of previously visited vertices that are themselves not yet visited.

Perhaps the most complex portion of this algorithm is the labeling of the vertices and how they are updated with iterations of Step (2) and Step (3). In the initial step of Dijkstra’s Algorithm, all vertices have no entry in the first part of the label and the second part is 0 for the starting vertex and $\infty$ for all others. Note that the set $F$ of free vertices consists of all neighbors of highlighted vertices and all are under consideration for becoming the next highlighted vertex. It is important that we do not only consider the neighbors of the last vertex highlighted, as a path from a previously chosen vertex may in fact lead to the shortest path. The example below provides a detailed explanation in the updating of the vertex labels and how to use them to find a shortest path.

数学代写|图论作业代写Graph Theory代考|Walks Using Matrices

Recall in Section $1.4$ we saw how to model a graph using an adjacency matrix. Matrix representations of graphs are useful when using a computer program to investigate certain features or processes on a graph. Another use for the adjacency matrix is to count the number of walks between two vertices within a graph. For review of matrix operations, see Appendix C.

Consider the graph shown below with its adjacency matrix $A$ on the right.

If we want a walk of length 1 , we are in essence asking for an edge between two vertices. So to count the number of walks of length 1 from $v_1$ to $v_3$, we need only to count the number of edges (namely 2) between these vertices. What if we want the walks of length 2 ? By inspection, we can see there is only one, which is

Now consider the walks from $v_1$ to $v_2$. There is only one walk of length 1 , and yet three of length 2 :
$$
\begin{aligned}
&v_1 \underset{e_3}{\rightarrow} v_2 \underset{e_5}{\rightarrow} v_2 \
&v_1 \underset{e_1}{\overrightarrow{e_3}} v_3 \underset{e_4}{\overrightarrow{e_4}} v_2 \
&v_1 \underset{e_2}{\rightarrow} v_3 \underset{e_4}{\rightarrow} v_2
\end{aligned}
$$
How could we count this? If we know how many walks there are from $v_1$ to $v_2$ (1) and then the number from $v_2$ to itself (1), we can get one type of walk from $v_1$ to $v_2$. Also, we could count the number of walks from $v_1$ to $v_3(2)$ and then the number of walks from $v_3$ to $v_2(1)$. In total we have $1 * 1+2 * 1=3$ walks from $v_1$ to $v_2$. Note that we did not include any walks of the form $v_1 v_1 v_2$ since there are no edges from $v_1$ to itself.
Viewing this as a multiplication of vectors, we have
$$
\left[\begin{array}{lll}
0 & 1 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
1 \
1 \
1
\end{array}\right]=0 * 1+1 * 1+2 * 1=3
$$
If we do this for the entire adjacency matrix, we have
$$
A^2=\left[\begin{array}{lll}
5 & 3 & 1 \
3 & 3 & 3 \
1 & 3 & 5
\end{array}\right]
$$
Thus the entry $a_{i j}$ in $A^2$ represents the number of walks between vertex $v_i$ and $v_j$ of length 2 . If we multiplied this new matrix by $A$ again, we would simply be counting the number of ways to get from $v_i$ to $v_j$ using 3 edges. The theorem below summarizes this for walks of any length $n$.

数学代写|图论作业代写Graph Theory代考|MATH3V03

图论代考

数学代写|图论作业代写图论代考|Dijkstra的算法


Dijkstra的算法有许多版本,尽管有两个基本描述坚持Dijkstra的原始设计(见[22])。在一种情况下,从选定的起始点和结束点找到一条最短路径。尽管它本身很有用,但我们将研究更一般的版本,它可以找到从特定顶点到图中所有其他顶点的最短路径(因为如果我们只关心从$a$到$b$的最短路径,那么一旦到达$b$,我们就可以停止算法)。Dijkstra算法比我们目前学习过的算法要复杂一些。每个顶点都有一个由两部分组成的标签$L(v)=(x,(w(v))$。标签的第一部分是用于移动到$v$的顶点的名称。第二部分是用于从指定的起始顶点到达$v$的路径的权值。在算法的每个阶段,我们将考虑一组自由顶点,用下面的$F$表示。自由顶点是之前访问过的顶点的邻居,这些顶点本身还没有被访问过


也许这个算法中最复杂的部分是顶点的标记以及如何通过步骤(2)和步骤(3)的迭代来更新它们。在Dijkstra算法的初始步骤中,所有顶点在标签的第一部分中都没有条目,对于起始顶点,第二部分为0,对于其他所有顶点,则为$\infty$。注意,自由顶点集合$F$由高亮显示顶点的所有邻居组成,所有邻居都在考虑成为下一个高亮显示顶点。重要的是,我们不要只考虑最后一个突出显示的顶点的邻居,因为从先前选择的顶点出发的路径实际上可能通向最短路径。下面的例子详细解释了顶点标签的更新,以及如何使用它们找到最短路径

数学代写|图论作业代写图论代考|使用矩阵行走


回想一下在$1.4$节中,我们看到了如何使用邻接矩阵建模图。当使用计算机程序研究图上的某些特征或过程时,图的矩阵表示是有用的。邻接矩阵的另一个用途是计算图中两个顶点之间的行走次数。关于矩阵运算的回顾,参见附录c。


考虑下图中右侧的邻接矩阵$A$。


如果我们想要一个长度为1的行走,我们实际上是在要求两个顶点之间的一条边。因此,要计算从$v_1$到$v_3$的长度为1的行走次数,我们只需要计算这些顶点之间的边的数量(即2条)。如果我们想要移动的长度为2呢?通过检查,我们可以看到只有一个,即


现在考虑walk from $v_1$ 到 $v_2$。只有一个长度为1的步道,但有三个长度为2的步道:
$$
\begin{aligned}
&v_1 \underset{e_3}{\rightarrow} v_2 \underset{e_5}{\rightarrow} v_2 \
&v_1 \underset{e_1}{\overrightarrow{e_3}} v_3 \underset{e_4}{\overrightarrow{e_4}} v_2 \
&v_1 \underset{e_2}{\rightarrow} v_3 \underset{e_4}{\rightarrow} v_2
\end{aligned}
$$
我们怎么能计算这个?如果我们知道有多少次步行 $v_1$ 到 $v_2$ (1)然后数字从 $v_2$ 对自身(1),我们可以得到一种类型的步行 $v_1$ 到 $v_2$。还有,我们可以数一下从 $v_1$ 到 $v_3(2)$ 然后是步数 $v_3$ 到 $v_2(1)$。我们总共有 $1 * 1+2 * 1=3$ 从 $v_1$ 到 $v_2$。注意,我们没有包括表单的任何行走 $v_1 v_1 v_2$ 因为没有边 $v_1$ 对它自己。把它看作向量的乘法,我们得到
$$
\left[\begin{array}{lll}
0 & 1 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
1 \
1 \
1
\end{array}\right]=0 * 1+1 * 1+2 * 1=3
$$如果我们对整个邻接矩阵这样做,我们得到
$$
A^2=\left[\begin{array}{lll}
5 & 3 & 1 \
3 & 3 & 3 \
1 & 3 & 5
\end{array}\right]
$$
因此条目 $a_{i j}$ 在 $A^2$ 表示顶点之间的行走次数 $v_i$ 和 $v_j$ 长度为2。如果我们把这个新矩阵乘以 $A$ 还是那句话,我们只需要计算从哪里出发的路径 $v_i$ 到 $v_j$ 使用3条边。下面的定理总结了任意长度的行走 $n$.

此图片的alt属性为空;文件名为statistics-lab-1024x443.jpg
数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。



广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。



术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。



有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。



回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。



R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

The graphs above are incomplete. These figures only show a vertex with degree four (vertex E), its nearest neighbors (A, B, C, and D), and segments of A-C Kempe chains. The entire graphs would also contain several other vertices (especially, more colored the same as B or D) and enough edges to be MPG’s. The left figure has A connected to $C$ in a single section of an A-C Kempe chain (meaning that the vertices of this chain are colored the same as A and C). The left figure shows that this A-C Kempe chain prevents B from connecting to $\mathrm{D}$ with a single section of a B-D Kempe chain. The middle figure has A and C in separate sections of A-C Kempe chains. In this case, B could connect to D with a single section of a B-D Kempe chain. However, since the A and C of the vertex with degree four lie on separate sections, the color of C’s chain can be reversed so that in the vertex with degree four, C is effectively recolored to match A’s color, as shown in the right figure. Similarly, D’s section could be reversed in the left figure so that D is effectively recolored to match B’s color.

Kempe also attempted to demonstrate that vertices with degree five are fourcolorable in his attempt to prove the four-color theorem [Ref. 2], but his argument for vertices with degree five was shown by Heawood in 1890 to be insufficient [Ref. 3]. Let’s explore what happens if we attempt to apply our reasoning for vertices with degree four to a vertex with degree five.

数学代写|图论作业代写Graph Theory代考|The previous diagrams

The previous diagrams show that when the two color reversals are performed one at a time in the crossed-chain graph, the first color reversal may break the other chain, allowing the second color reversal to affect the colors of one of F’s neighbors. When we performed the $2-4$ reversal to change B from 2 to 4 , this broke the 1-4 chain. When we then performed the 2-3 reversal to change E from 3, this caused C to change from 3 to 2 . As a result, F remains connected to four different colors; this wasn’t reversed to three as expected.
Unfortunately, you can’t perform both reversals “at the same time” for the following reason. Let’s attempt to perform both reversals “at the same time.” In this crossed-chain diagram, when we swap 2 and 4 on B’s side of the 1-3 chain, one of the 4’s in the 1-4 chain may change into a 2, and when we swap 2 and 3 on E’s side of the 1-4 chain, one of the 3’s in the 1-3 chain may change into a 2 . This is shown in the following figure: one 2 in each chain is shaded gray. Recall that these figures are incomplete; they focus on one vertex (F), its neighbors (A thru E), and Kempe chains. Other vertices and edges are not shown.

Note how one of the 3’s changed into 2 on the left. This can happen when we reverse $\mathrm{C}$ and $\mathrm{E}$ (which were originally 3 and 2 ) on E’s side of the 1-4 chain. Note also how one of the 4’s changed into 2 on the right. This can happen when we reverse B and D (which were originally 2 and 4) outside of the 1-3 chain. Now we see where a problem can occur when attempting to swap the colors of two chains at the same time. If these two 2’s happen to be connected by an edge like the dashed edge shown above, if we perform the double reversal at the same time, this causes two vertices of the same color to share an edge, which isn’t allowed. We’ll revisit Kempe’s strategy for coloring a vertex with degree five in Chapter $25 .$

数学代写|图论作业代写Graph Theory代考| The shading of one section of the B-R

图论代考

数学代写|图论作业代写Graph Theory代考|The shading of one section of the B-R

由于 Kempe 链的每个部分都与同一颜色对的其他部分隔离,因此 Kempe 链的任何部分的颜色可以颠倒,但仍满足四色定理。这是一个重要且有用的概念。

上面 BR 链的一个部分的阴影说明了任何 Kempe 链的任何部分的颜色如何可以反转。请注意,我们反转了 BR 链的一个部分的颜色,但没有反转中心部分的颜色。同一条链的每个部分的颜色可以独立于该链的其他部分反转。

为什么 PG 有 Kempe 链?很容易理解为什么 MPG 有 Kempe 链。(由于 PG 是通过从 MPG 中去除边缘而形成的,并且由于适用于 MPG 的着色也适用于 PG,因此 PG 也具有 Kempe 链。)

  • MPG 是三角测量的。它由具有三个边和三个顶点的面组成。
  • 每个面的三个顶点必须是三种不同的颜色。
  • 每条边由两个相邻的三角形共享,形成一个四边形。
  • 每个四边形将有 3 或 4 种不同的颜色。如果与共享边相对的两个顶点恰好是相同的颜色,则它有 3 种颜色。
  • 对于每个四边形,四个顶点中的至少 1 个顶点和最多 3 个顶点具有任何颜色对的颜色。例如,具有 R、G、B 和G有 1 个顶点R−是和3个顶点乙−G,或者您可以将其视为 1 个顶点乙−是和3个顶点G−R,或者您可以将其视为 BR 的 2 个顶点和 GY 的 2 个顶点。在后一种情况下,2G’ 不是同一链的连续颜色。
  • 当您将更多三角形组合在一起(四边形仅组合两个)并考虑可能的颜色时,您将看到 Kempe 的部分

链子出现。我们将在 Chápter 中看到这些 Kémpé chảins 是如何出现的21.
也很容易看出一对颜色(如 RY)将如何与其对应颜色(BG)相邻:

  • 画一张R顶点和一个是由边连接的顶点。
  • 如果一个新顶点连接到这些顶点中的每一个,它必须是乙或者G.
  • 如果一个新顶点连接到 R 而不是是,可能是是,乙, 或者G.
  • 如果一个新的顶点连接到是但不是R,可能是R,乙, 或者G.
  • RY 链要么继续增长,要么被 B 包围,G.
  • 如果你关注 B 和 G,你会为它的链条得出类似的结论。
  • 如果一条链条完全被其对应物包围,则链条的新部分可能会出现在其对应物的另一侧。
    Kempe 证明了所有具有四阶的顶点(那些恰好连接到其他四个顶点的顶点)都是四色的 [Ref. 2]。例如,考虑下面的中心顶点。

数学代写|图论作业代写Graph Theory代考|In the previous figure

在上图中,顶点和是四度,因为它连接到其他四个顶点。Kempe 表明顶点 A、B、C 和 D 不能被强制为四种不同的颜色,这样顶点 E 总是可以被着色而不会违反四色定理,无论 MPG 的其余部分看起来如何上一页显示的部分。

  • A 和 C 或者是 AC Kempe 链的同一部分的一部分,或者它们各自位于 AC Kempe 链的不同部分。(如果一种和C例如,是红色和黄色的,则 AC 链是红黄色链。) – 如果一种和C每个位于 AC Kempe 链的不同部分,其中一个部分的颜色可以反转,这有效地重新着色 C 以匹配 A 的颜色。如果 A 和 C 是 AC Kempe 链的同一部分的一部分,则 B 和 D每个都必须位于 BD Kempe 链的不同部分,因为 AC Kempe 链将阻止任何 BD Kempe 链从 B 到达 D。(如果乙和D是蓝色和绿色,例如,那么一种BD Kempe 链是蓝绿色链。)在这种情况下,由于 B 和 D 分别位于 BD Kempe 链的不同部分,因此 BD Kempe 链的其中一个部分的颜色可以反转,这有效地重新着色 D 以匹配 B颜色。– 因此,可以使 C 与 A 具有相同的颜色或使 D 具有与 A 相同的颜色乙通过反转 Kempe 链的分离部分。

上面的图表是不完整的。这些图只显示了一个四阶顶点(顶点 E)、它的最近邻居(A、B、C 和 D),以及 AC Kempe 链的片段。整个图还将包含几个其他顶点(特别是与 B 或 D 相同的颜色)和足够多的边以成为 MPG。左图有 A 连接到C在 AC Kempe 链的单个部分中(意味着该链的顶点颜色与 A 和 C 相同)。左图显示此 AC Kempe 链阻止 B 连接到DBD Kempe 链条的一个部分。中间的数字在 AC Kempe 链的不同部分有 A 和 C。在这种情况下,B 可以通过 BD Kempe 链的单个部分连接到 D。但是,由于四阶顶点的 A 和 C 位于不同的部分,因此可以反转 C 链的颜色,以便在四阶顶点中,C 有效地重新着色以匹配 A 的颜色,如右图所示. 类似地,可以在左图中反转 D 的部分,以便有效地重新着色 D 以匹配 B 的颜色。

Kempe 还试图证明五阶顶点是可四色的,以证明四色定理 [Ref. 2],但 Heawood 在 1890 年证明他关于五次顶点的论点是不充分的 [Ref. 3]。让我们探讨一下如果我们尝试将我们对度数为四的顶点的推理应用于度数为五的顶点会发生什么。

数学代写|图论作业代写Graph Theory代考|The previous diagrams

前面的图表显示,当在交叉链图中一次执行两种颜色反转时,第一次颜色反转可能会破坏另一个链,从而允许第二次颜色反转影响 F 的一个邻居的颜色。当我们执行2−4反转将 B 从 2 更改为 4 ,这打破了 1-4 链。然后,当我们执行 2-3 反转以将 E 从 3 更改时,这导致 C 从 3 更改为 2 。结果,F 仍然连接到四种不同的颜色;这并没有像预期的那样反转为三个。
不幸的是,由于以下原因,您不能“同时”执行两个冲销。让我们尝试“同时”执行两个反转。在这个交叉链图中,当我们在 1-3 链的 B 侧交换 2 和 4 时,1-4 链中的一个 4 可能会变成 2,当我们在 E 侧交换 2 和 3 时1-4 链,1-3 链中的 3 之一可能会变为 2 。如下图所示:每条链中的一个 2 为灰色阴影。回想一下,这些数字是不完整的;他们专注于一个顶点 (F)、它的邻居 (A 到 E) 和 Kempe 链。其他顶点和边未显示。

请注意左侧的 3 之一如何变为 2。当我们反转时会发生这种情况C和和(最初是 3 和 2 )在 1-4 链的 E 侧。还要注意 4 个中的一个如何在右侧变为 2。当我们在 1-3 链之外反转 B 和 D(最初是 2 和 4)时,就会发生这种情况。现在我们看到了尝试同时交换两条链的颜色时会出现问题的地方。如果这两个 2 恰好通过上图虚线这样的边连接起来,如果我们同时进行双重反转,就会导致两个相同颜色的顶点共享一条边,这是不允许的。我们将在第 1 章重新讨论 Kempe 为五阶顶点着色的策略25.

数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|图论作业代写Graph Theory代考|MATH361

如果你也在 怎样代写图论Graph Theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

在数学中,图论是对图的研究,它是用来模拟对象之间成对关系的数学结构。这里,图由顶点(也称为节点或点)组成,这些顶点由边(也称为链接或线)连接。

statistics-lab™ 为您的留学生涯保驾护航 在代写图论Graph Theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写图论Graph Theory代写方面经验极为丰富,各种代写图论Graph Theory相关的作业也就用不着说。

我们提供的图论Graph Theory及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|图论作业代写Graph Theory代考|MATH361

数学代写|图论作业代写Graph Theory代考|The Traveling Salesman Problem

The discussion above should make clear the difficulty in determining if a graph is hamiltonian. But what if a graph is know to have a hamiltonian cycle? For example, every complete graph $K_n$ (for $n \geq 3$ ) must contain a hamiltonian cycle since it satisfies the criteria of Dirac’s Theorem. In this scenario, finding a hamiltonian cycle is quite elementary, and so, as mathematicians do, we generalize the problem to one in which the edges are no longer equivalent and have a weight associated to them. Then instead of asking whether a graph simply has a hamiltonian cycle, we can now ask how do we find the best hamiltonian cycle.

Historically, the extensive study of hamiltonian circuits arose in part from a simple question: A traveling salesman has customers in numerous cities; he must visit each of them and return home, but wishes to do this with the least total cost; determine the cheapest route possible for the salesman. In fact, Proctor and Gamble can be credited with the modern study of hamiltonian circuits when they sponsored a seemingly innocent competition in the 1960s asking for a shortest hamiltonian circuit visiting 33 cities across the United States. Mathematicians were intrigued and an entire branch of mathematics and computer science developed. For over half a century, some of the brightest. minds have tackled the Traveling Salesman Problem (my graph thenry professor in college called it “the disease”) and numerous books and websites are devoted to finding an optimal solution to both the general question and to specific instances (such as a cycle through all cities in Sweden). A full discussion of the problem is beyond the scope of this book, though you are discussing the various algorithms, so we restrict ourselves to just a handful of these, with plenty of examples and exercises.

The graph that models the general Traveling Salesman Problem (TSP) is a weighted complete graph, such as the one shown above from Example 1.7. Recall from Definition $1.8$ that a weighted graph is one in which each edge is assigned a weight, which usually represents either distance, time, or cost. It is standard to use a complete graph since theoretically it should be possible to travel between any two cities, such as the previous graph indicating the driving distance between a home city and various national parks.

数学代写|图论作业代写Graph Theory代考|Shortest Paths

The shortest way to travel between two locations is perhaps one of the oldest questions. As any mathematics student knows, the answer to this question is a line. But this relies on an $x y$-plane with no barriers to traveling in a straight line. What happens when you must restrict yourself to an existing structure, such as roadways or rail lines? This problem can be described in graph theoretic terms as the search for a shortest path on a weighted graph. Recall that a path is a sequence of vertices in which there is an edge between consecutive vertices and no vertex is repeated. As with the algorithms for the Traveling Salesman Problem, the weight associated to an edge may represent more than just distance (e.g., cost or time) and the shortest path really indicates the path of least total weight.

As with the previous two topics in this chapter, our study of shortest paths can be traced to a specific moment of time. In 1956 Edsger W. Dijkstra proposed the algorithm we are about to study not out of necessity for finding a shortest route, but rather as a demonstration of the power of a new “automatic computer” at the Mathematical Centre in Amsterdam. The goal was to have a question easily understood by a general audience while also allowing for audience participation in determining the inputs of the algorithm. In Dijkstra’s own words “the demonstration was a great success” [23]. Perhaps more surprising is how important this algorithm would become to modern societyalmost every GIS (Geographic Information System, or mapping software) uses a modification of Dijkstra’s Algorithm to provide directions. In addition, Dijkstra’s Algorithm provides the backbone of many routing systems and some studies in epidemiology.

Note, we will only investigate how to find a shortest path since determining if a shortest path exists is quickly answered by simply knowing if the graph is connected. The following section will consider implications of shortest paths.

数学代写|图论作业代写Graph Theory代考|MATH361

图论代考

数学代写|图论作业代写图论代考|旅行推销员问题


以上的讨论应该清楚地说明了确定一个图是否是哈密顿图的困难。但是如果一个图有一个哈密顿循环呢?例如,每个完整的图$K_n$(对于$n \geq 3$)必须包含一个哈密顿循环,因为它满足狄拉克定理的标准。在这种情况下,找到一个哈密顿循环是非常基本的,因此,正如数学家所做的那样,我们将这个问题推广到一个边不再等价并且有相关权值的问题。然后,我们不再问一个图是否有一个简单的哈密顿循环,我们现在可以问我们如何找到最佳的哈密顿循环


历史上,对哈密顿电路的广泛研究部分源于一个简单的问题:一个旅行推销员的客户来自多个城市;他必须拜访他们每个人然后回家,但他希望这样做的总费用最少;为销售人员确定最便宜的路线。事实上,在哈密顿电路的现代研究中,宝洁公司是有贡献的,他们在20世纪60年代赞助了一场看似无辜的比赛,要求在美国33个城市建立最短的哈密顿电路。数学家们对此很感兴趣,数学和计算机科学的一个完整分支发展起来。半个多世纪以来,一些最聪明的人。许多学者已经着手解决“旅行推销员问题”(我在大学里的一位教授称它为“疾病”),许多书籍和网站都致力于为一般问题和具体情况(比如在瑞典的所有城市中骑行)找到最佳解决方案。对这个问题的全面讨论超出了本书的范围,尽管您正在讨论各种算法,因此我们将自己限制在少数算法中,并提供大量的示例和练习


为一般旅行推销员问题(TSP)建模的图是一个加权完全图,如上面示例1.7中所示的图。回顾定义$1.8$,加权图是指每条边都被赋予一个权重,这个权重通常代表距离、时间或代价。使用一个完整的图表是标准的,因为理论上它应该是可以在任何两个城市之间旅行的,例如前面的图表显示了家乡城市和各个国家公园之间的驾驶距离

数学代写|图论作业代写图论代考|最短路径


在两个地点之间旅行的最短路线可能是最古老的问题之一。任何学数学的学生都知道,这个问题的答案是一条直线。但这依赖于$x y$ -plane,在直线上没有任何障碍。当你必须把自己限制在现有的结构,如公路或铁路线上会发生什么?这个问题可以用图论的术语描述为在加权图上寻找最短路径。回想一下,路径是一个顶点序列,在连续的顶点之间有一条边,并且没有顶点重复。与旅行推销员问题的算法一样,与一条边相关的权值可能不仅仅代表距离(例如,成本或时间),最短路径实际上表示总权值最小的路径


和本章的前两个主题一样,我们对最短路径的研究可以追溯到一个特定的时间点。1956年,Edsger W. Dijkstra提出了我们即将研究的算法,不是为了寻找最短路线,而是为了展示阿姆斯特丹数学中心的一种新型“自动计算机”的能力。我们的目标是让一个问题容易被一般观众理解,同时也允许观众参与决定算法的输入。用Dijkstra自己的话来说,“演示非常成功”[23]。也许更令人惊讶的是这种算法对现代社会的重要性,几乎每个GIS(地理信息系统,或地图软件)都使用Dijkstra算法的修改来提供方向。此外,Dijkstra算法为许多路由系统和一些流行病学研究提供了基础


注意,我们将只研究如何找到最短路径,因为确定最短路径是否存在可以通过简单地知道图是否连通来快速回答。下面的部分将考虑最短路径的含义

此图片的alt属性为空;文件名为statistics-lab-1024x443.jpg
数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。



广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。



术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。



有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。



回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。



R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

The graphs above are incomplete. These figures only show a vertex with degree four (vertex E), its nearest neighbors (A, B, C, and D), and segments of A-C Kempe chains. The entire graphs would also contain several other vertices (especially, more colored the same as B or D) and enough edges to be MPG’s. The left figure has A connected to $C$ in a single section of an A-C Kempe chain (meaning that the vertices of this chain are colored the same as A and C). The left figure shows that this A-C Kempe chain prevents B from connecting to $\mathrm{D}$ with a single section of a B-D Kempe chain. The middle figure has A and C in separate sections of A-C Kempe chains. In this case, B could connect to D with a single section of a B-D Kempe chain. However, since the A and C of the vertex with degree four lie on separate sections, the color of C’s chain can be reversed so that in the vertex with degree four, C is effectively recolored to match A’s color, as shown in the right figure. Similarly, D’s section could be reversed in the left figure so that D is effectively recolored to match B’s color.

Kempe also attempted to demonstrate that vertices with degree five are fourcolorable in his attempt to prove the four-color theorem [Ref. 2], but his argument for vertices with degree five was shown by Heawood in 1890 to be insufficient [Ref. 3]. Let’s explore what happens if we attempt to apply our reasoning for vertices with degree four to a vertex with degree five.

数学代写|图论作业代写Graph Theory代考|The previous diagrams

The previous diagrams show that when the two color reversals are performed one at a time in the crossed-chain graph, the first color reversal may break the other chain, allowing the second color reversal to affect the colors of one of F’s neighbors. When we performed the $2-4$ reversal to change B from 2 to 4 , this broke the 1-4 chain. When we then performed the 2-3 reversal to change E from 3, this caused C to change from 3 to 2 . As a result, F remains connected to four different colors; this wasn’t reversed to three as expected.
Unfortunately, you can’t perform both reversals “at the same time” for the following reason. Let’s attempt to perform both reversals “at the same time.” In this crossed-chain diagram, when we swap 2 and 4 on B’s side of the 1-3 chain, one of the 4’s in the 1-4 chain may change into a 2, and when we swap 2 and 3 on E’s side of the 1-4 chain, one of the 3’s in the 1-3 chain may change into a 2 . This is shown in the following figure: one 2 in each chain is shaded gray. Recall that these figures are incomplete; they focus on one vertex (F), its neighbors (A thru E), and Kempe chains. Other vertices and edges are not shown.

Note how one of the 3’s changed into 2 on the left. This can happen when we reverse $\mathrm{C}$ and $\mathrm{E}$ (which were originally 3 and 2 ) on E’s side of the 1-4 chain. Note also how one of the 4’s changed into 2 on the right. This can happen when we reverse B and D (which were originally 2 and 4) outside of the 1-3 chain. Now we see where a problem can occur when attempting to swap the colors of two chains at the same time. If these two 2’s happen to be connected by an edge like the dashed edge shown above, if we perform the double reversal at the same time, this causes two vertices of the same color to share an edge, which isn’t allowed. We’ll revisit Kempe’s strategy for coloring a vertex with degree five in Chapter $25 .$

数学代写|图论作业代写Graph Theory代考| The shading of one section of the B-R

图论代考

数学代写|图论作业代写Graph Theory代考|The shading of one section of the B-R

由于 Kempe 链的每个部分都与同一颜色对的其他部分隔离,因此 Kempe 链的任何部分的颜色可以颠倒,但仍满足四色定理。这是一个重要且有用的概念。

上面 BR 链的一个部分的阴影说明了任何 Kempe 链的任何部分的颜色如何可以反转。请注意,我们反转了 BR 链的一个部分的颜色,但没有反转中心部分的颜色。同一条链的每个部分的颜色可以独立于该链的其他部分反转。

为什么 PG 有 Kempe 链?很容易理解为什么 MPG 有 Kempe 链。(由于 PG 是通过从 MPG 中去除边缘而形成的,并且由于适用于 MPG 的着色也适用于 PG,因此 PG 也具有 Kempe 链。)

  • MPG 是三角测量的。它由具有三个边和三个顶点的面组成。
  • 每个面的三个顶点必须是三种不同的颜色。
  • 每条边由两个相邻的三角形共享,形成一个四边形。
  • 每个四边形将有 3 或 4 种不同的颜色。如果与共享边相对的两个顶点恰好是相同的颜色,则它有 3 种颜色。
  • 对于每个四边形,四个顶点中的至少 1 个顶点和最多 3 个顶点具有任何颜色对的颜色。例如,具有 R、G、B 和G有 1 个顶点R−是和3个顶点乙−G,或者您可以将其视为 1 个顶点乙−是和3个顶点G−R,或者您可以将其视为 BR 的 2 个顶点和 GY 的 2 个顶点。在后一种情况下,2G’ 不是同一链的连续颜色。
  • 当您将更多三角形组合在一起(四边形仅组合两个)并考虑可能的颜色时,您将看到 Kempe 的部分

链子出现。我们将在 Chápter 中看到这些 Kémpé chảins 是如何出现的21.
也很容易看出一对颜色(如 RY)将如何与其对应颜色(BG)相邻:

  • 画一张R顶点和一个是由边连接的顶点。
  • 如果一个新顶点连接到这些顶点中的每一个,它必须是乙或者G.
  • 如果一个新顶点连接到 R 而不是是,可能是是,乙, 或者G.
  • 如果一个新的顶点连接到是但不是R,可能是R,乙, 或者G.
  • RY 链要么继续增长,要么被 B 包围,G.
  • 如果你关注 B 和 G,你会为它的链条得出类似的结论。
  • 如果一条链条完全被其对应物包围,则链条的新部分可能会出现在其对应物的另一侧。
    Kempe 证明了所有具有四阶的顶点(那些恰好连接到其他四个顶点的顶点)都是四色的 [Ref. 2]。例如,考虑下面的中心顶点。

数学代写|图论作业代写Graph Theory代考|In the previous figure

在上图中,顶点和是四度,因为它连接到其他四个顶点。Kempe 表明顶点 A、B、C 和 D 不能被强制为四种不同的颜色,这样顶点 E 总是可以被着色而不会违反四色定理,无论 MPG 的其余部分看起来如何上一页显示的部分。

  • A 和 C 或者是 AC Kempe 链的同一部分的一部分,或者它们各自位于 AC Kempe 链的不同部分。(如果一种和C例如,是红色和黄色的,则 AC 链是红黄色链。) – 如果一种和C每个位于 AC Kempe 链的不同部分,其中一个部分的颜色可以反转,这有效地重新着色 C 以匹配 A 的颜色。如果 A 和 C 是 AC Kempe 链的同一部分的一部分,则 B 和 D每个都必须位于 BD Kempe 链的不同部分,因为 AC Kempe 链将阻止任何 BD Kempe 链从 B 到达 D。(如果乙和D是蓝色和绿色,例如,那么一种BD Kempe 链是蓝绿色链。)在这种情况下,由于 B 和 D 分别位于 BD Kempe 链的不同部分,因此 BD Kempe 链的其中一个部分的颜色可以反转,这有效地重新着色 D 以匹配 B颜色。– 因此,可以使 C 与 A 具有相同的颜色或使 D 具有与 A 相同的颜色乙通过反转 Kempe 链的分离部分。

上面的图表是不完整的。这些图只显示了一个四阶顶点(顶点 E)、它的最近邻居(A、B、C 和 D),以及 AC Kempe 链的片段。整个图还将包含几个其他顶点(特别是与 B 或 D 相同的颜色)和足够多的边以成为 MPG。左图有 A 连接到C在 AC Kempe 链的单个部分中(意味着该链的顶点颜色与 A 和 C 相同)。左图显示此 AC Kempe 链阻止 B 连接到DBD Kempe 链条的一个部分。中间的数字在 AC Kempe 链的不同部分有 A 和 C。在这种情况下,B 可以通过 BD Kempe 链的单个部分连接到 D。但是,由于四阶顶点的 A 和 C 位于不同的部分,因此可以反转 C 链的颜色,以便在四阶顶点中,C 有效地重新着色以匹配 A 的颜色,如右图所示. 类似地,可以在左图中反转 D 的部分,以便有效地重新着色 D 以匹配 B 的颜色。

Kempe 还试图证明五阶顶点是可四色的,以证明四色定理 [Ref. 2],但 Heawood 在 1890 年证明他关于五次顶点的论点是不充分的 [Ref. 3]。让我们探讨一下如果我们尝试将我们对度数为四的顶点的推理应用于度数为五的顶点会发生什么。

数学代写|图论作业代写Graph Theory代考|The previous diagrams

前面的图表显示,当在交叉链图中一次执行两种颜色反转时,第一次颜色反转可能会破坏另一个链,从而允许第二次颜色反转影响 F 的一个邻居的颜色。当我们执行2−4反转将 B 从 2 更改为 4 ,这打破了 1-4 链。然后,当我们执行 2-3 反转以将 E 从 3 更改时,这导致 C 从 3 更改为 2 。结果,F 仍然连接到四种不同的颜色;这并没有像预期的那样反转为三个。
不幸的是,由于以下原因,您不能“同时”执行两个冲销。让我们尝试“同时”执行两个反转。在这个交叉链图中,当我们在 1-3 链的 B 侧交换 2 和 4 时,1-4 链中的一个 4 可能会变成 2,当我们在 E 侧交换 2 和 3 时1-4 链,1-3 链中的 3 之一可能会变为 2 。如下图所示:每条链中的一个 2 为灰色阴影。回想一下,这些数字是不完整的;他们专注于一个顶点 (F)、它的邻居 (A 到 E) 和 Kempe 链。其他顶点和边未显示。

请注意左侧的 3 之一如何变为 2。当我们反转时会发生这种情况C和和(最初是 3 和 2 )在 1-4 链的 E 侧。还要注意 4 个中的一个如何在右侧变为 2。当我们在 1-3 链之外反转 B 和 D(最初是 2 和 4)时,就会发生这种情况。现在我们看到了尝试同时交换两条链的颜色时会出现问题的地方。如果这两个 2 恰好通过上图虚线这样的边连接起来,如果我们同时进行双重反转,就会导致两个相同颜色的顶点共享一条边,这是不允许的。我们将在第 1 章重新讨论 Kempe 为五阶顶点着色的策略25.

数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|图论作业代写Graph Theory代考|MATH141

如果你也在 怎样代写图论Graph Theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

在数学中,图论是对图的研究,它是用来模拟对象之间成对关系的数学结构。这里,图由顶点(也称为节点或点)组成,这些顶点由边(也称为链接或线)连接。

statistics-lab™ 为您的留学生涯保驾护航 在代写图论Graph Theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写图论Graph Theory代写方面经验极为丰富,各种代写图论Graph Theory相关的作业也就用不着说。

我们提供的图论Graph Theory及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|图论作业代写Graph Theory代考|MATH141

数学代写|图论作业代写Graph Theory代考|Chinese Postman Problem

In finding the eulerization of the Crystal Spring graph $G_1$, we didn’t distinguish between which edges to duplicate other than to minimize the overall total. In a town with a very regular grid structure traveling down one block versus another is inconsequential (think of Manhattan or Phoenix). However, for cities with more of an evolutionary development (such as Boston or Providence) or in rural towns where roads curve and blocks have different lengths, traveling down a stretch of road twice could look remarkably different from one choice to the next. How then would you model these differences? We add weights to each edge based on a chosen metric, such as distance, time or cost.
The weighted version of an eulerization problem is called the Chinese Postman Problem. The name originates not from anything particular about postmen in China, but rather from the mathematician who first proposed the problem – the Chinese mathematician Guan Meigu[42]. This problem first appeared in 1960, more than two centuries after Euler’s original paper! The full solution was published about a decade later, where the main idea is that a Postman delivering mail in a rural neighborhood should repeat the shortest stretches of road (provided any duplications are necessary). We will discuss the process for a small example, since we can usually find the best duplications by inspection. A more complete solution will be given in Section 5.2.2.

On a general graph, solving the Chinese Postman Problem can be quite challenging. However, most small examples can be solved by inspection since there are relatively few choices for duplicating edges. Would you duplicate 3 edges of weight 1 or one edge of weight 10 ? The choice should be obvious. In addition, if the weight of an edge represents distance, then we can rely on the real world properties of distance. For example, the shortest path between two points is a straight line and no one side of a triangle is longer than the sum of the other two (this is called the “triangle inequality”). These two properties would eliminate many options when the weight of an edge models distance along a road. The more difficult (and hence more interesting) problems occur when the weight represents something other than distance. Such an example is shown below.

数学代写|图论作业代写Graph Theory代考|Hamiltonian Cycles

Think back to the city of Königsberg. The previous section determined when a graph would contain an eulerian circuit, a special type of circuit that must travel through every edge and vertex. This concept arose from a desire to cross every bridge in the city.
What if we change the requirements ever so slightly so that we are only concerned with the landmasses? This could model a delivery service with customers in every sector of the city. In graph theoretic terms, we are looking for a tour through the graph that hits every vertex exactly once. An example of such a tour on the graph representing Königsberg is shown above. What type of tour is this? If we need to start and end at the same location, we are searching for a cycle. If the starting and ending points can differ, we are searching for a path.

Recall that a cycle or a path can only pass through a vertex once, so the hamiltonian cycles and paths travel through every vertex exactly once. Moreover, using the language of Definition 1.5, we could describe hamiltonian cycles and paths as spanning cycles and paths since they must include all vertices of the graph.

As with eulerian circuits, these specific cycles (or paths) are named for the mathematician who first formalized them, Sir William Hamilton. Hamilton posed this idea in 1856 in terms of a puzzle, which he later sold to a game dealer. The “Icosian Game” was a wooden puzzle with numbered ivory pegs where the player was tasked with inserting the pegs so that following them in order would traverse the entire board (shown on the following page). Perhaps not too surprisingly, this game was not a big money maker.

It should be noted that T.P. Kirkman, a contemporary of Hamilton’s, did much of the early work in the study of hamiltonian circuits. Whereas Hamilton primarily focused on one graph, Kirkman was concerned with the conditions that will guarantee a graph has a hamiltonian cycle. However, Hamilton deserves credit for publicizing the concept of a cycle that hits every vertex exactly once. This section will explore when a graph has a hamiltonian cycle and how to find an optimal, or near optimal, hamiltonian cycle.

数学代写|图论作业代写Graph Theory代考|MATH141

图论代考

数学代写|图论作业代写图论代考|中国邮差问题


在寻找Crystal Spring图$G_1$的欧拉化过程中,我们没有区分要复制哪些边,而是要最小化总体总数。在一个有着非常规则的网格结构的城镇中,从一个街区到另一个街区是无关紧要的(想想曼哈顿或凤凰城)。然而,对于发展更趋渐进的城市(如波士顿或普罗维登斯),或在道路弯道和街区长度不同的乡村城镇,沿着一段路走两次,从一个选择到下一个选择,看起来会非常不同。那么如何模拟这些差异呢?我们根据选定的度量(如距离、时间或成本)为每条边添加权重。欧拉化问题的加权版本被称为中国邮差问题。这个名字并不是源于中国的邮差,而是来自第一个提出这个问题的数学家——中国数学家关美固。这个问题最早出现在1960年,比欧拉最初的论文晚了两个多世纪!大约十年后,完整的解决方案发表了,其主要思想是,在农村社区投递邮件的邮递员应该重复最短的路段(如果有必要的话)。我们将通过一个小例子来讨论这个过程,因为我们通常可以通过检查找到最好的重复。一个更完整的解决方案将在第5.2.2节给出


总的来说,解决中国邮差问题是相当具有挑战性的。然而,大多数小的例子可以通过检查来解决,因为复制边缘的选择相对较少。你是复制权重1的三条边,还是复制权重10的一条边?选择应该是显而易见的。此外,如果一条边的权值代表距离,那么我们可以依赖距离的真实性质。例如,两点之间的最短路径是一条直线,三角形的任何一条边都不比其他两条边的和长(这被称为“三角形不等式”)。当边缘的权重模拟沿道路的距离时,这两个属性将消除许多选项。当权重表示的不是距离时,就会出现更困难(因此也更有趣)的问题。如下所示。

数学代写|图论作业代写图论代考|哈密顿循环

回想一下Königsberg这个城市。上一节确定了图何时包含欧拉电路,欧拉电路是一种必须通过每条边和顶点的特殊类型的电路。这个概念源于一种想要穿过城市里每一座桥的愿望。
如果我们稍微改变一下要求,使我们只关心陆地呢?这可以模拟一种面向城市各个领域客户的快递服务。在图论术语中,我们正在寻找一个遍历图,每个顶点恰好一次。上面显示了代表Königsberg的图中的一个这样的旅行示例。这是什么类型的旅游?如果我们需要在同一个位置开始和结束,我们在寻找一个循环。如果起始点和结束点可能不同,我们正在搜索一个路径


回想一下,一个循环或路径只能通过一个顶点一次,所以哈密顿循环和路径只能通过每个顶点一次。此外,利用定义1.5的语言,我们可以将哈密顿循环和路径描述为生成循环和路径,因为它们必须包含图的所有顶点


和欧拉电路一样,这些特定的循环(或路径)是以第一个形式化它们的数学家威廉·汉密尔顿爵士的名字命名的。汉密尔顿在1856年以一个谜题的形式提出了这个想法,后来他把这个谜题卖给了一个游戏商。“Icosian Game”是一款带有编号的象牙钉子的木制谜题,玩家需要插入钉子,以便按照顺序穿过整个棋盘(如下图所示)。这款游戏并不是一款赚钱的游戏,这一点并不令人惊讶


值得注意的是,与汉密尔顿同时代的T.P.柯克曼(T.P. Kirkman)在哈密顿电路的研究方面做了许多早期工作。汉密尔顿主要关注一个图,柯克曼则关注保证一个图具有哈密顿循环的条件。然而,汉密尔顿值得称赞的是,他宣扬了一个循环的概念,即每个顶点恰好碰到一次。本节将探讨一个图何时具有哈密顿循环,以及如何找到一个最优或接近最优的哈密顿循环

此图片的alt属性为空;文件名为statistics-lab-1024x443.jpg
数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。



广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。



术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。



有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。



回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。



R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

The graphs above are incomplete. These figures only show a vertex with degree four (vertex E), its nearest neighbors (A, B, C, and D), and segments of A-C Kempe chains. The entire graphs would also contain several other vertices (especially, more colored the same as B or D) and enough edges to be MPG’s. The left figure has A connected to $C$ in a single section of an A-C Kempe chain (meaning that the vertices of this chain are colored the same as A and C). The left figure shows that this A-C Kempe chain prevents B from connecting to $\mathrm{D}$ with a single section of a B-D Kempe chain. The middle figure has A and C in separate sections of A-C Kempe chains. In this case, B could connect to D with a single section of a B-D Kempe chain. However, since the A and C of the vertex with degree four lie on separate sections, the color of C’s chain can be reversed so that in the vertex with degree four, C is effectively recolored to match A’s color, as shown in the right figure. Similarly, D’s section could be reversed in the left figure so that D is effectively recolored to match B’s color.

Kempe also attempted to demonstrate that vertices with degree five are fourcolorable in his attempt to prove the four-color theorem [Ref. 2], but his argument for vertices with degree five was shown by Heawood in 1890 to be insufficient [Ref. 3]. Let’s explore what happens if we attempt to apply our reasoning for vertices with degree four to a vertex with degree five.

数学代写|图论作业代写Graph Theory代考|The previous diagrams

The previous diagrams show that when the two color reversals are performed one at a time in the crossed-chain graph, the first color reversal may break the other chain, allowing the second color reversal to affect the colors of one of F’s neighbors. When we performed the $2-4$ reversal to change B from 2 to 4 , this broke the 1-4 chain. When we then performed the 2-3 reversal to change E from 3, this caused C to change from 3 to 2 . As a result, F remains connected to four different colors; this wasn’t reversed to three as expected.
Unfortunately, you can’t perform both reversals “at the same time” for the following reason. Let’s attempt to perform both reversals “at the same time.” In this crossed-chain diagram, when we swap 2 and 4 on B’s side of the 1-3 chain, one of the 4’s in the 1-4 chain may change into a 2, and when we swap 2 and 3 on E’s side of the 1-4 chain, one of the 3’s in the 1-3 chain may change into a 2 . This is shown in the following figure: one 2 in each chain is shaded gray. Recall that these figures are incomplete; they focus on one vertex (F), its neighbors (A thru E), and Kempe chains. Other vertices and edges are not shown.

Note how one of the 3’s changed into 2 on the left. This can happen when we reverse $\mathrm{C}$ and $\mathrm{E}$ (which were originally 3 and 2 ) on E’s side of the 1-4 chain. Note also how one of the 4’s changed into 2 on the right. This can happen when we reverse B and D (which were originally 2 and 4) outside of the 1-3 chain. Now we see where a problem can occur when attempting to swap the colors of two chains at the same time. If these two 2’s happen to be connected by an edge like the dashed edge shown above, if we perform the double reversal at the same time, this causes two vertices of the same color to share an edge, which isn’t allowed. We’ll revisit Kempe’s strategy for coloring a vertex with degree five in Chapter $25 .$

数学代写|图论作业代写Graph Theory代考| The shading of one section of the B-R

图论代考

数学代写|图论作业代写Graph Theory代考|The shading of one section of the B-R

由于 Kempe 链的每个部分都与同一颜色对的其他部分隔离,因此 Kempe 链的任何部分的颜色可以颠倒,但仍满足四色定理。这是一个重要且有用的概念。

上面 BR 链的一个部分的阴影说明了任何 Kempe 链的任何部分的颜色如何可以反转。请注意,我们反转了 BR 链的一个部分的颜色,但没有反转中心部分的颜色。同一条链的每个部分的颜色可以独立于该链的其他部分反转。

为什么 PG 有 Kempe 链?很容易理解为什么 MPG 有 Kempe 链。(由于 PG 是通过从 MPG 中去除边缘而形成的,并且由于适用于 MPG 的着色也适用于 PG,因此 PG 也具有 Kempe 链。)

  • MPG 是三角测量的。它由具有三个边和三个顶点的面组成。
  • 每个面的三个顶点必须是三种不同的颜色。
  • 每条边由两个相邻的三角形共享,形成一个四边形。
  • 每个四边形将有 3 或 4 种不同的颜色。如果与共享边相对的两个顶点恰好是相同的颜色,则它有 3 种颜色。
  • 对于每个四边形,四个顶点中的至少 1 个顶点和最多 3 个顶点具有任何颜色对的颜色。例如,具有 R、G、B 和G有 1 个顶点R−是和3个顶点乙−G,或者您可以将其视为 1 个顶点乙−是和3个顶点G−R,或者您可以将其视为 BR 的 2 个顶点和 GY 的 2 个顶点。在后一种情况下,2G’ 不是同一链的连续颜色。
  • 当您将更多三角形组合在一起(四边形仅组合两个)并考虑可能的颜色时,您将看到 Kempe 的部分

链子出现。我们将在 Chápter 中看到这些 Kémpé chảins 是如何出现的21.
也很容易看出一对颜色(如 RY)将如何与其对应颜色(BG)相邻:

  • 画一张R顶点和一个是由边连接的顶点。
  • 如果一个新顶点连接到这些顶点中的每一个,它必须是乙或者G.
  • 如果一个新顶点连接到 R 而不是是,可能是是,乙, 或者G.
  • 如果一个新的顶点连接到是但不是R,可能是R,乙, 或者G.
  • RY 链要么继续增长,要么被 B 包围,G.
  • 如果你关注 B 和 G,你会为它的链条得出类似的结论。
  • 如果一条链条完全被其对应物包围,则链条的新部分可能会出现在其对应物的另一侧。
    Kempe 证明了所有具有四阶的顶点(那些恰好连接到其他四个顶点的顶点)都是四色的 [Ref. 2]。例如,考虑下面的中心顶点。

数学代写|图论作业代写Graph Theory代考|In the previous figure

在上图中,顶点和是四度,因为它连接到其他四个顶点。Kempe 表明顶点 A、B、C 和 D 不能被强制为四种不同的颜色,这样顶点 E 总是可以被着色而不会违反四色定理,无论 MPG 的其余部分看起来如何上一页显示的部分。

  • A 和 C 或者是 AC Kempe 链的同一部分的一部分,或者它们各自位于 AC Kempe 链的不同部分。(如果一种和C例如,是红色和黄色的,则 AC 链是红黄色链。) – 如果一种和C每个位于 AC Kempe 链的不同部分,其中一个部分的颜色可以反转,这有效地重新着色 C 以匹配 A 的颜色。如果 A 和 C 是 AC Kempe 链的同一部分的一部分,则 B 和 D每个都必须位于 BD Kempe 链的不同部分,因为 AC Kempe 链将阻止任何 BD Kempe 链从 B 到达 D。(如果乙和D是蓝色和绿色,例如,那么一种BD Kempe 链是蓝绿色链。)在这种情况下,由于 B 和 D 分别位于 BD Kempe 链的不同部分,因此 BD Kempe 链的其中一个部分的颜色可以反转,这有效地重新着色 D 以匹配 B颜色。– 因此,可以使 C 与 A 具有相同的颜色或使 D 具有与 A 相同的颜色乙通过反转 Kempe 链的分离部分。

上面的图表是不完整的。这些图只显示了一个四阶顶点(顶点 E)、它的最近邻居(A、B、C 和 D),以及 AC Kempe 链的片段。整个图还将包含几个其他顶点(特别是与 B 或 D 相同的颜色)和足够多的边以成为 MPG。左图有 A 连接到C在 AC Kempe 链的单个部分中(意味着该链的顶点颜色与 A 和 C 相同)。左图显示此 AC Kempe 链阻止 B 连接到DBD Kempe 链条的一个部分。中间的数字在 AC Kempe 链的不同部分有 A 和 C。在这种情况下,B 可以通过 BD Kempe 链的单个部分连接到 D。但是,由于四阶顶点的 A 和 C 位于不同的部分,因此可以反转 C 链的颜色,以便在四阶顶点中,C 有效地重新着色以匹配 A 的颜色,如右图所示. 类似地,可以在左图中反转 D 的部分,以便有效地重新着色 D 以匹配 B 的颜色。

Kempe 还试图证明五阶顶点是可四色的,以证明四色定理 [Ref. 2],但 Heawood 在 1890 年证明他关于五次顶点的论点是不充分的 [Ref. 3]。让我们探讨一下如果我们尝试将我们对度数为四的顶点的推理应用于度数为五的顶点会发生什么。

数学代写|图论作业代写Graph Theory代考|The previous diagrams

前面的图表显示,当在交叉链图中一次执行两种颜色反转时,第一次颜色反转可能会破坏另一个链,从而允许第二次颜色反转影响 F 的一个邻居的颜色。当我们执行2−4反转将 B 从 2 更改为 4 ,这打破了 1-4 链。然后,当我们执行 2-3 反转以将 E 从 3 更改时,这导致 C 从 3 更改为 2 。结果,F 仍然连接到四种不同的颜色;这并没有像预期的那样反转为三个。
不幸的是,由于以下原因,您不能“同时”执行两个冲销。让我们尝试“同时”执行两个反转。在这个交叉链图中,当我们在 1-3 链的 B 侧交换 2 和 4 时,1-4 链中的一个 4 可能会变成 2,当我们在 E 侧交换 2 和 3 时1-4 链,1-3 链中的 3 之一可能会变为 2 。如下图所示:每条链中的一个 2 为灰色阴影。回想一下,这些数字是不完整的;他们专注于一个顶点 (F)、它的邻居 (A 到 E) 和 Kempe 链。其他顶点和边未显示。

请注意左侧的 3 之一如何变为 2。当我们反转时会发生这种情况C和和(最初是 3 和 2 )在 1-4 链的 E 侧。还要注意 4 个中的一个如何在右侧变为 2。当我们在 1-3 链之外反转 B 和 D(最初是 2 和 4)时,就会发生这种情况。现在我们看到了尝试同时交换两条链的颜色时会出现问题的地方。如果这两个 2 恰好通过上图虚线这样的边连接起来,如果我们同时进行双重反转,就会导致两个相同颜色的顶点共享一条边,这是不允许的。我们将在第 1 章重新讨论 Kempe 为五阶顶点着色的策略25.

数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|图论作业代写Graph Theory代考|MATH3V03

如果你也在 怎样代写图论Graph Theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

在数学中,图论是对图的研究,它是用来模拟对象之间成对关系的数学结构。这里,图由顶点(也称为节点或点)组成,这些顶点由边(也称为链接或线)连接。

statistics-lab™ 为您的留学生涯保驾护航 在代写图论Graph Theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写图论Graph Theory代写方面经验极为丰富,各种代写图论Graph Theory相关的作业也就用不着说。

我们提供的图论Graph Theory及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|图论作业代写Graph Theory代考|MATH3V03

数学代写|图论作业代写Graph Theory代考|Isomorphisms

In Example $1.2$ we showed two different modes for drawing the graph in Example 1.1. At the time, we focused on the fact that we were dealing with the same set of vertices and verified the edge set was maintained in the new drawings. However, two graphs with distinct vertex sets can still produce the same edge relationships (see the discussion of complete graphs on page 11); more technically these graphs are called isomorphic if every vertex from $G_{1}$ can be paired with a unique vertex from $G_{2}$ so that corresponding edges from $G_{1}$ are maintained in $G_{2}$.

Definition $1.17$ Two graphs $G_{1}$ and $G_{2}$ are isomorphic, denoted $G_{1} \cong G_{2}$, if there exists a bijection $f: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ so that $x y \in E\left(G_{1}\right)$ if and only if $f(x) f(y) \in E\left(G_{2}\right)$.

Throughout this section we will only consider simple graphs (those without multi-edges or loops). Similar definitions and results exist for multi-graphs and digraphs. The definition of isomorphic uses a special function, called a bijection, between the vertices of $G_{1}$ and $G_{2}$; for a review of functions see Appendix B.

Later we will list some of the common properties that must be maintained with isomorphic graphs, called graph invariants. But to begin, it should be easy to name a few things that are quick to check:

  • number of vertices
  • number of edges
  • vertex degrees
    By no means is this list comprehensive, but it allows for a quick check before working on more complex ideas. Note that defining the bijection is essentially just providing the vertex pairings, so we will list them explicitly and then chéck that thẽ édgé rẻlationships aré máintainéd.

数学代写|图论作业代写Graph Theory代考|Matrix Representation

The graphs we have encountered in this book so far are fairly small and can be described easily in terms of the vertex and edge sets. However, very large graphs (such as those modeling the spread of an infectious disease, the connections within a terrorist organization, or the results from a season of NCAA Division 1 football) would be unwieldy without additional resources. One way to tackle large graphs is to represent them in such a way that a computer program can perform the required analysis. One method, which we will use at various times throughout this book, is to form the adjacency matrix $A(G)$ of the graph $G$.

A few interesting properties of the adjacency matrix can be seen. First, the matrix is symmetric along the main diagonal since if there is an edge $v_{i} v_{j}$ then it will be accounted for in both the entry $(i, j)$ and $(j, i)$ in the matrix. Second, the main diagonal represents all loops in the graph. Finally, the degree of a vertex can be easily calculated from the adjacency matrix by adding the entries along the row (or column) representing the vertex but double any item along the diagonal. In the matrix above, we would get $\operatorname{deg}(a)=2$ and $\operatorname{deg}(b)=4$, which matches the graph representation from Example $1.1$.

While we will often start with the graph and form its adjacency matrix, we can work in reverse as well. The example below demonstrates how to draw the graph given a matrix.

数学代写|图论作业代写Graph Theory代考|MATH3V03

图论代考

数学代写|图论作业代写Graph Theory代考|Isomorphisms

在示例中1.2我们在示例 1.1 中展示了两种不同的绘图模式。当时,我们专注于处理同一组顶点的事实,并验证了新图纸中保留了边集。但是,具有不同顶点集的两个图仍然可以产生相同的边关系(参见第 11 页上对完整图的讨论);从技术上讲,如果每个顶点来自G1可以与来自的唯一顶点配对G2使相应的边从G1保持在G2.

定义1.17两张图G1和G2是同构的,表示G1≅G2, 如果存在双射F:在(G1)→在(G2)以便X是的∈和(G1)当且仅当F(X)F(是的)∈和(G2).

在本节中,我们将只考虑简单的图(那些没有多重边或循环的图)。多图和有向图也存在类似的定义和结果。同构的定义在顶点之间使用了一个特殊的函数,称为双射G1和G2; 有关功能的回顾,请参见附录 B。

稍后我们将列出一些必须用同构图维护的公共属性,称为图不变量。但首先,应该很容易列出一些可以快速检查的内容:

  • 顶点数
  • 边数
  • 顶点度
    这个列表绝不是全面的,但它允许在处理更复杂的想法之前快速检查。请注意,定义双射本质上只是提供顶点对,因此我们将明确列出它们,然后检查是否保留了边缘关系。

数学代写|图论作业代写Graph Theory代考|Matrix Representation

到目前为止,我们在本书中遇到的图都相当小,可以很容易地用顶点集和边集来描述。但是,如果没有额外的资源,非常大的图表(例如模拟传染病传播、恐怖组织内部的联系或 NCAA Division 1 足球赛季结果的图表)将难以处理。处理大图的一种方法是以计算机程序可以执行所需分析的方式表示它们。我们将在本书的不同时间使用的一种方法是形成邻接矩阵一个(G)图的G.

可以看到邻接矩阵的一些有趣的属性。首先,矩阵沿主对角线对称,因为如果有边在一世在Ĵ那么它将在两个条目中进行计算(一世,Ĵ)和(Ĵ,一世)在矩阵中。其次,主对角线表示图中的所有循环。最后,顶点的度数可以很容易地从邻接矩阵中计算出来,方法是沿表示顶点的行(或列)添加条目,但将沿对角线的任何项加倍。在上面的矩阵中,我们会得到你⁡(一个)=2和你⁡(b)=4,它与示例中的图形表示相匹配1.1.

虽然我们通常会从图开始并形成它的邻接矩阵,但我们也可以反过来工作。下面的示例演示了如何在给定矩阵的情况下绘制图形。

此图片的alt属性为空;文件名为statistics-lab-1024x443.jpg
数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。



广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。



术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。



有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。



回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。



R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

The graphs above are incomplete. These figures only show a vertex with degree four (vertex E), its nearest neighbors (A, B, C, and D), and segments of A-C Kempe chains. The entire graphs would also contain several other vertices (especially, more colored the same as B or D) and enough edges to be MPG’s. The left figure has A connected to $C$ in a single section of an A-C Kempe chain (meaning that the vertices of this chain are colored the same as A and C). The left figure shows that this A-C Kempe chain prevents B from connecting to $\mathrm{D}$ with a single section of a B-D Kempe chain. The middle figure has A and C in separate sections of A-C Kempe chains. In this case, B could connect to D with a single section of a B-D Kempe chain. However, since the A and C of the vertex with degree four lie on separate sections, the color of C’s chain can be reversed so that in the vertex with degree four, C is effectively recolored to match A’s color, as shown in the right figure. Similarly, D’s section could be reversed in the left figure so that D is effectively recolored to match B’s color.

Kempe also attempted to demonstrate that vertices with degree five are fourcolorable in his attempt to prove the four-color theorem [Ref. 2], but his argument for vertices with degree five was shown by Heawood in 1890 to be insufficient [Ref. 3]. Let’s explore what happens if we attempt to apply our reasoning for vertices with degree four to a vertex with degree five.

数学代写|图论作业代写Graph Theory代考|The previous diagrams

The previous diagrams show that when the two color reversals are performed one at a time in the crossed-chain graph, the first color reversal may break the other chain, allowing the second color reversal to affect the colors of one of F’s neighbors. When we performed the $2-4$ reversal to change B from 2 to 4 , this broke the 1-4 chain. When we then performed the 2-3 reversal to change E from 3, this caused C to change from 3 to 2 . As a result, F remains connected to four different colors; this wasn’t reversed to three as expected.
Unfortunately, you can’t perform both reversals “at the same time” for the following reason. Let’s attempt to perform both reversals “at the same time.” In this crossed-chain diagram, when we swap 2 and 4 on B’s side of the 1-3 chain, one of the 4’s in the 1-4 chain may change into a 2, and when we swap 2 and 3 on E’s side of the 1-4 chain, one of the 3’s in the 1-3 chain may change into a 2 . This is shown in the following figure: one 2 in each chain is shaded gray. Recall that these figures are incomplete; they focus on one vertex (F), its neighbors (A thru E), and Kempe chains. Other vertices and edges are not shown.

Note how one of the 3’s changed into 2 on the left. This can happen when we reverse $\mathrm{C}$ and $\mathrm{E}$ (which were originally 3 and 2 ) on E’s side of the 1-4 chain. Note also how one of the 4’s changed into 2 on the right. This can happen when we reverse B and D (which were originally 2 and 4) outside of the 1-3 chain. Now we see where a problem can occur when attempting to swap the colors of two chains at the same time. If these two 2’s happen to be connected by an edge like the dashed edge shown above, if we perform the double reversal at the same time, this causes two vertices of the same color to share an edge, which isn’t allowed. We’ll revisit Kempe’s strategy for coloring a vertex with degree five in Chapter $25 .$

数学代写|图论作业代写Graph Theory代考| The shading of one section of the B-R

图论代考

数学代写|图论作业代写Graph Theory代考|The shading of one section of the B-R

由于 Kempe 链的每个部分都与同一颜色对的其他部分隔离,因此 Kempe 链的任何部分的颜色可以颠倒,但仍满足四色定理。这是一个重要且有用的概念。

上面 BR 链的一个部分的阴影说明了任何 Kempe 链的任何部分的颜色如何可以反转。请注意,我们反转了 BR 链的一个部分的颜色,但没有反转中心部分的颜色。同一条链的每个部分的颜色可以独立于该链的其他部分反转。

为什么 PG 有 Kempe 链?很容易理解为什么 MPG 有 Kempe 链。(由于 PG 是通过从 MPG 中去除边缘而形成的,并且由于适用于 MPG 的着色也适用于 PG,因此 PG 也具有 Kempe 链。)

  • MPG 是三角测量的。它由具有三个边和三个顶点的面组成。
  • 每个面的三个顶点必须是三种不同的颜色。
  • 每条边由两个相邻的三角形共享,形成一个四边形。
  • 每个四边形将有 3 或 4 种不同的颜色。如果与共享边相对的两个顶点恰好是相同的颜色,则它有 3 种颜色。
  • 对于每个四边形,四个顶点中的至少 1 个顶点和最多 3 个顶点具有任何颜色对的颜色。例如,具有 R、G、B 和G有 1 个顶点R−是和3个顶点乙−G,或者您可以将其视为 1 个顶点乙−是和3个顶点G−R,或者您可以将其视为 BR 的 2 个顶点和 GY 的 2 个顶点。在后一种情况下,2G’ 不是同一链的连续颜色。
  • 当您将更多三角形组合在一起(四边形仅组合两个)并考虑可能的颜色时,您将看到 Kempe 的部分

链子出现。我们将在 Chápter 中看到这些 Kémpé chảins 是如何出现的21.
也很容易看出一对颜色(如 RY)将如何与其对应颜色(BG)相邻:

  • 画一张R顶点和一个是由边连接的顶点。
  • 如果一个新顶点连接到这些顶点中的每一个,它必须是乙或者G.
  • 如果一个新顶点连接到 R 而不是是,可能是是,乙, 或者G.
  • 如果一个新的顶点连接到是但不是R,可能是R,乙, 或者G.
  • RY 链要么继续增长,要么被 B 包围,G.
  • 如果你关注 B 和 G,你会为它的链条得出类似的结论。
  • 如果一条链条完全被其对应物包围,则链条的新部分可能会出现在其对应物的另一侧。
    Kempe 证明了所有具有四阶的顶点(那些恰好连接到其他四个顶点的顶点)都是四色的 [Ref. 2]。例如,考虑下面的中心顶点。

数学代写|图论作业代写Graph Theory代考|In the previous figure

在上图中,顶点和是四度,因为它连接到其他四个顶点。Kempe 表明顶点 A、B、C 和 D 不能被强制为四种不同的颜色,这样顶点 E 总是可以被着色而不会违反四色定理,无论 MPG 的其余部分看起来如何上一页显示的部分。

  • A 和 C 或者是 AC Kempe 链的同一部分的一部分,或者它们各自位于 AC Kempe 链的不同部分。(如果一种和C例如,是红色和黄色的,则 AC 链是红黄色链。) – 如果一种和C每个位于 AC Kempe 链的不同部分,其中一个部分的颜色可以反转,这有效地重新着色 C 以匹配 A 的颜色。如果 A 和 C 是 AC Kempe 链的同一部分的一部分,则 B 和 D每个都必须位于 BD Kempe 链的不同部分,因为 AC Kempe 链将阻止任何 BD Kempe 链从 B 到达 D。(如果乙和D是蓝色和绿色,例如,那么一种BD Kempe 链是蓝绿色链。)在这种情况下,由于 B 和 D 分别位于 BD Kempe 链的不同部分,因此 BD Kempe 链的其中一个部分的颜色可以反转,这有效地重新着色 D 以匹配 B颜色。– 因此,可以使 C 与 A 具有相同的颜色或使 D 具有与 A 相同的颜色乙通过反转 Kempe 链的分离部分。

上面的图表是不完整的。这些图只显示了一个四阶顶点(顶点 E)、它的最近邻居(A、B、C 和 D),以及 AC Kempe 链的片段。整个图还将包含几个其他顶点(特别是与 B 或 D 相同的颜色)和足够多的边以成为 MPG。左图有 A 连接到C在 AC Kempe 链的单个部分中(意味着该链的顶点颜色与 A 和 C 相同)。左图显示此 AC Kempe 链阻止 B 连接到DBD Kempe 链条的一个部分。中间的数字在 AC Kempe 链的不同部分有 A 和 C。在这种情况下,B 可以通过 BD Kempe 链的单个部分连接到 D。但是,由于四阶顶点的 A 和 C 位于不同的部分,因此可以反转 C 链的颜色,以便在四阶顶点中,C 有效地重新着色以匹配 A 的颜色,如右图所示. 类似地,可以在左图中反转 D 的部分,以便有效地重新着色 D 以匹配 B 的颜色。

Kempe 还试图证明五阶顶点是可四色的,以证明四色定理 [Ref. 2],但 Heawood 在 1890 年证明他关于五次顶点的论点是不充分的 [Ref. 3]。让我们探讨一下如果我们尝试将我们对度数为四的顶点的推理应用于度数为五的顶点会发生什么。

数学代写|图论作业代写Graph Theory代考|The previous diagrams

前面的图表显示,当在交叉链图中一次执行两种颜色反转时,第一次颜色反转可能会破坏另一个链,从而允许第二次颜色反转影响 F 的一个邻居的颜色。当我们执行2−4反转将 B 从 2 更改为 4 ,这打破了 1-4 链。然后,当我们执行 2-3 反转以将 E 从 3 更改时,这导致 C 从 3 更改为 2 。结果,F 仍然连接到四种不同的颜色;这并没有像预期的那样反转为三个。
不幸的是,由于以下原因,您不能“同时”执行两个冲销。让我们尝试“同时”执行两个反转。在这个交叉链图中,当我们在 1-3 链的 B 侧交换 2 和 4 时,1-4 链中的一个 4 可能会变成 2,当我们在 E 侧交换 2 和 3 时1-4 链,1-3 链中的 3 之一可能会变为 2 。如下图所示:每条链中的一个 2 为灰色阴影。回想一下,这些数字是不完整的;他们专注于一个顶点 (F)、它的邻居 (A 到 E) 和 Kempe 链。其他顶点和边未显示。

请注意左侧的 3 之一如何变为 2。当我们反转时会发生这种情况C和和(最初是 3 和 2 )在 1-4 链的 E 侧。还要注意 4 个中的一个如何在右侧变为 2。当我们在 1-3 链之外反转 B 和 D(最初是 2 和 4)时,就会发生这种情况。现在我们看到了尝试同时交换两条链的颜色时会出现问题的地方。如果这两个 2 恰好通过上图虚线这样的边连接起来,如果我们同时进行双重反转,就会导致两个相同颜色的顶点共享一条边,这是不允许的。我们将在第 1 章重新讨论 Kempe 为五阶顶点着色的策略25.

数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|图论作业代写Graph Theory代考|MATH361

如果你也在 怎样代写图论Graph Theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

在数学中,图论是对图的研究,它是用来模拟对象之间成对关系的数学结构。这里,图由顶点(也称为节点或点)组成,这些顶点由边(也称为链接或线)连接。

statistics-lab™ 为您的留学生涯保驾护航 在代写图论Graph Theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写图论Graph Theory代写方面经验极为丰富,各种代写图论Graph Theory相关的作业也就用不着说。

我们提供的图论Graph Theory及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|图论作业代写Graph Theory代考|MATH361

数学代写|图论作业代写Graph Theory代考|Graph Complements

Consider a graph representing friendships. Given a collection of people, we could form a graph where an edge exists between two vertices if those people are friends. But what, if instead, we want to know who are not friends with each other? Perhaps a teacher wants to avoid friends talking during class and so will not seat them at the same table. This new graph would include all the edges missing from the original graph created, and is called the graph complement.

Note that graph complements are only defined for simple graphs (graphs without loops and multi-edges).

As we have already seen, problems that can be modeled by a graph need to consist of distinct objects (such as people or places) and a relationship between them. The proper model will allow the graph structure, or properties of the graph, to answer the question being asked. If we want to display the relationship between different types of objects, we would use a bipartite graph.In thẻ examplẽ abové, therrẻ aree somee èdgés that conuld bé addeed to thé graph while still keeping the graph bipartite. Just as we defined a complete graph as the simple graph with the most edges, we similarly define a complete bipartite graph.

数学代写|图论作业代写Graph Theory代考|Graph Combinations

As graphs are built from sets of vertices and edges, some operations on sets have natural translations onto graphs (for a review of set theory, see Appendix A). We will focus on a few that will appear at times throughout this book.
Definition $1.15$ Given two graphs $G$ and $G$ the union $G \cup H$ is the graph with vertex-set $V(G) \cup V(H)$ and edge-set $E(G) \cup E(H)$.

If the vertex-sets are disjoint (that is $V(G) \cap V(H)=\emptyset)$ then we call the disjoint union the sum, denoted $G+H$.

Note that $G+H$ is just a special type of union, and so unless we want to explicitly use or note that the vertex sets are disjoint, it is customary to use the union notation.

Example 1.12 Find the sum $K_{3}+H_{1}$ and the union $H_{1} \cup H_{4}$ using the graphs from Examples $1.3$ and $1.4$.

Solution: First note that, since we are finding the sum $K_{3}+H_{1}$, we are assuming the vertex sets are disjoint. Thus the resulting graph is simply the graph below.

数学代写|图论作业代写Graph Theory代考|MATH361

图论代考

数学代写|图论作业代写Graph Theory代考|Graph Complements

考虑一个代表友谊的图表。给定一组人,如果这些人是朋友,我们可以形成一个图,其中两个顶点之间存在一条边。但是,如果相反,我们想知道谁不是彼此的朋友呢?也许老师想避免在课堂上与朋友交谈,因此不会让他们坐在同一张桌子上。这个新图将包括从创建的原始图中丢失的所有边,称为图补。

请注意,图补仅针对简单图(没有循环和多边的图)定义。

正如我们已经看到的,可以用图建模的问题需要由不同的对象(例如人或地点)以及它们之间的关系组成。正确的模型将允许图结构或图的属性来回答所提出的问题。如果我们想显示不同类型的对象之间的关系,我们将使用二分图。在上面的示例中,可以添加到图上同时仍然保持图二分的一些东西。正如我们将完整图定义为具有最多边的简单图一样,我们同样定义了完整二分图。

数学代写|图论作业代写Graph Theory代考|Graph Combinations

由于图是由顶点和边的集合构成的,因此对集合的一些操作可以自然地转换到图上(有关集合论的回顾,请参见 附录 A)。我们将重点关注本书中不时出现的一些内容。
定义1.15给定两张图 $G$ 和 $G$ 工会 $G \cup H$ 是带有顶点集的图 $V(G) \cup V(H)$ 和边集 $E(G) \cup E(H)$.
如果顶点集是不相交的(即 $V(G) \cap V(H)=\emptyset$ )然后我们将不相交的并称为总和,表示为 $G+H$.
注意 $G+H$ 只是一种特殊类型的并集,因此除非我们想显式使用或注意顶点集是不相交的,否则习惯上使用并 集表示法。
例 $1.12$ 求和 $K_{3}+H_{1}$ 和工会 $H_{1} \cup H_{4}$ 使用示例中的图表 $1.3$ 和 $1.4$.
解决方案: 首先注意,因为我们正在寻找总和 $K_{3}+H_{1}$ ,我们假设顶点集是不相交的。因此,结果图就是下面的图。

此图片的alt属性为空;文件名为statistics-lab-1024x443.jpg
数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。



广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。



术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。



有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。



回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。



R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

The graphs above are incomplete. These figures only show a vertex with degree four (vertex E), its nearest neighbors (A, B, C, and D), and segments of A-C Kempe chains. The entire graphs would also contain several other vertices (especially, more colored the same as B or D) and enough edges to be MPG’s. The left figure has A connected to $C$ in a single section of an A-C Kempe chain (meaning that the vertices of this chain are colored the same as A and C). The left figure shows that this A-C Kempe chain prevents B from connecting to $\mathrm{D}$ with a single section of a B-D Kempe chain. The middle figure has A and C in separate sections of A-C Kempe chains. In this case, B could connect to D with a single section of a B-D Kempe chain. However, since the A and C of the vertex with degree four lie on separate sections, the color of C’s chain can be reversed so that in the vertex with degree four, C is effectively recolored to match A’s color, as shown in the right figure. Similarly, D’s section could be reversed in the left figure so that D is effectively recolored to match B’s color.

Kempe also attempted to demonstrate that vertices with degree five are fourcolorable in his attempt to prove the four-color theorem [Ref. 2], but his argument for vertices with degree five was shown by Heawood in 1890 to be insufficient [Ref. 3]. Let’s explore what happens if we attempt to apply our reasoning for vertices with degree four to a vertex with degree five.

数学代写|图论作业代写Graph Theory代考|The previous diagrams

The previous diagrams show that when the two color reversals are performed one at a time in the crossed-chain graph, the first color reversal may break the other chain, allowing the second color reversal to affect the colors of one of F’s neighbors. When we performed the $2-4$ reversal to change B from 2 to 4 , this broke the 1-4 chain. When we then performed the 2-3 reversal to change E from 3, this caused C to change from 3 to 2 . As a result, F remains connected to four different colors; this wasn’t reversed to three as expected.
Unfortunately, you can’t perform both reversals “at the same time” for the following reason. Let’s attempt to perform both reversals “at the same time.” In this crossed-chain diagram, when we swap 2 and 4 on B’s side of the 1-3 chain, one of the 4’s in the 1-4 chain may change into a 2, and when we swap 2 and 3 on E’s side of the 1-4 chain, one of the 3’s in the 1-3 chain may change into a 2 . This is shown in the following figure: one 2 in each chain is shaded gray. Recall that these figures are incomplete; they focus on one vertex (F), its neighbors (A thru E), and Kempe chains. Other vertices and edges are not shown.

Note how one of the 3’s changed into 2 on the left. This can happen when we reverse $\mathrm{C}$ and $\mathrm{E}$ (which were originally 3 and 2 ) on E’s side of the 1-4 chain. Note also how one of the 4’s changed into 2 on the right. This can happen when we reverse B and D (which were originally 2 and 4) outside of the 1-3 chain. Now we see where a problem can occur when attempting to swap the colors of two chains at the same time. If these two 2’s happen to be connected by an edge like the dashed edge shown above, if we perform the double reversal at the same time, this causes two vertices of the same color to share an edge, which isn’t allowed. We’ll revisit Kempe’s strategy for coloring a vertex with degree five in Chapter $25 .$

数学代写|图论作业代写Graph Theory代考| The shading of one section of the B-R

图论代考

数学代写|图论作业代写Graph Theory代考|The shading of one section of the B-R

由于 Kempe 链的每个部分都与同一颜色对的其他部分隔离,因此 Kempe 链的任何部分的颜色可以颠倒,但仍满足四色定理。这是一个重要且有用的概念。

上面 BR 链的一个部分的阴影说明了任何 Kempe 链的任何部分的颜色如何可以反转。请注意,我们反转了 BR 链的一个部分的颜色,但没有反转中心部分的颜色。同一条链的每个部分的颜色可以独立于该链的其他部分反转。

为什么 PG 有 Kempe 链?很容易理解为什么 MPG 有 Kempe 链。(由于 PG 是通过从 MPG 中去除边缘而形成的,并且由于适用于 MPG 的着色也适用于 PG,因此 PG 也具有 Kempe 链。)

  • MPG 是三角测量的。它由具有三个边和三个顶点的面组成。
  • 每个面的三个顶点必须是三种不同的颜色。
  • 每条边由两个相邻的三角形共享,形成一个四边形。
  • 每个四边形将有 3 或 4 种不同的颜色。如果与共享边相对的两个顶点恰好是相同的颜色,则它有 3 种颜色。
  • 对于每个四边形,四个顶点中的至少 1 个顶点和最多 3 个顶点具有任何颜色对的颜色。例如,具有 R、G、B 和G有 1 个顶点R−是和3个顶点乙−G,或者您可以将其视为 1 个顶点乙−是和3个顶点G−R,或者您可以将其视为 BR 的 2 个顶点和 GY 的 2 个顶点。在后一种情况下,2G’ 不是同一链的连续颜色。
  • 当您将更多三角形组合在一起(四边形仅组合两个)并考虑可能的颜色时,您将看到 Kempe 的部分

链子出现。我们将在 Chápter 中看到这些 Kémpé chảins 是如何出现的21.
也很容易看出一对颜色(如 RY)将如何与其对应颜色(BG)相邻:

  • 画一张R顶点和一个是由边连接的顶点。
  • 如果一个新顶点连接到这些顶点中的每一个,它必须是乙或者G.
  • 如果一个新顶点连接到 R 而不是是,可能是是,乙, 或者G.
  • 如果一个新的顶点连接到是但不是R,可能是R,乙, 或者G.
  • RY 链要么继续增长,要么被 B 包围,G.
  • 如果你关注 B 和 G,你会为它的链条得出类似的结论。
  • 如果一条链条完全被其对应物包围,则链条的新部分可能会出现在其对应物的另一侧。
    Kempe 证明了所有具有四阶的顶点(那些恰好连接到其他四个顶点的顶点)都是四色的 [Ref. 2]。例如,考虑下面的中心顶点。

数学代写|图论作业代写Graph Theory代考|In the previous figure

在上图中,顶点和是四度,因为它连接到其他四个顶点。Kempe 表明顶点 A、B、C 和 D 不能被强制为四种不同的颜色,这样顶点 E 总是可以被着色而不会违反四色定理,无论 MPG 的其余部分看起来如何上一页显示的部分。

  • A 和 C 或者是 AC Kempe 链的同一部分的一部分,或者它们各自位于 AC Kempe 链的不同部分。(如果一种和C例如,是红色和黄色的,则 AC 链是红黄色链。) – 如果一种和C每个位于 AC Kempe 链的不同部分,其中一个部分的颜色可以反转,这有效地重新着色 C 以匹配 A 的颜色。如果 A 和 C 是 AC Kempe 链的同一部分的一部分,则 B 和 D每个都必须位于 BD Kempe 链的不同部分,因为 AC Kempe 链将阻止任何 BD Kempe 链从 B 到达 D。(如果乙和D是蓝色和绿色,例如,那么一种BD Kempe 链是蓝绿色链。)在这种情况下,由于 B 和 D 分别位于 BD Kempe 链的不同部分,因此 BD Kempe 链的其中一个部分的颜色可以反转,这有效地重新着色 D 以匹配 B颜色。– 因此,可以使 C 与 A 具有相同的颜色或使 D 具有与 A 相同的颜色乙通过反转 Kempe 链的分离部分。

上面的图表是不完整的。这些图只显示了一个四阶顶点(顶点 E)、它的最近邻居(A、B、C 和 D),以及 AC Kempe 链的片段。整个图还将包含几个其他顶点(特别是与 B 或 D 相同的颜色)和足够多的边以成为 MPG。左图有 A 连接到C在 AC Kempe 链的单个部分中(意味着该链的顶点颜色与 A 和 C 相同)。左图显示此 AC Kempe 链阻止 B 连接到DBD Kempe 链条的一个部分。中间的数字在 AC Kempe 链的不同部分有 A 和 C。在这种情况下,B 可以通过 BD Kempe 链的单个部分连接到 D。但是,由于四阶顶点的 A 和 C 位于不同的部分,因此可以反转 C 链的颜色,以便在四阶顶点中,C 有效地重新着色以匹配 A 的颜色,如右图所示. 类似地,可以在左图中反转 D 的部分,以便有效地重新着色 D 以匹配 B 的颜色。

Kempe 还试图证明五阶顶点是可四色的,以证明四色定理 [Ref. 2],但 Heawood 在 1890 年证明他关于五次顶点的论点是不充分的 [Ref. 3]。让我们探讨一下如果我们尝试将我们对度数为四的顶点的推理应用于度数为五的顶点会发生什么。

数学代写|图论作业代写Graph Theory代考|The previous diagrams

前面的图表显示,当在交叉链图中一次执行两种颜色反转时,第一次颜色反转可能会破坏另一个链,从而允许第二次颜色反转影响 F 的一个邻居的颜色。当我们执行2−4反转将 B 从 2 更改为 4 ,这打破了 1-4 链。然后,当我们执行 2-3 反转以将 E 从 3 更改时,这导致 C 从 3 更改为 2 。结果,F 仍然连接到四种不同的颜色;这并没有像预期的那样反转为三个。
不幸的是,由于以下原因,您不能“同时”执行两个冲销。让我们尝试“同时”执行两个反转。在这个交叉链图中,当我们在 1-3 链的 B 侧交换 2 和 4 时,1-4 链中的一个 4 可能会变成 2,当我们在 E 侧交换 2 和 3 时1-4 链,1-3 链中的 3 之一可能会变为 2 。如下图所示:每条链中的一个 2 为灰色阴影。回想一下,这些数字是不完整的;他们专注于一个顶点 (F)、它的邻居 (A 到 E) 和 Kempe 链。其他顶点和边未显示。

请注意左侧的 3 之一如何变为 2。当我们反转时会发生这种情况C和和(最初是 3 和 2 )在 1-4 链的 E 侧。还要注意 4 个中的一个如何在右侧变为 2。当我们在 1-3 链之外反转 B 和 D(最初是 2 和 4)时,就会发生这种情况。现在我们看到了尝试同时交换两条链的颜色时会出现问题的地方。如果这两个 2 恰好通过上图虚线这样的边连接起来,如果我们同时进行双重反转,就会导致两个相同颜色的顶点共享一条边,这是不允许的。我们将在第 1 章重新讨论 Kempe 为五阶顶点着色的策略25.

数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|图论作业代写Graph Theory代考|MATH141

如果你也在 怎样代写图论Graph Theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

在数学中,图论是对图的研究,它是用来模拟对象之间成对关系的数学结构。这里,图由顶点(也称为节点或点)组成,这些顶点由边(也称为链接或线)连接。

statistics-lab™ 为您的留学生涯保驾护航 在代写图论Graph Theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写图论Graph Theory代写方面经验极为丰富,各种代写图论Graph Theory相关的作业也就用不着说。

我们提供的图论Graph Theory及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|图论作业代写Graph Theory代考|MATH141

数学代写|图论作业代写Graph Theory代考|Consider the following scenario

The Roanoke Soccer League is planning their end-of-season tournament. Each of the five teams (Aardvarks, Bears, Cougars, Ducks, and Eagles) plays every other team exactly once and no ties are allowed. The tournament director must determine how many games are needed, how to schedule the games, and how to determine a winner once the tournament is completed.

The soccer tournament described above is often referred to as a roundrobin tournament. While we can describe the tournament in words, or list the game outcomes in a table, it is often useful to provide a visual representation. One method, and the one we will continue to use throughout this book, is to model the information as a graph.

We will formally describe a graph next section, but for now think of a graph as a collection of dots (which we call vertices) on the page with lines (called edges) connecting the dots to indicate some relationship between them. In terms of the Roanoke Soccer League, we could represent each team as a vertex and put an edge between a pair of vertices if they have played each other. The following graphs $G_{1}$ and $G_{2}$ depict a possible way to run the first few games of the tournament and $G_{3}$ is the graph when all games of the tournament have been played (these are called complete graphs and will be discussed later).

数学代写|图论作业代写Graph Theory代考|Introduction to Graph Models and Terminology

An integral component of mathematics is precise (and appropriate) definitions. Throughout this book, we will use an example to motivate and gain intuition about concepts and then provide the precise definitions. To that end, we give the definition of a graph below. Note that many aspects of graph theory rely on basic set theory concepts (mainly the subset relationship); see Appendix A if you need a review of set theory.

Using this notation we see that graph $G_{4}$ from Example $1.1$ above satisfies $\left|G_{4}\right|=5$ and $\left|G_{4}\right|=6$

It should be noted that the drawing of a graph can take many different forms while still representing the same graph. The only requirement is to faithfully record the information from the vertex set and edge set. We often draw graphs with the vertices in a circular pattern (as shown in Example 1.1), though in some instances other configurations better display the desired information. The best configuration is the one that reduces complexity or best illustrates the relationships arising from the vertex set and edge set.

To discuss and prove properties of graphs, we need the proper terminology. The graph given in the examples above are good references for this initial terminology. Some initial definitions are given below, followed by the appropriate references to the graph in Example $1.1$ (or Example 1.2).

When examining graphs, especially if they are particularly large, we may want to discuss a smaller portion of the graph, called a subgraph. For example, graphs $G_{1}$ and $G_{2}$ shown on page 2 display when a portion of the total games have been played in the soccer tournament, and these are both subgraphs of graph $G_{3}$.

数学代写|图论作业代写Graph Theory代考|MATH141

图论代考

数学代写|图论作业代写Graph Theory代考|Consider the following scenario

罗阿诺克足球联盟正在计划他们的赛季末锦标赛。五支球队(Aardvarks、Bears、Cougars、Ducks 和 Eagles)中的每支球队都只与其他球队比赛一次,并且不允许出现平局。锦标赛总监必须确定需要多少场比赛、如何安排比赛以及在锦标赛结束后如何确定获胜者。

上述足球锦标赛通常被称为循环锦标赛。虽然我们可以用文字描述比赛,或者在表格中列出比赛结果,但提供视觉表示通常很有用。一种方法,也是我们将在本书中继续使用的方法,是将信息建模为图形。

我们将在下一节正式描述图,但现在将图视为页面上的点(我们称为顶点)的集合,用线(称为边)连接点以指示它们之间的某种关系。就 Roanoke Soccer League 而言,我们可以将每支球队表示为一个顶点,如果他们互相比赛,则在一对顶点之间放置一条边。以下图表G1和G2描述一种可能的方式来运行锦标赛的前几场比赛,以及G3是比赛的所有比赛都进行时的图表(这些被称为完整图表,将在后面讨论)。

数学代写|图论作业代写Graph Theory代考|Introduction to Graph Models and Terminology

数学的一个组成部分是精确(和适当)的定义。在本书中,我们将使用一个例子来激发和获得对概念的直觉,然后提供精确的定义。为此,我们在下面给出了图形的定义。请注意,图论的许多方面都依赖于基本的集合论概念(主要是子集关系);如果您需要复习集合论,请参阅附录 A。

使用这种表示法,我们可以看到该图G4来自示例1.1以上满足|G4|=5和|G4|=6

应该注意的是,图形的绘制可以采用许多不同的形式,同时仍然表示相同的图形。唯一的要求是忠实地记录来自顶点集和边集的信息。我们经常用圆形模式绘制带有顶点的图形(如示例 1.1 所示),尽管在某些情况下,其他配置可以更好地显示所需的信息。最好的配置是降低复杂性或最好地说明由顶点集和边集产生的关系的配置。

为了讨论和证明图的性质,我们需要合适的术语。上面示例中给出的图表是此初始术语的良好参考。下面给出了一些初始定义,随后是对示例中图表的适当引用1.1(或示例 1.2)。

在检查图时,特别是如果它们特别大,我们可能想讨论图的一小部分,称为子图。例如,图表G1和G2显示在第 2 页上,显示在足球锦标赛中进行了总比赛的一部分时,这些都是图表的子图G3.

此图片的alt属性为空;文件名为statistics-lab-1024x443.jpg
数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。



广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。



术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。



有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。



回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。



R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

The graphs above are incomplete. These figures only show a vertex with degree four (vertex E), its nearest neighbors (A, B, C, and D), and segments of A-C Kempe chains. The entire graphs would also contain several other vertices (especially, more colored the same as B or D) and enough edges to be MPG’s. The left figure has A connected to $C$ in a single section of an A-C Kempe chain (meaning that the vertices of this chain are colored the same as A and C). The left figure shows that this A-C Kempe chain prevents B from connecting to $\mathrm{D}$ with a single section of a B-D Kempe chain. The middle figure has A and C in separate sections of A-C Kempe chains. In this case, B could connect to D with a single section of a B-D Kempe chain. However, since the A and C of the vertex with degree four lie on separate sections, the color of C’s chain can be reversed so that in the vertex with degree four, C is effectively recolored to match A’s color, as shown in the right figure. Similarly, D’s section could be reversed in the left figure so that D is effectively recolored to match B’s color.

Kempe also attempted to demonstrate that vertices with degree five are fourcolorable in his attempt to prove the four-color theorem [Ref. 2], but his argument for vertices with degree five was shown by Heawood in 1890 to be insufficient [Ref. 3]. Let’s explore what happens if we attempt to apply our reasoning for vertices with degree four to a vertex with degree five.

数学代写|图论作业代写Graph Theory代考|The previous diagrams

The previous diagrams show that when the two color reversals are performed one at a time in the crossed-chain graph, the first color reversal may break the other chain, allowing the second color reversal to affect the colors of one of F’s neighbors. When we performed the $2-4$ reversal to change B from 2 to 4 , this broke the 1-4 chain. When we then performed the 2-3 reversal to change E from 3, this caused C to change from 3 to 2 . As a result, F remains connected to four different colors; this wasn’t reversed to three as expected.
Unfortunately, you can’t perform both reversals “at the same time” for the following reason. Let’s attempt to perform both reversals “at the same time.” In this crossed-chain diagram, when we swap 2 and 4 on B’s side of the 1-3 chain, one of the 4’s in the 1-4 chain may change into a 2, and when we swap 2 and 3 on E’s side of the 1-4 chain, one of the 3’s in the 1-3 chain may change into a 2 . This is shown in the following figure: one 2 in each chain is shaded gray. Recall that these figures are incomplete; they focus on one vertex (F), its neighbors (A thru E), and Kempe chains. Other vertices and edges are not shown.

Note how one of the 3’s changed into 2 on the left. This can happen when we reverse $\mathrm{C}$ and $\mathrm{E}$ (which were originally 3 and 2 ) on E’s side of the 1-4 chain. Note also how one of the 4’s changed into 2 on the right. This can happen when we reverse B and D (which were originally 2 and 4) outside of the 1-3 chain. Now we see where a problem can occur when attempting to swap the colors of two chains at the same time. If these two 2’s happen to be connected by an edge like the dashed edge shown above, if we perform the double reversal at the same time, this causes two vertices of the same color to share an edge, which isn’t allowed. We’ll revisit Kempe’s strategy for coloring a vertex with degree five in Chapter $25 .$

数学代写|图论作业代写Graph Theory代考| The shading of one section of the B-R

图论代考

数学代写|图论作业代写Graph Theory代考|The shading of one section of the B-R

由于 Kempe 链的每个部分都与同一颜色对的其他部分隔离,因此 Kempe 链的任何部分的颜色可以颠倒,但仍满足四色定理。这是一个重要且有用的概念。

上面 BR 链的一个部分的阴影说明了任何 Kempe 链的任何部分的颜色如何可以反转。请注意,我们反转了 BR 链的一个部分的颜色,但没有反转中心部分的颜色。同一条链的每个部分的颜色可以独立于该链的其他部分反转。

为什么 PG 有 Kempe 链?很容易理解为什么 MPG 有 Kempe 链。(由于 PG 是通过从 MPG 中去除边缘而形成的,并且由于适用于 MPG 的着色也适用于 PG,因此 PG 也具有 Kempe 链。)

  • MPG 是三角测量的。它由具有三个边和三个顶点的面组成。
  • 每个面的三个顶点必须是三种不同的颜色。
  • 每条边由两个相邻的三角形共享,形成一个四边形。
  • 每个四边形将有 3 或 4 种不同的颜色。如果与共享边相对的两个顶点恰好是相同的颜色,则它有 3 种颜色。
  • 对于每个四边形,四个顶点中的至少 1 个顶点和最多 3 个顶点具有任何颜色对的颜色。例如,具有 R、G、B 和G有 1 个顶点R−是和3个顶点乙−G,或者您可以将其视为 1 个顶点乙−是和3个顶点G−R,或者您可以将其视为 BR 的 2 个顶点和 GY 的 2 个顶点。在后一种情况下,2G’ 不是同一链的连续颜色。
  • 当您将更多三角形组合在一起(四边形仅组合两个)并考虑可能的颜色时,您将看到 Kempe 的部分

链子出现。我们将在 Chápter 中看到这些 Kémpé chảins 是如何出现的21.
也很容易看出一对颜色(如 RY)将如何与其对应颜色(BG)相邻:

  • 画一张R顶点和一个是由边连接的顶点。
  • 如果一个新顶点连接到这些顶点中的每一个,它必须是乙或者G.
  • 如果一个新顶点连接到 R 而不是是,可能是是,乙, 或者G.
  • 如果一个新的顶点连接到是但不是R,可能是R,乙, 或者G.
  • RY 链要么继续增长,要么被 B 包围,G.
  • 如果你关注 B 和 G,你会为它的链条得出类似的结论。
  • 如果一条链条完全被其对应物包围,则链条的新部分可能会出现在其对应物的另一侧。
    Kempe 证明了所有具有四阶的顶点(那些恰好连接到其他四个顶点的顶点)都是四色的 [Ref. 2]。例如,考虑下面的中心顶点。

数学代写|图论作业代写Graph Theory代考|In the previous figure

在上图中,顶点和是四度,因为它连接到其他四个顶点。Kempe 表明顶点 A、B、C 和 D 不能被强制为四种不同的颜色,这样顶点 E 总是可以被着色而不会违反四色定理,无论 MPG 的其余部分看起来如何上一页显示的部分。

  • A 和 C 或者是 AC Kempe 链的同一部分的一部分,或者它们各自位于 AC Kempe 链的不同部分。(如果一种和C例如,是红色和黄色的,则 AC 链是红黄色链。) – 如果一种和C每个位于 AC Kempe 链的不同部分,其中一个部分的颜色可以反转,这有效地重新着色 C 以匹配 A 的颜色。如果 A 和 C 是 AC Kempe 链的同一部分的一部分,则 B 和 D每个都必须位于 BD Kempe 链的不同部分,因为 AC Kempe 链将阻止任何 BD Kempe 链从 B 到达 D。(如果乙和D是蓝色和绿色,例如,那么一种BD Kempe 链是蓝绿色链。)在这种情况下,由于 B 和 D 分别位于 BD Kempe 链的不同部分,因此 BD Kempe 链的其中一个部分的颜色可以反转,这有效地重新着色 D 以匹配 B颜色。– 因此,可以使 C 与 A 具有相同的颜色或使 D 具有与 A 相同的颜色乙通过反转 Kempe 链的分离部分。

上面的图表是不完整的。这些图只显示了一个四阶顶点(顶点 E)、它的最近邻居(A、B、C 和 D),以及 AC Kempe 链的片段。整个图还将包含几个其他顶点(特别是与 B 或 D 相同的颜色)和足够多的边以成为 MPG。左图有 A 连接到C在 AC Kempe 链的单个部分中(意味着该链的顶点颜色与 A 和 C 相同)。左图显示此 AC Kempe 链阻止 B 连接到DBD Kempe 链条的一个部分。中间的数字在 AC Kempe 链的不同部分有 A 和 C。在这种情况下,B 可以通过 BD Kempe 链的单个部分连接到 D。但是,由于四阶顶点的 A 和 C 位于不同的部分,因此可以反转 C 链的颜色,以便在四阶顶点中,C 有效地重新着色以匹配 A 的颜色,如右图所示. 类似地,可以在左图中反转 D 的部分,以便有效地重新着色 D 以匹配 B 的颜色。

Kempe 还试图证明五阶顶点是可四色的,以证明四色定理 [Ref. 2],但 Heawood 在 1890 年证明他关于五次顶点的论点是不充分的 [Ref. 3]。让我们探讨一下如果我们尝试将我们对度数为四的顶点的推理应用于度数为五的顶点会发生什么。

数学代写|图论作业代写Graph Theory代考|The previous diagrams

前面的图表显示,当在交叉链图中一次执行两种颜色反转时,第一次颜色反转可能会破坏另一个链,从而允许第二次颜色反转影响 F 的一个邻居的颜色。当我们执行2−4反转将 B 从 2 更改为 4 ,这打破了 1-4 链。然后,当我们执行 2-3 反转以将 E 从 3 更改时,这导致 C 从 3 更改为 2 。结果,F 仍然连接到四种不同的颜色;这并没有像预期的那样反转为三个。
不幸的是,由于以下原因,您不能“同时”执行两个冲销。让我们尝试“同时”执行两个反转。在这个交叉链图中,当我们在 1-3 链的 B 侧交换 2 和 4 时,1-4 链中的一个 4 可能会变成 2,当我们在 E 侧交换 2 和 3 时1-4 链,1-3 链中的 3 之一可能会变为 2 。如下图所示:每条链中的一个 2 为灰色阴影。回想一下,这些数字是不完整的;他们专注于一个顶点 (F)、它的邻居 (A 到 E) 和 Kempe 链。其他顶点和边未显示。

请注意左侧的 3 之一如何变为 2。当我们反转时会发生这种情况C和和(最初是 3 和 2 )在 1-4 链的 E 侧。还要注意 4 个中的一个如何在右侧变为 2。当我们在 1-3 链之外反转 B 和 D(最初是 2 和 4)时,就会发生这种情况。现在我们看到了尝试同时交换两条链的颜色时会出现问题的地方。如果这两个 2 恰好通过上图虚线这样的边连接起来,如果我们同时进行双重反转,就会导致两个相同颜色的顶点共享一条边,这是不允许的。我们将在第 1 章重新讨论 Kempe 为五阶顶点着色的策略25.

数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|图论作业代写Graph Theory代考|MATH361

如果你也在 怎样代写图论Graph Theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

在数学中,图论是对图的研究,它是用来模拟对象之间成对关系的数学结构。这里,图由顶点(也称为节点或点)组成,这些顶点由边(也称为链接或线)连接。

statistics-lab™ 为您的留学生涯保驾护航 在代写图论Graph Theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写图论Graph Theory代写方面经验极为丰富,各种代写图论Graph Theory相关的作业也就用不着说。

我们提供的图论Graph Theory及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|图论作业代写Graph Theory代考|MATH361

数学代写|图论作业代写Graph Theory代考|Auxiliary Definitions and Results

Definition 2. For $\lambda>0$ and $k \in \mathbb{N}$, we say that a vertex set $U$ in a graph $G$ is $(\lambda, k)$-thin around $A$ if, for each $i \in \mathbb{N}$,
$$
\left|N_{G}\left(B_{G-U}^{i-1}(A)\right) \cap U\right| \leq \lambda i^{k} .
$$
We will use the following two results. The first one (which essentially follows from [7, Proposition 3.5]) shows that the rate of expansion for every small set is almost exponential in a robust expander even after deleting a thin set around it. The second one $[11$, Lemma 3.12] ensures the existence of a linear size vertex set with polylogarithmic diameter in $G$ while avoiding an arbitrary set of size $o\left(n / \log ^{2} n\right)$

Proposition 1. Let $0<1 / d \ll \varepsilon_{1} \ll 1 / \lambda, 1 / k$ and $1 \leq r \leq \log n$. Suppose $G$ is an $n$-vertex $\left(\varepsilon_{1}, \varepsilon_{1} d\right)$-expander with $\delta(G) \geq d$, and $X, Y$ are sets of vertices with $|Y| \leq \frac{1}{4} \varepsilon(|X|) \cdot|X| .$ Let $W$ be a $(\lambda, k)$-thin set around $X$ in $G-Y$. Then, for each $1 \leq r \leq \log n$, we have
$$
\left|B_{G-W-Y}^{r}(X)\right| \geq \exp \left(r^{1 / 4}\right) .
$$
Lemma 2. Let $0<1 / d \ll \varepsilon_{1}<1$ and let $G$ be an $n$-vertex $\left(\varepsilon_{1}, \varepsilon_{1} d\right)$-expander with $\delta(G) \geq d$. For any $W \subseteq V(G)$ with $|W| \leq \varepsilon_{1} n / 100 \log ^{2} n$, there is a set $B \subseteq G=W$ with size at least $n / 25$ and diameter at most $100 \varepsilon_{1}^{-1} \log ^{3} n$.

数学代写|图论作业代写Graph Theory代考|Introduction and Main Results

The Erdős-Rényi random graph $G(n, m)$ is a graph chosen uniformly at random from the class of all vertex-labelled graphs on vertex set $[n]:={1, \ldots, n}$ with $m=m(n)$ edges. Many exciting results on $G(n, m)$ and on the closely related binomial random graph $G(n, p)$ can be found in literature (see e.g. [1]). In the last decades various models of random graphs have been introduced by imposing additional constraints. Prominent examples of such models are random planar graphs and related objects (see e.g. $[4-6,8]$ ).

Throughout this extended abstract, all asymptotics are taken as $n \rightarrow \infty$ and we say that an event holds with high probability (whp for short) if it holds with probability tending to 1 as $n \rightarrow \infty$. Given a graph $H$ we denote by $V(H)$ its vertex set, by $v(H)$ the number of vertices, by $e(H)$ the number of edges, and by $d_{H}(v)$ the degree of a vertex $v$ in $H$. We call a vertex $v \in V(H)$ a cut vertex in $H$ if deleting $v$ (and its incident edges) from $H$ increases the number of components in $H$. We denote by cv $(H)$ the number of cut vertices in $H$ divided by $v(H)$.
Let $P(n, m)$ be the random planar graph, i.e. a graph chosen uniformly at random from the class of all vertex-labelled planar graphs on vertex set $[n]$ with $m=m(n)$ edges, and $G=G(n, m)$ the Erdős-Rényi random graph. In this extended abstract, we determine the asymptotic behaviour of cv $(P)$ and $\operatorname{cv}(G)$, i.e. the fraction of cut vertices in $P$ and $G$ respectively, revealing their coincidence if $2 m / n \rightarrow d \in[0,1]$ and stark difference otherwise. We note that Drmota, Noy, and Stufler [3] studied the number of cut vertices in a random planar map (i.e. a connected planar graph embedded in the plane) with given number of edges.

To state our main results on $\mathrm{cv}(P)$ we distinguish two cases depending on how large the average degree $2 m / n$ is. Our first case is when $2 m / n \rightarrow d \in[0,1]$.

数学代写|图论作业代写Graph Theory代考|MATH361

图论代考

数学代写|图论作业代写Graph Theory代考|Auxiliary Definitions and Results

定义 2. 对于 $\lambda>0$ 和 $k \in \mathbb{N}$ ,我们说一个顶点集 $U$ 在图表中 $G$ 是 $(\lambda, k)$ – 周围变薄 $A$ 如果,对于每个 $i \in \mathbb{N}$ ,
$$
\left|N_{G}\left(B_{G-U}^{i-1}(A)\right) \cap U\right| \leq \lambda i^{k} .
$$
我们将使用以下两个结果。第一个 (基本上来自 [7, Proposition 3.5]) 表明,即使在删除围绕它的蒲集之后, 每个小集的扩展率在鲁棒扩展器中几乎都是指数级的。第二个 $[11$ ,引理 3.12] 确保存在一个线性大小的顶点集, 其多对数直径 $G$ 同时避免任意大小的集合 $o\left(n / \log ^{2} n\right)$
命题 1. 让 $0<1 / d \ll \varepsilon_{1} \ll 1 / \lambda, 1 / k$ 和 $1 \leq r \leq \log n$. 认为 $G$ 是一个 $n$-顶点 $\left(\varepsilon_{1}, \varepsilon_{1} d\right)$ – 扩展器 $\delta(G) \geq d$ 和 $X, Y$ 是一组顶点 $|Y| \leq \frac{1}{4} \varepsilon(|X|) \cdot|X|$. 让 $W$ 做一个 $(\lambda, k)$-周围很薄 $X$ 在 $G-Y$. 然后,对于每个 $1 \leq r \leq \log n$ ,我们有
$$
\left|B_{G-W-Y}^{r}(X)\right| \geq \exp \left(r^{1 / 4}\right)
$$
引理 2. 让 $0<1 / d \ll \varepsilon_{1}<1$ 然后让 $G$ 豆 $n$-顶点 $\left(\varepsilon_{1}, \varepsilon_{1} d\right)$ – 扩展器 $\delta(G) \geq d$. 对于任何 $W \subseteq V(G)$ 和 $|W| \leq \varepsilon_{1} n / 100 \log ^{2} n$, 有一个集合 $B \subseteq G=W$ 至少有大小 $n / 25$ 和直径最多 $100 \varepsilon_{1}^{-1} \log ^{3} n$.

数学代写|图论作业代写Graph Theory代考|Introduction and Main Results

Erdős-Rényi 随机图 $G(n, m)$ 是从顶点集上所有顶点标记图的类中均匀随机选择的图 $[n]:=1, \ldots, n$ 和 $m=m(n)$ 边缘。许多令人兴奋的结果 $G(n, m)$ 在密切相关的二项式随机图上 $G(n, p)$ 可以在文献中找到(参 见例如 [1]) 。在过去的几十年中,通过施加额外的约束引入了各种随机图模型。这种模型的突出例子是随机平 面图和相关对象 (参见例如 $[4-6,8]$ ).
在这个扩展的摘要中,所有的渐近线都被视为 $n \rightarrow \infty$ 我们说一个事件以高概率成立 (简称 whp),如果它的 概率趋于 $1 n \rightarrow \infty$. 给定一张图 $H$ 我们表示 $V(H)$ 它的顶点集,由 $v(H)$ 顶点的数量,由 $e(H)$ 边的数量,并由 $d_{H}(v)$ 顶点的度数 $v$ 在 $H$. 我们称顶点 $v \in V(H)$ 一个切割顶点 $H$ 如果删除 $v$ (及其入射边缘) 来自 $H$ 增加组件 的数量 $H$. 我们用 $\mathrm{cv}$ 表示 $(H)$ 中的切割顶点数 $H$ 除以 $v(H)$.
让 $P(n, m)$ 是随机平面图,即从顶点集上所有顶点标记的平面图的类中均匀随机选择的图 $[n]$ 和 $m=m(n)$ 边 缘,和 $G=G(n, m)$ Erdős-Rényi 随机图。在这个扩展的摘要中,我们确定了 cv 的渐近行为 $(P)$ 和cv $(G)$ , 即切割顶点的分数 $P$ 和 $G$ 分别揭示他们的巧合,如果 $2 m / n \rightarrow d \in[0,1]$ 否则就截然不同。我们注意到

Drmota、Noy 和 Stufler [3] 研究了具有给定边数的随机平面图 (即嵌入平面中的连接平面图) 中切割顶点的数 量。
陈述我们的主要结果cv $(P)$ 我们根据平均度数有多大来区分两种情况 $2 m / n$ 是。我们的第一个案例是当 $2 m / n \rightarrow d \in[0,1]$

此图片的alt属性为空;文件名为statistics-lab-1024x443.jpg
数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。



广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。



术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。



有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。



回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。



R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写







AIOSEO設定

切换面板:AIOSEO設定

  • 文章
  • 区块

6个区块514字打开发布面板

  • 文章

The graphs above are incomplete. These figures only show a vertex with degree four (vertex E), its nearest neighbors (A, B, C, and D), and segments of A-C Kempe chains. The entire graphs would also contain several other vertices (especially, more colored the same as B or D) and enough edges to be MPG’s. The left figure has A connected to $C$ in a single section of an A-C Kempe chain (meaning that the vertices of this chain are colored the same as A and C). The left figure shows that this A-C Kempe chain prevents B from connecting to $\mathrm{D}$ with a single section of a B-D Kempe chain. The middle figure has A and C in separate sections of A-C Kempe chains. In this case, B could connect to D with a single section of a B-D Kempe chain. However, since the A and C of the vertex with degree four lie on separate sections, the color of C’s chain can be reversed so that in the vertex with degree four, C is effectively recolored to match A’s color, as shown in the right figure. Similarly, D’s section could be reversed in the left figure so that D is effectively recolored to match B’s color.

Kempe also attempted to demonstrate that vertices with degree five are fourcolorable in his attempt to prove the four-color theorem [Ref. 2], but his argument for vertices with degree five was shown by Heawood in 1890 to be insufficient [Ref. 3]. Let’s explore what happens if we attempt to apply our reasoning for vertices with degree four to a vertex with degree five.

数学代写|图论作业代写Graph Theory代考|The previous diagrams

The previous diagrams show that when the two color reversals are performed one at a time in the crossed-chain graph, the first color reversal may break the other chain, allowing the second color reversal to affect the colors of one of F’s neighbors. When we performed the $2-4$ reversal to change B from 2 to 4 , this broke the 1-4 chain. When we then performed the 2-3 reversal to change E from 3, this caused C to change from 3 to 2 . As a result, F remains connected to four different colors; this wasn’t reversed to three as expected.
Unfortunately, you can’t perform both reversals “at the same time” for the following reason. Let’s attempt to perform both reversals “at the same time.” In this crossed-chain diagram, when we swap 2 and 4 on B’s side of the 1-3 chain, one of the 4’s in the 1-4 chain may change into a 2, and when we swap 2 and 3 on E’s side of the 1-4 chain, one of the 3’s in the 1-3 chain may change into a 2 . This is shown in the following figure: one 2 in each chain is shaded gray. Recall that these figures are incomplete; they focus on one vertex (F), its neighbors (A thru E), and Kempe chains. Other vertices and edges are not shown.

Note how one of the 3’s changed into 2 on the left. This can happen when we reverse $\mathrm{C}$ and $\mathrm{E}$ (which were originally 3 and 2 ) on E’s side of the 1-4 chain. Note also how one of the 4’s changed into 2 on the right. This can happen when we reverse B and D (which were originally 2 and 4) outside of the 1-3 chain. Now we see where a problem can occur when attempting to swap the colors of two chains at the same time. If these two 2’s happen to be connected by an edge like the dashed edge shown above, if we perform the double reversal at the same time, this causes two vertices of the same color to share an edge, which isn’t allowed. We’ll revisit Kempe’s strategy for coloring a vertex with degree five in Chapter $25 .$

数学代写|图论作业代写Graph Theory代考| The shading of one section of the B-R

图论代考

数学代写|图论作业代写Graph Theory代考|The shading of one section of the B-R

由于 Kempe 链的每个部分都与同一颜色对的其他部分隔离,因此 Kempe 链的任何部分的颜色可以颠倒,但仍满足四色定理。这是一个重要且有用的概念。

上面 BR 链的一个部分的阴影说明了任何 Kempe 链的任何部分的颜色如何可以反转。请注意,我们反转了 BR 链的一个部分的颜色,但没有反转中心部分的颜色。同一条链的每个部分的颜色可以独立于该链的其他部分反转。

为什么 PG 有 Kempe 链?很容易理解为什么 MPG 有 Kempe 链。(由于 PG 是通过从 MPG 中去除边缘而形成的,并且由于适用于 MPG 的着色也适用于 PG,因此 PG 也具有 Kempe 链。)

  • MPG 是三角测量的。它由具有三个边和三个顶点的面组成。
  • 每个面的三个顶点必须是三种不同的颜色。
  • 每条边由两个相邻的三角形共享,形成一个四边形。
  • 每个四边形将有 3 或 4 种不同的颜色。如果与共享边相对的两个顶点恰好是相同的颜色,则它有 3 种颜色。
  • 对于每个四边形,四个顶点中的至少 1 个顶点和最多 3 个顶点具有任何颜色对的颜色。例如,具有 R、G、B 和G有 1 个顶点R−是和3个顶点乙−G,或者您可以将其视为 1 个顶点乙−是和3个顶点G−R,或者您可以将其视为 BR 的 2 个顶点和 GY 的 2 个顶点。在后一种情况下,2G’ 不是同一链的连续颜色。
  • 当您将更多三角形组合在一起(四边形仅组合两个)并考虑可能的颜色时,您将看到 Kempe 的部分

链子出现。我们将在 Chápter 中看到这些 Kémpé chảins 是如何出现的21.
也很容易看出一对颜色(如 RY)将如何与其对应颜色(BG)相邻:

  • 画一张R顶点和一个是由边连接的顶点。
  • 如果一个新顶点连接到这些顶点中的每一个,它必须是乙或者G.
  • 如果一个新顶点连接到 R 而不是是,可能是是,乙, 或者G.
  • 如果一个新的顶点连接到是但不是R,可能是R,乙, 或者G.
  • RY 链要么继续增长,要么被 B 包围,G.
  • 如果你关注 B 和 G,你会为它的链条得出类似的结论。
  • 如果一条链条完全被其对应物包围,则链条的新部分可能会出现在其对应物的另一侧。
    Kempe 证明了所有具有四阶的顶点(那些恰好连接到其他四个顶点的顶点)都是四色的 [Ref. 2]。例如,考虑下面的中心顶点。

数学代写|图论作业代写Graph Theory代考|In the previous figure

在上图中,顶点和是四度,因为它连接到其他四个顶点。Kempe 表明顶点 A、B、C 和 D 不能被强制为四种不同的颜色,这样顶点 E 总是可以被着色而不会违反四色定理,无论 MPG 的其余部分看起来如何上一页显示的部分。

  • A 和 C 或者是 AC Kempe 链的同一部分的一部分,或者它们各自位于 AC Kempe 链的不同部分。(如果一种和C例如,是红色和黄色的,则 AC 链是红黄色链。) – 如果一种和C每个位于 AC Kempe 链的不同部分,其中一个部分的颜色可以反转,这有效地重新着色 C 以匹配 A 的颜色。如果 A 和 C 是 AC Kempe 链的同一部分的一部分,则 B 和 D每个都必须位于 BD Kempe 链的不同部分,因为 AC Kempe 链将阻止任何 BD Kempe 链从 B 到达 D。(如果乙和D是蓝色和绿色,例如,那么一种BD Kempe 链是蓝绿色链。)在这种情况下,由于 B 和 D 分别位于 BD Kempe 链的不同部分,因此 BD Kempe 链的其中一个部分的颜色可以反转,这有效地重新着色 D 以匹配 B颜色。– 因此,可以使 C 与 A 具有相同的颜色或使 D 具有与 A 相同的颜色乙通过反转 Kempe 链的分离部分。

上面的图表是不完整的。这些图只显示了一个四阶顶点(顶点 E)、它的最近邻居(A、B、C 和 D),以及 AC Kempe 链的片段。整个图还将包含几个其他顶点(特别是与 B 或 D 相同的颜色)和足够多的边以成为 MPG。左图有 A 连接到C在 AC Kempe 链的单个部分中(意味着该链的顶点颜色与 A 和 C 相同)。左图显示此 AC Kempe 链阻止 B 连接到DBD Kempe 链条的一个部分。中间的数字在 AC Kempe 链的不同部分有 A 和 C。在这种情况下,B 可以通过 BD Kempe 链的单个部分连接到 D。但是,由于四阶顶点的 A 和 C 位于不同的部分,因此可以反转 C 链的颜色,以便在四阶顶点中,C 有效地重新着色以匹配 A 的颜色,如右图所示. 类似地,可以在左图中反转 D 的部分,以便有效地重新着色 D 以匹配 B 的颜色。

Kempe 还试图证明五阶顶点是可四色的,以证明四色定理 [Ref. 2],但 Heawood 在 1890 年证明他关于五次顶点的论点是不充分的 [Ref. 3]。让我们探讨一下如果我们尝试将我们对度数为四的顶点的推理应用于度数为五的顶点会发生什么。

数学代写|图论作业代写Graph Theory代考|The previous diagrams

前面的图表显示,当在交叉链图中一次执行两种颜色反转时,第一次颜色反转可能会破坏另一个链,从而允许第二次颜色反转影响 F 的一个邻居的颜色。当我们执行2−4反转将 B 从 2 更改为 4 ,这打破了 1-4 链。然后,当我们执行 2-3 反转以将 E 从 3 更改时,这导致 C 从 3 更改为 2 。结果,F 仍然连接到四种不同的颜色;这并没有像预期的那样反转为三个。
不幸的是,由于以下原因,您不能“同时”执行两个冲销。让我们尝试“同时”执行两个反转。在这个交叉链图中,当我们在 1-3 链的 B 侧交换 2 和 4 时,1-4 链中的一个 4 可能会变成 2,当我们在 E 侧交换 2 和 3 时1-4 链,1-3 链中的 3 之一可能会变为 2 。如下图所示:每条链中的一个 2 为灰色阴影。回想一下,这些数字是不完整的;他们专注于一个顶点 (F)、它的邻居 (A 到 E) 和 Kempe 链。其他顶点和边未显示。

请注意左侧的 3 之一如何变为 2。当我们反转时会发生这种情况C和和(最初是 3 和 2 )在 1-4 链的 E 侧。还要注意 4 个中的一个如何在右侧变为 2。当我们在 1-3 链之外反转 B 和 D(最初是 2 和 4)时,就会发生这种情况。现在我们看到了尝试同时交换两条链的颜色时会出现问题的地方。如果这两个 2 恰好通过上图虚线这样的边连接起来,如果我们同时进行双重反转,就会导致两个相同颜色的顶点共享一条边,这是不允许的。我们将在第 1 章重新讨论 Kempe 为五阶顶点着色的策略25.

数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|图论作业代写Graph Theory代考|MATH 141

如果你也在 怎样代写图论Graph Theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

在数学中,图论是对图的研究,它是用来模拟对象之间成对关系的数学结构。这里,图由顶点(也称为节点或点)组成,这些顶点由边(也称为链接或线)连接。

statistics-lab™ 为您的留学生涯保驾护航 在代写图论Graph Theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写图论Graph Theory代写方面经验极为丰富,各种代写图论Graph Theory相关的作业也就用不着说。

我们提供的图论Graph Theory及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|图论作业代写Graph Theory代考|MATH 141

数学代写|图论作业代写Graph Theory代考|Nested Cycles with No Geometric Crossings

For $n \in \mathbb{N}$, let $[n]:={1, \ldots, n}$. If we claim that a result holds for $0<a \ll$ $b, c \ll d<1$, it means that there exist positive functions $f, g$ such that the result holds as long as $a<f(b, c)$ and $b<g(d)$ and $c<g(d)$. We will not compute these functions explicitly. In many cases, we treat large numbers as if they are integers, by omitting floors and ceilings if it does not affect the argument. We write log for the base-e logarithm.

Given a graph $G$, denote its average degree $2 e(G) /|G|$ by $d(G)$. Let $F \subseteq G$ and $H$ be graphs, and $U \subseteq V(G)$. We write $G[U] \subseteq G$ for the induced subgraph of $G$ on vertex set $U$. Denote by $G \cup H$ the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$, and write $G-U$ for the induced subgraph $G[V(G) \backslash U]$, and $G \backslash F$ for the spanning subgraph of $G$ obtained from removing the edge set of $F$. For a set of vertices $X \subseteq V(G)$ and $i \in \mathbb{N}$, denote
$N^{i}(X):={u \in V(G)$ : the distance in $G$ between $X$ and $u$ is exactly $i}$,
and write $N^{0}(X)=X, N(X):=N^{1}(X)$, and for $i \in \mathbb{N} \cup{0}$, let $B^{i}(X)=$ $\bigcup_{j=0}^{i} N^{j}(X)$ be the ball of radius $i$ around $X$. For a path $P$, we write $\ell(P)$ for its length, which is the number of edges in the path.

数学代写|图论作业代写Graph Theory代考|Sublinear Expander

Our proof makes use of the sublinear expander introduced by Komlós and Szemerédi $[9]$. We shall use the following extension from $[7]$.

Definition 1. Let $\varepsilon_{1}>0$ and $k \in \mathbb{N}$. A graph $G$ is an $\left(\varepsilon_{1}, k\right)$-expander if for all $X \subset V(G)$ with $k / 2 \leq|X| \leq|G| / 2$, and any subgraph $F \subseteq G$ with $e(F) \leq$ $d(G) \cdot \varepsilon(|X|)|X|$, we have
$$
\left|\bar{N}{G \backslash F}(\bar{X})\right| \geq \varepsilon(|\bar{X}|) \cdot|\bar{X}| $$ where $$ \varepsilon(x)=\varepsilon\left(x, \varepsilon{1}, k\right)=\left{\begin{array}{cl}
0 & \text { if } x<k / 5 \
\varepsilon_{1} / \log ^{2}(15 x / k) & \text { if } x \geq k / 5
\end{array}\right.
$$

We invoke [7, Lemma 3.2], which asserts that every graph contains an expander subgraph with almost the same average degree, to reduce Theorem 1 to an expander. That is, it suffices to show that any $n$-vertex expander with sufficiently large constant average degree contains two nested cycles without crossings. One of the main tools we use is the following lemma ( $[9$, Corollary 2.3]), which allows us to link two sets with a short path avoiding a small set.
Lemma 1. Let $\varepsilon_{1}, k>0$. If $G$ is an $n$-vertex $\left(\varepsilon_{1}, k\right)$-expander, then any two vertex sets $X_{1}, X_{2}$, each of size at least $x \geq k$, are of distance at most $m=$ $\frac{1}{\varepsilon_{1}} \log ^{3}(15 n / k)$ apart. This remains true even after deleting $\varepsilon(x) \cdot x / 4$ vertices from $G$.

数学代写|图论作业代写Graph Theory代考|MATH 141

图论代考

数学代写|图论作业代写Graph Theory代考|Nested Cycles with No Geometric Crossings

为了 $n \in \mathbb{N}$ ,让 $[n]:=1, \ldots, n$. 如果我们声称一个结果成立 $0<a \ll b, c \ll d<1$, 表示存在正函数 $f, g$ 使得结果保持只要 $a<f(b, c)$ 和 $b<g(d)$ 和 $c<g(d)$. 我们不会明确计算这些函数。在许多情况下,我们将大 数视为整数,如果不影响论证,则省略地板和天花板。我们为以 e 为底的对数写 log。
给定一张图 $G$, 表示其平均度数 $2 e(G) /|G|$ 经过 $d(G)$. 让 $F \subseteq G$ 和 $H$ 是图表,并且 $U \subseteq V(G)$. 我们写 $G[U] \subseteq G$ 对于诱导子图 $G$ 在顶点集上 $U$. 表示为 $G \cup H$ 带顶点集的图 $V(G) \cup V(H)$ 和边集 $E(G) \cup E(H)$ ,和写 $G-U$ 对于诱导子图 $G[V(G) \backslash U]$ ,和 $G \backslash F$ 对于跨越子图 $G$ 通过去除边缘集获得 $F$. 对于一组顶点 $X \subseteq V(G)$ 和 $i \in \mathbb{N}$, 表示
$N^{i}(X):=u \in V(G) \$:$ thedistancein $\$ G$ between $\$ X \$$ and $\$ u \$ i$ sexactly $\$ i$,
并写 $N^{0}(X)=X, N(X):=N^{1}(X)$ ,并且对于 $i \in \mathbb{N} \cup 0$ , 让 $B^{i}(X)=\bigcup_{j=0}^{i} N^{j}(X)$ 成为半径球 $i$ 大约 $X$. 对于一条路径 $P$ ,我们写 $\ell(P)$ 它的长度,即路径中的边数。

数学代写|图论作业代写Graph Theory代考|Sublinear Expander

我们的证明使用了 Komlós 和 Szemerédi 引入的次线性扩展器 [9]. 我们将使用以下扩展名 $[7]$.
定义 1. 让 $\varepsilon_{1}>0$ 和 $k \in \mathbb{N}$. 图表 $G$ 是一个 $\left(\varepsilon_{1}, k\right)$ – 如果所有人都可以扩展 $X \subset V(G)$ 和 $k / 2 \leq|X| \leq|G| / 2$ , 和任何子图 $F \subseteq G$ 和 $e(F) \leq d(G) \cdot \varepsilon(|X|)|X|$ ,我们有
$$
|\bar{N} G \backslash F(\bar{X})| \geq \varepsilon(|\bar{X}|) \cdot|\bar{X}|
$$
其中 $\$ \$$ |varepsilon $(x)=\mid$ varepsilon $\backslash$ left $(x$, Ivarepsilon ${1}, k \backslash$ right $)=\backslash$ left {
$$
0 \text { if } x0$. 如果 $G$ 是一个 $n$-顶点 $\left(\varepsilon_{1}, k\right)$-expander,然后是任意两个顶点集 $X_{1}, X_{2}$ ,每个尺寸至少 $x \geq k$, 至多是距离 $m=\frac{1}{\varepsilon_{1}} \log ^{3}(15 n / k)$ 分开。即使在删除后仍然如此 $\varepsilon(x) \cdot x / 4$ 顶点来自 $G$.

此图片的alt属性为空;文件名为statistics-lab-1024x443.jpg
数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。



广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。



术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。



有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。



回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。



R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写







AIOSEO設定

切换面板:AIOSEO設定

  • 文章
  • 区块

6个区块514字打开发布面板

  • 文章

The graphs above are incomplete. These figures only show a vertex with degree four (vertex E), its nearest neighbors (A, B, C, and D), and segments of A-C Kempe chains. The entire graphs would also contain several other vertices (especially, more colored the same as B or D) and enough edges to be MPG’s. The left figure has A connected to $C$ in a single section of an A-C Kempe chain (meaning that the vertices of this chain are colored the same as A and C). The left figure shows that this A-C Kempe chain prevents B from connecting to $\mathrm{D}$ with a single section of a B-D Kempe chain. The middle figure has A and C in separate sections of A-C Kempe chains. In this case, B could connect to D with a single section of a B-D Kempe chain. However, since the A and C of the vertex with degree four lie on separate sections, the color of C’s chain can be reversed so that in the vertex with degree four, C is effectively recolored to match A’s color, as shown in the right figure. Similarly, D’s section could be reversed in the left figure so that D is effectively recolored to match B’s color.

Kempe also attempted to demonstrate that vertices with degree five are fourcolorable in his attempt to prove the four-color theorem [Ref. 2], but his argument for vertices with degree five was shown by Heawood in 1890 to be insufficient [Ref. 3]. Let’s explore what happens if we attempt to apply our reasoning for vertices with degree four to a vertex with degree five.

数学代写|图论作业代写Graph Theory代考|The previous diagrams

The previous diagrams show that when the two color reversals are performed one at a time in the crossed-chain graph, the first color reversal may break the other chain, allowing the second color reversal to affect the colors of one of F’s neighbors. When we performed the $2-4$ reversal to change B from 2 to 4 , this broke the 1-4 chain. When we then performed the 2-3 reversal to change E from 3, this caused C to change from 3 to 2 . As a result, F remains connected to four different colors; this wasn’t reversed to three as expected.
Unfortunately, you can’t perform both reversals “at the same time” for the following reason. Let’s attempt to perform both reversals “at the same time.” In this crossed-chain diagram, when we swap 2 and 4 on B’s side of the 1-3 chain, one of the 4’s in the 1-4 chain may change into a 2, and when we swap 2 and 3 on E’s side of the 1-4 chain, one of the 3’s in the 1-3 chain may change into a 2 . This is shown in the following figure: one 2 in each chain is shaded gray. Recall that these figures are incomplete; they focus on one vertex (F), its neighbors (A thru E), and Kempe chains. Other vertices and edges are not shown.

Note how one of the 3’s changed into 2 on the left. This can happen when we reverse $\mathrm{C}$ and $\mathrm{E}$ (which were originally 3 and 2 ) on E’s side of the 1-4 chain. Note also how one of the 4’s changed into 2 on the right. This can happen when we reverse B and D (which were originally 2 and 4) outside of the 1-3 chain. Now we see where a problem can occur when attempting to swap the colors of two chains at the same time. If these two 2’s happen to be connected by an edge like the dashed edge shown above, if we perform the double reversal at the same time, this causes two vertices of the same color to share an edge, which isn’t allowed. We’ll revisit Kempe’s strategy for coloring a vertex with degree five in Chapter $25 .$

数学代写|图论作业代写Graph Theory代考| The shading of one section of the B-R

图论代考

数学代写|图论作业代写Graph Theory代考|The shading of one section of the B-R

由于 Kempe 链的每个部分都与同一颜色对的其他部分隔离,因此 Kempe 链的任何部分的颜色可以颠倒,但仍满足四色定理。这是一个重要且有用的概念。

上面 BR 链的一个部分的阴影说明了任何 Kempe 链的任何部分的颜色如何可以反转。请注意,我们反转了 BR 链的一个部分的颜色,但没有反转中心部分的颜色。同一条链的每个部分的颜色可以独立于该链的其他部分反转。

为什么 PG 有 Kempe 链?很容易理解为什么 MPG 有 Kempe 链。(由于 PG 是通过从 MPG 中去除边缘而形成的,并且由于适用于 MPG 的着色也适用于 PG,因此 PG 也具有 Kempe 链。)

  • MPG 是三角测量的。它由具有三个边和三个顶点的面组成。
  • 每个面的三个顶点必须是三种不同的颜色。
  • 每条边由两个相邻的三角形共享,形成一个四边形。
  • 每个四边形将有 3 或 4 种不同的颜色。如果与共享边相对的两个顶点恰好是相同的颜色,则它有 3 种颜色。
  • 对于每个四边形,四个顶点中的至少 1 个顶点和最多 3 个顶点具有任何颜色对的颜色。例如,具有 R、G、B 和G有 1 个顶点R−是和3个顶点乙−G,或者您可以将其视为 1 个顶点乙−是和3个顶点G−R,或者您可以将其视为 BR 的 2 个顶点和 GY 的 2 个顶点。在后一种情况下,2G’ 不是同一链的连续颜色。
  • 当您将更多三角形组合在一起(四边形仅组合两个)并考虑可能的颜色时,您将看到 Kempe 的部分

链子出现。我们将在 Chápter 中看到这些 Kémpé chảins 是如何出现的21.
也很容易看出一对颜色(如 RY)将如何与其对应颜色(BG)相邻:

  • 画一张R顶点和一个是由边连接的顶点。
  • 如果一个新顶点连接到这些顶点中的每一个,它必须是乙或者G.
  • 如果一个新顶点连接到 R 而不是是,可能是是,乙, 或者G.
  • 如果一个新的顶点连接到是但不是R,可能是R,乙, 或者G.
  • RY 链要么继续增长,要么被 B 包围,G.
  • 如果你关注 B 和 G,你会为它的链条得出类似的结论。
  • 如果一条链条完全被其对应物包围,则链条的新部分可能会出现在其对应物的另一侧。
    Kempe 证明了所有具有四阶的顶点(那些恰好连接到其他四个顶点的顶点)都是四色的 [Ref. 2]。例如,考虑下面的中心顶点。

数学代写|图论作业代写Graph Theory代考|In the previous figure

在上图中,顶点和是四度,因为它连接到其他四个顶点。Kempe 表明顶点 A、B、C 和 D 不能被强制为四种不同的颜色,这样顶点 E 总是可以被着色而不会违反四色定理,无论 MPG 的其余部分看起来如何上一页显示的部分。

  • A 和 C 或者是 AC Kempe 链的同一部分的一部分,或者它们各自位于 AC Kempe 链的不同部分。(如果一种和C例如,是红色和黄色的,则 AC 链是红黄色链。) – 如果一种和C每个位于 AC Kempe 链的不同部分,其中一个部分的颜色可以反转,这有效地重新着色 C 以匹配 A 的颜色。如果 A 和 C 是 AC Kempe 链的同一部分的一部分,则 B 和 D每个都必须位于 BD Kempe 链的不同部分,因为 AC Kempe 链将阻止任何 BD Kempe 链从 B 到达 D。(如果乙和D是蓝色和绿色,例如,那么一种BD Kempe 链是蓝绿色链。)在这种情况下,由于 B 和 D 分别位于 BD Kempe 链的不同部分,因此 BD Kempe 链的其中一个部分的颜色可以反转,这有效地重新着色 D 以匹配 B颜色。– 因此,可以使 C 与 A 具有相同的颜色或使 D 具有与 A 相同的颜色乙通过反转 Kempe 链的分离部分。

上面的图表是不完整的。这些图只显示了一个四阶顶点(顶点 E)、它的最近邻居(A、B、C 和 D),以及 AC Kempe 链的片段。整个图还将包含几个其他顶点(特别是与 B 或 D 相同的颜色)和足够多的边以成为 MPG。左图有 A 连接到C在 AC Kempe 链的单个部分中(意味着该链的顶点颜色与 A 和 C 相同)。左图显示此 AC Kempe 链阻止 B 连接到DBD Kempe 链条的一个部分。中间的数字在 AC Kempe 链的不同部分有 A 和 C。在这种情况下,B 可以通过 BD Kempe 链的单个部分连接到 D。但是,由于四阶顶点的 A 和 C 位于不同的部分,因此可以反转 C 链的颜色,以便在四阶顶点中,C 有效地重新着色以匹配 A 的颜色,如右图所示. 类似地,可以在左图中反转 D 的部分,以便有效地重新着色 D 以匹配 B 的颜色。

Kempe 还试图证明五阶顶点是可四色的,以证明四色定理 [Ref. 2],但 Heawood 在 1890 年证明他关于五次顶点的论点是不充分的 [Ref. 3]。让我们探讨一下如果我们尝试将我们对度数为四的顶点的推理应用于度数为五的顶点会发生什么。

数学代写|图论作业代写Graph Theory代考|The previous diagrams

前面的图表显示,当在交叉链图中一次执行两种颜色反转时,第一次颜色反转可能会破坏另一个链,从而允许第二次颜色反转影响 F 的一个邻居的颜色。当我们执行2−4反转将 B 从 2 更改为 4 ,这打破了 1-4 链。然后,当我们执行 2-3 反转以将 E 从 3 更改时,这导致 C 从 3 更改为 2 。结果,F 仍然连接到四种不同的颜色;这并没有像预期的那样反转为三个。
不幸的是,由于以下原因,您不能“同时”执行两个冲销。让我们尝试“同时”执行两个反转。在这个交叉链图中,当我们在 1-3 链的 B 侧交换 2 和 4 时,1-4 链中的一个 4 可能会变成 2,当我们在 E 侧交换 2 和 3 时1-4 链,1-3 链中的 3 之一可能会变为 2 。如下图所示:每条链中的一个 2 为灰色阴影。回想一下,这些数字是不完整的;他们专注于一个顶点 (F)、它的邻居 (A 到 E) 和 Kempe 链。其他顶点和边未显示。

请注意左侧的 3 之一如何变为 2。当我们反转时会发生这种情况C和和(最初是 3 和 2 )在 1-4 链的 E 侧。还要注意 4 个中的一个如何在右侧变为 2。当我们在 1-3 链之外反转 B 和 D(最初是 2 和 4)时,就会发生这种情况。现在我们看到了尝试同时交换两条链的颜色时会出现问题的地方。如果这两个 2 恰好通过上图虚线这样的边连接起来,如果我们同时进行双重反转,就会导致两个相同颜色的顶点共享一条边,这是不允许的。我们将在第 1 章重新讨论 Kempe 为五阶顶点着色的策略25.

数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|图论作业代写Graph Theory代考|MAT 6495

如果你也在 怎样代写图论Graph Theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

在数学中,图论是对图的研究,它是用来模拟对象之间成对关系的数学结构。这里,图由顶点(也称为节点或点)组成,这些顶点由边(也称为链接或线)连接。

statistics-lab™ 为您的留学生涯保驾护航 在代写图论Graph Theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写图论Graph Theory代写方面经验极为丰富,各种代写图论Graph Theory相关的作业也就用不着说。

我们提供的图论Graph Theory及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|图论作业代写Graph Theory代考|MAT 6495

数学代写|图论作业代写Graph Theory代考|Local Kakeya Sets

Let $\mathbb{F}$ be a finite field containing $q$ elements and for $n \geq 1$ let $\mathbb{F}^{n}$ be the set of all $n$-tuple vectors with entries belonging to $\mathbb{F}$.

We say that a set $\mathcal{K} \subseteq \mathbb{F}^{n}$ is a Kakeya set with respect to the vector $\mathbf{x}=$ $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$ if there exists $\mathbf{y}=\mathbf{y}(\mathbf{x}) \in \mathbb{F}^{n}$ such that the line
$$
L(\mathbf{x}, \mathbf{y}):=\bigcup_{a \in \mathbb{F}}{\mathbf{y}+a \cdot \mathbf{x}} \subseteq \mathcal{K},
$$
where $a \cdot \mathbf{x}:=\left(a x_{1}, \ldots, a x_{n}\right)$. For a set $\mathcal{T} \subseteq \mathbb{F}^{n}$, we say that $\mathcal{K} \subseteq \mathbb{F}^{n}$ is a Kakeya set with respect to $\mathcal{T}$ if $\mathcal{K}$ is a Kakeya set with respect to every vector $\mathbf{x} \in \mathcal{T}$. The following result describes the minimum size of local Kakeya sets.

Theorem 1. Let $\mathcal{T} \subseteq \mathbb{F}^{n}$ be any set with cardinality $# \mathcal{T}$ an integer multiple of $q-1$ and let $\theta(\mathcal{T})$ be the minimum size of a Kakeya set with respect to $\mathcal{T}$. We then have that
$$
q \sqrt{M}+\min (0, q-\sqrt{M}) \leq \theta(\mathcal{T}) \leq q+q^{n}\left(1-\left(1-\frac{1}{q^{n-1}}\right)^{M-1}\right)
$$
where $M:=\frac{# \mathcal{T}}{q-1}$.
For example suppose $M=\epsilon \cdot\left(\frac{q^{n}-1}{q-1}\right)$ for some $0<\epsilon \leq 1$. From the lower bound in ( $2.2)$, we then get that $\theta(T)$ grows at least of the order of $q^{n / 2}$. Similarly, using the fact that $1-x \geq e^{-x-x^{2}}$ for $0<x \leq \frac{1}{2}$, we get that
$$
\left(1-\frac{1}{q^{n-1}}\right)^{M-1} \geq \exp \left(-\frac{M-1}{q^{n-1}}\left(1+\frac{1}{q^{n-1}}\right)\right) \geq e^{-\Delta}
$$
where $\Delta:=\frac{q \epsilon}{q-1}\left(1+\frac{1}{q^{n-1}}\right)$. From (2.2) we then get that
$$
\theta(\mathcal{T}) \leq q+q^{n}\left(1-e^{-\Delta}\right)
$$
In what follows we prove the lower bound and the upper bound in Theorem 1 in that order.

数学代写|图论作业代写Graph Theory代考|Related Work

Acyclic coloring was also introduced in 1973 by Grünbaum [10] who proved that a graph with maximum degree 3 has an acyclic coloring with 4 colors.

The following bounds obtained in [3] are the best available asymptotic bounds for the acyclic chromatic number, that are obtained using the probabilistic method.
$$
\Omega\left(\frac{d^{\frac{4}{3}}}{(\log d)^{\frac{1}{3}}}\right)=a(G)=O\left(d^{\frac{4}{3}}\right)
$$
Recently, there have been some improvements in the constant factor of the upper bound in $[6,9,16]$, by using the entropy compression method. Similar results for the star chromatic number of graphs are obtained in [8], showing $\chi_{s}(G) \leq$ $\left\lceil 20 d^{3 / 2}\right\rceil$ for any graph $G$ with maximum degree $d$.

We observe that the method in [6] is also used in finding a general upper bound for $P_{k}$-coloring of graphs, when $k$ is even. This coloring is called star $k$ coloring, where a proper coloring of the vertices is obtained avoiding a bicolored $P_{2 k}$. In $[6]$, it is shown that every graph with maximum degree $\Delta$ has a star $k$ coloring with at most $c_{k} k^{\frac{1}{k-1}} \Delta^{\frac{2 k-1}{2 k-2}}+\Delta$ colors, where $c_{k}$ is a function of $k$. Our result presented in Sect. 2 improves this result and generalizes Fertin et al.’s result in $[8]$ to $\bar{P}_{k}$-coloring of graphs for $k \geq 4$.

The star chromatic number and acyclic chromatic number of products of graphs have been studied widely as well. In [8], various bounds on the star chromatic number of some graph families such as hypercube, grid, tori are obtained,providing exact values for 2-dimensional grids, trees, complete bipartite graphs, cycles, outerplanar graphs. More recent results on the acyclic coloring of grid and tori can be found in [1] and [11]. Similarly, the acyclic chromatic number of the grid and hypercube is studied in [7]. Moreover, $[12-14]$ investigate the acyclic chromatic number for products of trees, products of cycles and Hamming graphs. For some graphs, finding the exact values of these chromatic numbers has been a longstanding problem, such as the hypercube.

数学代写|图论作业代写Graph Theory代考|MAT 6495

图论代考

数学代写|图论作业代写Graph Theory代考|Local Kakeya Sets

让 $\mathbb{F}$ 是一个有限域,包含 $q$ 元素和对于 $n \geq 1$ 让 $\mathbb{F}^{n}$ 成为所有的集合 $n$-元组向量,其条目属于 $\mathbb{F}$.
我们说一组 $\mathcal{K} \subseteq \mathbb{F}^{n}$ 是关于向量的 Kakeya 集 $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}^{n}$ 如果存在 $\mathbf{y}=\mathbf{y}(\mathbf{x}) \in \mathbb{F}^{n}$ 这样线
$$
L(\mathbf{x}, \mathbf{y}):=\bigcup_{a \in \mathbb{F}} \mathbf{y}+a \cdot \mathbf{x} \subseteq \mathcal{K}
$$
在哪里 $a \cdot \mathbf{x}:=\left(a x_{1}, \ldots, a x_{n}\right)$. 对于一套 $\mathcal{T} \subseteq \mathbb{F}^{n}$ ,我们说 $\mathcal{K} \subseteq \mathbb{F}^{n}$ 是关于的 Kakeya 集 $\mathcal{T}$ 如果 $\mathcal{K}$ 是关于每个 向量的 Kakeya 集 $\mathbf{x} \in \mathcal{T}$. 以下结果描述了本地 Kakeya 集的最小大小。
定理 1. 让 $\mathcal{T} \subseteq \mathbb{F}^{n}$ 是任何具有基数的集合#数学 ${T}$ 的整数倍 $q-1$ 然后让 $\theta(\mathcal{T})$ 是 Kakeya 集的最小大小 $\mathcal{T}$. 然 后我们有
$$
q \sqrt{M}+\min (0, q-\sqrt{M}) \leq \theta(\mathcal{T}) \leq q+q^{n}\left(1-\left(1-\frac{1}{q^{n-1}}\right)^{M-1}\right)
$$
例如假设 $M=\epsilon \cdot\left(\frac{q^{n}-1}{q-1}\right)$ 对于一些 $0<\epsilon \leq 1$. 从 $(2.2)$ ,然后我们得到 $\theta(T)$ 至少增长 $q^{n / 2}$. 同样,使用以下 事实 $1-x \geq e^{-x-x^{2}}$ 为了 $0<x \leq \frac{1}{2}$ ,我们明白了
$$
\left(1-\frac{1}{q^{n-1}}\right)^{M-1} \geq \exp \left(-\frac{M-1}{q^{n-1}}\left(1+\frac{1}{q^{n-1}}\right)\right) \geq e^{-\Delta}
$$
在哪里 $\Delta:=\frac{q \epsilon}{q-1}\left(1+\frac{1}{q^{n-1}}\right) \cdot$ 从 (2.2) 我们得到
$$
\theta(\mathcal{T}) \leq q+q^{n}\left(1-e^{-\Delta}\right)
$$
下面我们依次证明定理 1 的下界和上界。

数学代写|图论作业代写Graph Theory代考|Related Work

Grünbaum [10] 在 1973 年也引入了非循环着色,他证明了最大度数为 3 的图具有 4 种颜色的非循环着色。
在 [3] 中获得的以下界限是使用概率方法获得的非循环色数的最佳可用渐近界限。
$$
\Omega\left(\frac{d^{\frac{4}{3}}}{(\log d)^{\frac{1}{3}}}\right)=a(G)=O\left(d^{\frac{4}{3}}\right)
$$
最近,在 $[6,9,16]$ ,通过使用樀压缩方法。在 [8] 中获得了星图的星色数的类似结果,显示 $\chi_{s}(G) \leq$ $\left\lceil 20 d^{3 / 2}\right\rceil$ 对于任何图表 $G$ 最大程度 $d$.
我们观察到 [6] 中的方法也用于寻找一般上限 $P_{k}$ – 图表着色,当 $k$ 甚至。这种着色被称为星 $k$ 着色,获得适当的顶 里 $c_{k}$ 是一个函数 $k$. 我们的结果在 Sect 中介绍。2 改进了这个结果并将 Fertin 等人的结果推广到 $[8]$ 至 $\bar{P}_{k}$ – 为图 表着色 $k \geq 4$.
图乘积的星形色数和无环色数也得到了广泛的研究。在[8]中,得到了超立方体、网格、圆环等一些图族的星色 数的各种界限,为二维网格、树、完全二分图、循环、外平面图提供了精确的值。在 [1] 和 [11] 中可以找到关 于网格和环面的非循环着色的最新结果。类似地,在[7]中研究了网格和超立方体的非循环色数。而且,
$[12-14]$ 研究树乘积、循环乘积和汉明图的无环色数。对于某些图表,找到这些色数的确切值一直是一个长期 存在的问题,例如超立方体。

此图片的alt属性为空;文件名为statistics-lab-1024x443.jpg
数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。



广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。



术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。



有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。



回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。



R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写







AIOSEO設定

切换面板:AIOSEO設定

  • 文章
  • 区块

6个区块514字打开发布面板

  • 文章

The graphs above are incomplete. These figures only show a vertex with degree four (vertex E), its nearest neighbors (A, B, C, and D), and segments of A-C Kempe chains. The entire graphs would also contain several other vertices (especially, more colored the same as B or D) and enough edges to be MPG’s. The left figure has A connected to $C$ in a single section of an A-C Kempe chain (meaning that the vertices of this chain are colored the same as A and C). The left figure shows that this A-C Kempe chain prevents B from connecting to $\mathrm{D}$ with a single section of a B-D Kempe chain. The middle figure has A and C in separate sections of A-C Kempe chains. In this case, B could connect to D with a single section of a B-D Kempe chain. However, since the A and C of the vertex with degree four lie on separate sections, the color of C’s chain can be reversed so that in the vertex with degree four, C is effectively recolored to match A’s color, as shown in the right figure. Similarly, D’s section could be reversed in the left figure so that D is effectively recolored to match B’s color.

Kempe also attempted to demonstrate that vertices with degree five are fourcolorable in his attempt to prove the four-color theorem [Ref. 2], but his argument for vertices with degree five was shown by Heawood in 1890 to be insufficient [Ref. 3]. Let’s explore what happens if we attempt to apply our reasoning for vertices with degree four to a vertex with degree five.

数学代写|图论作业代写Graph Theory代考|The previous diagrams

The previous diagrams show that when the two color reversals are performed one at a time in the crossed-chain graph, the first color reversal may break the other chain, allowing the second color reversal to affect the colors of one of F’s neighbors. When we performed the $2-4$ reversal to change B from 2 to 4 , this broke the 1-4 chain. When we then performed the 2-3 reversal to change E from 3, this caused C to change from 3 to 2 . As a result, F remains connected to four different colors; this wasn’t reversed to three as expected.
Unfortunately, you can’t perform both reversals “at the same time” for the following reason. Let’s attempt to perform both reversals “at the same time.” In this crossed-chain diagram, when we swap 2 and 4 on B’s side of the 1-3 chain, one of the 4’s in the 1-4 chain may change into a 2, and when we swap 2 and 3 on E’s side of the 1-4 chain, one of the 3’s in the 1-3 chain may change into a 2 . This is shown in the following figure: one 2 in each chain is shaded gray. Recall that these figures are incomplete; they focus on one vertex (F), its neighbors (A thru E), and Kempe chains. Other vertices and edges are not shown.

Note how one of the 3’s changed into 2 on the left. This can happen when we reverse $\mathrm{C}$ and $\mathrm{E}$ (which were originally 3 and 2 ) on E’s side of the 1-4 chain. Note also how one of the 4’s changed into 2 on the right. This can happen when we reverse B and D (which were originally 2 and 4) outside of the 1-3 chain. Now we see where a problem can occur when attempting to swap the colors of two chains at the same time. If these two 2’s happen to be connected by an edge like the dashed edge shown above, if we perform the double reversal at the same time, this causes two vertices of the same color to share an edge, which isn’t allowed. We’ll revisit Kempe’s strategy for coloring a vertex with degree five in Chapter $25 .$

数学代写|图论作业代写Graph Theory代考| The shading of one section of the B-R

图论代考

数学代写|图论作业代写Graph Theory代考|The shading of one section of the B-R

由于 Kempe 链的每个部分都与同一颜色对的其他部分隔离,因此 Kempe 链的任何部分的颜色可以颠倒,但仍满足四色定理。这是一个重要且有用的概念。

上面 BR 链的一个部分的阴影说明了任何 Kempe 链的任何部分的颜色如何可以反转。请注意,我们反转了 BR 链的一个部分的颜色,但没有反转中心部分的颜色。同一条链的每个部分的颜色可以独立于该链的其他部分反转。

为什么 PG 有 Kempe 链?很容易理解为什么 MPG 有 Kempe 链。(由于 PG 是通过从 MPG 中去除边缘而形成的,并且由于适用于 MPG 的着色也适用于 PG,因此 PG 也具有 Kempe 链。)

  • MPG 是三角测量的。它由具有三个边和三个顶点的面组成。
  • 每个面的三个顶点必须是三种不同的颜色。
  • 每条边由两个相邻的三角形共享,形成一个四边形。
  • 每个四边形将有 3 或 4 种不同的颜色。如果与共享边相对的两个顶点恰好是相同的颜色,则它有 3 种颜色。
  • 对于每个四边形,四个顶点中的至少 1 个顶点和最多 3 个顶点具有任何颜色对的颜色。例如,具有 R、G、B 和G有 1 个顶点R−是和3个顶点乙−G,或者您可以将其视为 1 个顶点乙−是和3个顶点G−R,或者您可以将其视为 BR 的 2 个顶点和 GY 的 2 个顶点。在后一种情况下,2G’ 不是同一链的连续颜色。
  • 当您将更多三角形组合在一起(四边形仅组合两个)并考虑可能的颜色时,您将看到 Kempe 的部分

链子出现。我们将在 Chápter 中看到这些 Kémpé chảins 是如何出现的21.
也很容易看出一对颜色(如 RY)将如何与其对应颜色(BG)相邻:

  • 画一张R顶点和一个是由边连接的顶点。
  • 如果一个新顶点连接到这些顶点中的每一个,它必须是乙或者G.
  • 如果一个新顶点连接到 R 而不是是,可能是是,乙, 或者G.
  • 如果一个新的顶点连接到是但不是R,可能是R,乙, 或者G.
  • RY 链要么继续增长,要么被 B 包围,G.
  • 如果你关注 B 和 G,你会为它的链条得出类似的结论。
  • 如果一条链条完全被其对应物包围,则链条的新部分可能会出现在其对应物的另一侧。
    Kempe 证明了所有具有四阶的顶点(那些恰好连接到其他四个顶点的顶点)都是四色的 [Ref. 2]。例如,考虑下面的中心顶点。

数学代写|图论作业代写Graph Theory代考|In the previous figure

在上图中,顶点和是四度,因为它连接到其他四个顶点。Kempe 表明顶点 A、B、C 和 D 不能被强制为四种不同的颜色,这样顶点 E 总是可以被着色而不会违反四色定理,无论 MPG 的其余部分看起来如何上一页显示的部分。

  • A 和 C 或者是 AC Kempe 链的同一部分的一部分,或者它们各自位于 AC Kempe 链的不同部分。(如果一种和C例如,是红色和黄色的,则 AC 链是红黄色链。) – 如果一种和C每个位于 AC Kempe 链的不同部分,其中一个部分的颜色可以反转,这有效地重新着色 C 以匹配 A 的颜色。如果 A 和 C 是 AC Kempe 链的同一部分的一部分,则 B 和 D每个都必须位于 BD Kempe 链的不同部分,因为 AC Kempe 链将阻止任何 BD Kempe 链从 B 到达 D。(如果乙和D是蓝色和绿色,例如,那么一种BD Kempe 链是蓝绿色链。)在这种情况下,由于 B 和 D 分别位于 BD Kempe 链的不同部分,因此 BD Kempe 链的其中一个部分的颜色可以反转,这有效地重新着色 D 以匹配 B颜色。– 因此,可以使 C 与 A 具有相同的颜色或使 D 具有与 A 相同的颜色乙通过反转 Kempe 链的分离部分。

上面的图表是不完整的。这些图只显示了一个四阶顶点(顶点 E)、它的最近邻居(A、B、C 和 D),以及 AC Kempe 链的片段。整个图还将包含几个其他顶点(特别是与 B 或 D 相同的颜色)和足够多的边以成为 MPG。左图有 A 连接到C在 AC Kempe 链的单个部分中(意味着该链的顶点颜色与 A 和 C 相同)。左图显示此 AC Kempe 链阻止 B 连接到DBD Kempe 链条的一个部分。中间的数字在 AC Kempe 链的不同部分有 A 和 C。在这种情况下,B 可以通过 BD Kempe 链的单个部分连接到 D。但是,由于四阶顶点的 A 和 C 位于不同的部分,因此可以反转 C 链的颜色,以便在四阶顶点中,C 有效地重新着色以匹配 A 的颜色,如右图所示. 类似地,可以在左图中反转 D 的部分,以便有效地重新着色 D 以匹配 B 的颜色。

Kempe 还试图证明五阶顶点是可四色的,以证明四色定理 [Ref. 2],但 Heawood 在 1890 年证明他关于五次顶点的论点是不充分的 [Ref. 3]。让我们探讨一下如果我们尝试将我们对度数为四的顶点的推理应用于度数为五的顶点会发生什么。

数学代写|图论作业代写Graph Theory代考|The previous diagrams

前面的图表显示,当在交叉链图中一次执行两种颜色反转时,第一次颜色反转可能会破坏另一个链,从而允许第二次颜色反转影响 F 的一个邻居的颜色。当我们执行2−4反转将 B 从 2 更改为 4 ,这打破了 1-4 链。然后,当我们执行 2-3 反转以将 E 从 3 更改时,这导致 C 从 3 更改为 2 。结果,F 仍然连接到四种不同的颜色;这并没有像预期的那样反转为三个。
不幸的是,由于以下原因,您不能“同时”执行两个冲销。让我们尝试“同时”执行两个反转。在这个交叉链图中,当我们在 1-3 链的 B 侧交换 2 和 4 时,1-4 链中的一个 4 可能会变成 2,当我们在 E 侧交换 2 和 3 时1-4 链,1-3 链中的 3 之一可能会变为 2 。如下图所示:每条链中的一个 2 为灰色阴影。回想一下,这些数字是不完整的;他们专注于一个顶点 (F)、它的邻居 (A 到 E) 和 Kempe 链。其他顶点和边未显示。

请注意左侧的 3 之一如何变为 2。当我们反转时会发生这种情况C和和(最初是 3 和 2 )在 1-4 链的 E 侧。还要注意 4 个中的一个如何在右侧变为 2。当我们在 1-3 链之外反转 B 和 D(最初是 2 和 4)时,就会发生这种情况。现在我们看到了尝试同时交换两条链的颜色时会出现问题的地方。如果这两个 2 恰好通过上图虚线这样的边连接起来,如果我们同时进行双重反转,就会导致两个相同颜色的顶点共享一条边,这是不允许的。我们将在第 1 章重新讨论 Kempe 为五阶顶点着色的策略25.

数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写

数学代写|图论作业代写Graph Theory代考| TRIVIAL FOUR-COLORING

如果你也在 怎样代写图论Graph Theory这个学科遇到相关的难题,请随时右上角联系我们的24/7代写客服。

在数学中,图论是对图的研究,它是用来模拟对象之间成对关系的数学结构。这里,图由顶点(也称为节点或点)组成,这些顶点由边(也称为链接或线)连接。

statistics-lab™ 为您的留学生涯保驾护航 在代写图论Graph Theory方面已经树立了自己的口碑, 保证靠谱, 高质且原创的统计Statistics代写服务。我们的专家在代写图论Graph Theory代写方面经验极为丰富,各种代写图论Graph Theory相关的作业也就用不着说。

我们提供的图论Graph Theory及其相关学科的代写,服务范围广, 其中包括但不限于:

  • Statistical Inference 统计推断
  • Statistical Computing 统计计算
  • Advanced Probability Theory 高等概率论
  • Advanced Mathematical Statistics 高等数理统计学
  • (Generalized) Linear Models 广义线性模型
  • Statistical Machine Learning 统计机器学习
  • Longitudinal Data Analysis 纵向数据分析
  • Foundations of Data Science 数据科学基础
数学代写|图论作业代写Graph Theory代考| TRIVIAL FOUR-COLORING

数学代写|图论作业代写Graph Theory代考|TRIVIAL FOUR-COLORING

A vertex with a degree equal to three is connected to exactly three other vertices. A vertex with degree three is guaranteed to be four-colorable. Why? Regardless of which colors the other three vertices have, there will always be at least one color remaining that is different from the colors of those three vertices. For example, consider the diagram below, which is “zoomed in” on a vertex with degree three. The rest of the graph is irrelevant to the current discussion. Just focus on the vertex with degree three and the three vertices to which it is connected. If $\mathrm{A}$ is red, B is blue, and $\mathrm{C}$ is green, for example, then $\mathrm{D}$ can be yellow. If instead $\mathrm{A}$ is yellow, $\mathrm{B}$ is green, and $C$ is yellow, then $\mathrm{D}$ can be red or blue. No matter which colors you choose for $A, B$, and $C$, there will always be at least one color left over for D. Any vertex with degree three (or less) may be removed from a graph, provided that we also remove the edges connecting it to the other vertices. If a graph is four-colorable after the vertices with degree three have been removed, it will still be four-colorable when the vertices with degree three are replaced. The examples of this chapter will illustrate this concept, including cases where vertices that originally had higher degrees may also be removed.

This means that we don’t need to worry about any graphs that have at least one vertex with degree three. If we can prove the four-color theorem for all planar graphs that only have vertices with degree four and higher, it will follow that all planar graphs are four-colorable.

For example, the MPG on the left has three vertices with degree three: D, F, and I. When we remove these vertices and their connecting edges, we obtain the middle MPG. Although vertices $C, G$, and $J$ had previously been degree four, after the edges connecting $\mathrm{D}, \mathrm{F}$, and I were removed, $\mathrm{C}, \mathrm{G}$, and $\mathrm{J}$ became degree three. We may now remove vertices $C, G$, and $J$. When we do this, even the remaining vertices (A, B, E, and $\mathrm{H}$ ) are now degree three. Since the entire graph has unraveled through the process of removing vertices of degree three and their connecting edges, this graph is one of many graphs that are trivially four-colorable.

There are a great many MPG’s with at least one vertex with degree three which completely unravel (and thus are trivially four-colorable) when vertices of degree three are removed from the graph. However, this is not always the case, as the next example shows.

The MPG on the left has one vertex with degree three: F. In this case, when F and its connecting edges are removed, the new MPG doesn’t have any vertices with a degree less than four. In this example, only one vertex can be removed. Once the MPG on the right is shown to be four-colorable, it will follow that the MPG on the left is also four-colorable.

数学代写|图论作业代写Graph Theory代考|SEPARATING TRIANGLES

Imagine making a MPG with a $\mathrm{K}{4}$ subgraph where every vertex of the $\mathrm{K}{4}$ has a degree of four or higher. Start by thinking about the $\mathrm{K}_{4}$ shown below. In order for vertex $D$ to have a degree of four or higher, we must add new vertices inside at least one of the faces.Note that $\mathrm{K}{4}$ has four faces: $\mathrm{ABD}, \mathrm{ACD}, \mathrm{BCD}$, and the outside face $\mathrm{ABC}$ corresponding to the infinite area outside. If we add new vertices in at least two of these faces (well, for $\mathrm{ABC}$ it would be “out” rather than “in”), we can make a MPG where all of the vertices of the $K{4}$ subgraph have a degree of at least four. An example is shown below.

Find $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and $\mathrm{D}$ in the triangle above. This was our original $\mathrm{K}{4}$, which is now a subgraph of a MPG with 10 vertices. We added vertices $E, F$, and $G$ in face $\mathrm{ABD}$, and added vertices $\mathrm{H}$, I, and $\mathrm{J}$ “in” the outside face $\mathrm{ABC}$ (when a face corresponds to the infinite area outside, the area of the face is “out” of the face rather than “in” it). We then added enough edges to triangulate the graph, turning it into a MPG. For $\mathrm{V}=10$ vertices, we need a total of $E=3 V-6=3(10)-6=24$ edges (arranged so that every face has three edges). The way we chose to add the needed edges, note that all 10 vertices of the MPG have a degree of at least four, including all four vertices of the original $\mathrm{K}{4}$ subgraph.

Every $\mathrm{K}_{4}$ subgraph has a separating triangle. What does this mean? A separating triangle, which we will abbreviate ST, is a triangle consisting of three vertices and three edges, where the triangle isn’t one of the faces. A ST has at least two faces inside of it and at least two faces outside of it. (Note that one of the faces outside of a ST can be the infinite area outside of the MPG.)

In the previous example, ABD is a ST because ABD isn’t a face and because there are at least two faces inside and at least two faces outside of ABD. We call it a ST because vertices A, B, and D divide the MPG into two smaller MPG’s, as seen in the diagram below. Observe that triangle ABD appears in both MPG’s below, and now ABD is a face (whereas it wasn’t in the original graph). Any MPG that has a ST can similarly be split into two separate MPG’s. (There is actually a second ST in the MPG below and on the previous page: triangle $\mathrm{ABC}$.)

数学代写|图论作业代写Graph Theory代考|HAMILTONIAN CYCLES

A circuit refers to a path in a graph that begins and ends at the same vertex (meaning that the path is a closed loop), while a cycle refers to a circuit that doesn’t repeat any vertices. A $H a m i l t o n i a n ~ c y c l e, ~ w h i c h ~ w e ~ w i l l ~ a b b r e v i a t e ~$ $\mathrm{HC}$, is a cycle that involves every vertex in a graph [Ref. 10]. Many (but not all) MPG’s have a HC. If a MPG has a HC, there exists some way to begin at one vertex, travel along an edge to another vertex, travel along another edge to another vertex, continuing to do so until every vertex is visited exactly once, and then travel along one more edge to return to the original vertex. An example of a HC is shown below.

The MPG on the left includes the HC shown on the right. If you start at vertex H, for example, you can then trace the cycle HBGAFEDCLIJKMPNOH. It’s important to finish on the same vertex as you start. (If there isn’t an edge returning to the starting vertex from the ending vertex, then it’s a Hamiltonian “path,” not a “cycle.”) When a HC exists for a MPG, there are often multiple HC’s. For example, we could start out HBAGFE instead of HBGAFE and still obtain a HC. There are numerous HC’s available for the above MPG.

An example of a MPG that doesn’t have a HC is shown on the following page. This graph is known as the Goldner-Harary graph [Ref. 11].

The best we can do with the above MPG is GDHAEIFBKCJ, but although we were able to use all 11 vertices going from $\mathrm{G}$ thru $\mathrm{J}$, unfortunately there isn’t an edge allowing a return from the final point (J) to the initial point (G). What if we don’t start at G? Okay, let’s try it again: CKBFIEAHDG. This time, we didn’t even reach J (we could have after D, but then we wouldn’t have reached G). Another option is JDHAEIGCFBK. We visited all 11 vertices once again, but were unable to return to the starting point (J) from the final point (K). Try as you might, no HC exists for the MPG above. (We did find a Hamiltonian path, but that’s not the same as a Hamiltonian cycle.)
How can you tell whether a MPG will have a HC? It turns out that if a MPG doesn’t have a ST, then it has a HC [Ref. 12]. Recall from Chapter 12 that ST stands for “separating triangle.” (However, if a MPG has ST’s, this doesn’t mean it won’t have a HC; it’s possible for a MPG to have ST’s and still have a HC.)

The previous graph has 4 ST’s: ABI, ADI, BCI, and CDI. Each of these ST’s has 3 faces inside of it and 15 faces outside of it. As far as the four-color theorem is concerned, the ST’s of this particular graph are trivial, since the vertex inside of each ST is degree three. The vertices inside of the ST’s are H, E, F, and G. Recall from Chapter 11 that we may remove any vertices with degree three from the graph along with their connecting edges. When we do this, we obtain the following graph, which now has a HC.

数学代写|图论作业代写Graph Theory代考| TRIVIAL FOUR-COLORING

图论代考

数学代写|图论作业代写Graph Theory代考|TRIVIAL FOUR-COLORING

度数等于 3 的顶点恰好连接到其他三个顶点。度数为三的顶点保证是四色的。为什么?无论其他三个顶点具有哪种颜色,总会有至少一种颜色与这三个顶点的颜色不同。例如,考虑下图,它在一个度数为 3 的顶点上“放大”。图的其余部分与当前的讨论无关。只关注度数为 3 的顶点和它所连接的三个顶点。如果一种是红色,B 是蓝色,并且C是绿色的,例如,那么D可以是黄色的。如果相反一种是黄色的,乙是绿色的,并且C是黄色的,那么D可以是红色或蓝色。无论您选择哪种颜色一种,乙, 和C, 总是会为 D 留下至少一种颜色。只要我们还删除了将其连接到其他顶点的边,任何具有三度(或更少)的顶点都可以从图中删除。如果一个图在移除了三阶顶点之后是四色的,那么当三阶顶点被替换时,它仍然是四色的。本章的示例将说明这个概念,包括原本具有较高度数的顶点也可能被删除的情况。

这意味着我们不需要担心任何至少有一个顶点为三度的图。如果我们可以证明所有只有四次或更高阶顶点的平面图的四色定理,那么所有平面图都是四色的。

例如,左边的 MPG 有三个度数为 3 的顶点:D、F 和 I。当我们移除这些顶点及其连接边时,我们得到中间的 MPG。虽然顶点C,G, 和Ĵ以前是四度,在边缘连接之后D,F,我被删除了,C,G, 和Ĵ变成了三级。我们现在可以删除顶点C,G, 和Ĵ. 当我们这样做时,即使是剩余的顶点(A、B、E 和H) 现在是三级。由于整个图已通过删除三度顶点及其连接边的过程解开,因此该图是许多可简单地四色的图之一。

当从图中删除三阶顶点时,有很多 MPG 具有至少一个三阶顶点,它们完全解开(因此很容易变成四色)。但是,情况并非总是如此,如下一个示例所示。

左边的 MPG 有一个度数为 3 的顶点:F。在这种情况下,当 F 及其连接边被移除时,新的 MPG 没有任何度数小于 4 的顶点。在此示例中,只能删除一个顶点。一旦右边的 MPG 显示为四色,那么左边的 MPG 也是四色的。

数学代写|图论作业代写Graph Theory代考|SEPARATING TRIANGLES

想象一下用一个 MPGķ4子图,其中的每个顶点ķ4具有四级或更高的学位。从思考问题开始ķ4如下图所示。为了顶点D要获得 4 或更高的度数,我们必须在至少一个面内添加新顶点。请注意ķ4有四个面孔:一种乙D,一种CD,乙CD, 和外表面一种乙C对应于外面的无限区域。如果我们在其中至少两个面中添加新顶点(好吧,对于一种乙C它会是“out”而不是“in”),我们可以制作一个 MPG,其中所有的顶点ķ4子图的度数至少为四。一个例子如下所示。

寻找一种,乙,C, 和D在上面的三角形中。这是我们原来的ķ4,现在是具有 10 个顶点的 MPG 的子图。我们添加了顶点和,F, 和G面对一种乙D,并添加顶点H, 我和Ĵ“在”外面一种乙C(当一个面对应于外面的无限区域时,面的区域是“外面”而不是“里面”)。然后我们添加了足够多的边来对图进行三角剖分,将其变成 MPG。为了在=10顶点,我们总共需要和=3在−6=3(10)−6=24边(排列成每个面都有三个边)。我们选择添加所需边的方式,注意 MPG 的所有 10 个顶点的度数至少为 4,包括原始的所有四个顶点ķ4子图。

每一个ķ4子图有一个分隔三角形。这是什么意思?我们将缩写为 ST 的分离三角形是由三个顶点和三个边组成的三角形,其中三角形不是其中一个面。ST 在​​其内部至少有两个面,在其外部至少有两个面。(请注意,ST 之外的面之一可以是 MPG 之外的无限区域。)

在前面的示例中,ABD 是一个 ST,因为 ABD 不是一个面,并且因为 ABD 内部至少有两个面,而 ABD 外部至少有两个面。我们称它为 ST,因为顶点 A、B 和 D 将 MPG 分成两个较小的 MPG,如下图所示。观察三角形 ABD 出现在下面的两个 MPG 中,现在 ABD 是一张脸(而它不在原始图中)。任何具有 ST 的 MPG 都可以类似地分成两个独立的 MPG。(其实MPG下面和上一页还有第二个ST:triangle一种乙C.)

数学代写|图论作业代写Graph Theory代考|HAMILTONIAN CYCLES

回路是指图形中起点和终点在同一顶点的路径(意味着该路径是一个闭环),而循环是指不重复任何顶点的回路。A$ H amiltonian~cycle,~which~we~will~缩写~\mathrm{HC}$, 是一个涉及图中每个顶点的循环 [Ref. 10]。许多(但不是全部)MPG 都有 HC。如果 MPG 具有 HC,则存在某种方式可以从一个顶点开始,沿着一条边到另一个顶点,沿着另一条边到另一个顶点,继续这样做,直到每个顶点都被访问一次,然后沿着一个更多的边返回到原来的顶点。HC 的示例如下所示。

左侧的 MPG 包括右侧所示的 HC。例如,如果从顶点 H 开始,则可以跟踪循环 HBGAFEDCLIJKMPNOH。在开始时在同一个顶点上完成是很重要的。(如果没有一条边从结束顶点返回到起始顶点,那么它是哈密顿“路径”,而不是“循环”。)当 MPG 存在 HC 时,通常有多个 HC。例如,我们可以启动 HBAGFE 而不是 HBGAFE,但仍然获得 HC。有许多 HC 可用于上述 MPG。

下页显示了一个没有 HC 的 MPG 示例。该图被称为 Goldner-Harary 图 [Ref. 11]。

我们可以用上述 MPG 做的最好的事情是 GDHAEIFBKCJ,但是虽然我们能够使用所有 11 个顶点G直通Ĵ,不幸的是,没有一条边允许从终点 (J) 返回到初始点 (G)。如果我们不从 G 开始呢?好的,让我们再试一次:CKBFIEAHDG。这一次,我们甚至没有到达 J(我们可以在 D 之后到达,但我们不会到达 G)。另一种选择是 JDHAEIGCFBK。我们再次访问了所有 11 个顶点,但无法从终点 (K) 返回起点 (J)。尽你所能,上面的 MPG 不存在 HC。(我们确实找到了哈密顿路径,但这与哈密顿循环不同。)
如何判断 MPG 是否有 HC?事实证明,如果 MPG 没有 ST,那么它就有 HC [Ref. 12]。回想一下第 12 章,ST 代表“分离三角形”。(但是,如果 MPG 有 ST,这并不意味着它不会有 HC;MPG 有可能有 ST 并且仍然有 HC。)

上图有 4 个 ST:ABI、ADI、BCI 和 CDI。这些 ST 中的每一个都有 3 个内部面和 15 个外部面。就四色定理而言,这个特定图的 ST 是微不足道的,因为每个 ST 内部的顶点都是三度的。ST 内部的顶点是 H、E、F 和 G。回想一下第 11 章,我们可以从图中删除任何度数为 3 的顶点及其连接边。当我们这样做时,我们得到下图,它现在有一个 HC。

此图片的alt属性为空;文件名为statistics-lab-1024x443.jpg
数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。



广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。



术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。



有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。



回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。



R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写







AIOSEO設定

切换面板:AIOSEO設定

  • 文章
  • 区块

6个区块514字打开发布面板

  • 文章

The graphs above are incomplete. These figures only show a vertex with degree four (vertex E), its nearest neighbors (A, B, C, and D), and segments of A-C Kempe chains. The entire graphs would also contain several other vertices (especially, more colored the same as B or D) and enough edges to be MPG’s. The left figure has A connected to $C$ in a single section of an A-C Kempe chain (meaning that the vertices of this chain are colored the same as A and C). The left figure shows that this A-C Kempe chain prevents B from connecting to $\mathrm{D}$ with a single section of a B-D Kempe chain. The middle figure has A and C in separate sections of A-C Kempe chains. In this case, B could connect to D with a single section of a B-D Kempe chain. However, since the A and C of the vertex with degree four lie on separate sections, the color of C’s chain can be reversed so that in the vertex with degree four, C is effectively recolored to match A’s color, as shown in the right figure. Similarly, D’s section could be reversed in the left figure so that D is effectively recolored to match B’s color.

Kempe also attempted to demonstrate that vertices with degree five are fourcolorable in his attempt to prove the four-color theorem [Ref. 2], but his argument for vertices with degree five was shown by Heawood in 1890 to be insufficient [Ref. 3]. Let’s explore what happens if we attempt to apply our reasoning for vertices with degree four to a vertex with degree five.

数学代写|图论作业代写Graph Theory代考|The previous diagrams

The previous diagrams show that when the two color reversals are performed one at a time in the crossed-chain graph, the first color reversal may break the other chain, allowing the second color reversal to affect the colors of one of F’s neighbors. When we performed the $2-4$ reversal to change B from 2 to 4 , this broke the 1-4 chain. When we then performed the 2-3 reversal to change E from 3, this caused C to change from 3 to 2 . As a result, F remains connected to four different colors; this wasn’t reversed to three as expected.
Unfortunately, you can’t perform both reversals “at the same time” for the following reason. Let’s attempt to perform both reversals “at the same time.” In this crossed-chain diagram, when we swap 2 and 4 on B’s side of the 1-3 chain, one of the 4’s in the 1-4 chain may change into a 2, and when we swap 2 and 3 on E’s side of the 1-4 chain, one of the 3’s in the 1-3 chain may change into a 2 . This is shown in the following figure: one 2 in each chain is shaded gray. Recall that these figures are incomplete; they focus on one vertex (F), its neighbors (A thru E), and Kempe chains. Other vertices and edges are not shown.

Note how one of the 3’s changed into 2 on the left. This can happen when we reverse $\mathrm{C}$ and $\mathrm{E}$ (which were originally 3 and 2 ) on E’s side of the 1-4 chain. Note also how one of the 4’s changed into 2 on the right. This can happen when we reverse B and D (which were originally 2 and 4) outside of the 1-3 chain. Now we see where a problem can occur when attempting to swap the colors of two chains at the same time. If these two 2’s happen to be connected by an edge like the dashed edge shown above, if we perform the double reversal at the same time, this causes two vertices of the same color to share an edge, which isn’t allowed. We’ll revisit Kempe’s strategy for coloring a vertex with degree five in Chapter $25 .$

数学代写|图论作业代写Graph Theory代考| The shading of one section of the B-R

图论代考

数学代写|图论作业代写Graph Theory代考|The shading of one section of the B-R

由于 Kempe 链的每个部分都与同一颜色对的其他部分隔离,因此 Kempe 链的任何部分的颜色可以颠倒,但仍满足四色定理。这是一个重要且有用的概念。

上面 BR 链的一个部分的阴影说明了任何 Kempe 链的任何部分的颜色如何可以反转。请注意,我们反转了 BR 链的一个部分的颜色,但没有反转中心部分的颜色。同一条链的每个部分的颜色可以独立于该链的其他部分反转。

为什么 PG 有 Kempe 链?很容易理解为什么 MPG 有 Kempe 链。(由于 PG 是通过从 MPG 中去除边缘而形成的,并且由于适用于 MPG 的着色也适用于 PG,因此 PG 也具有 Kempe 链。)

  • MPG 是三角测量的。它由具有三个边和三个顶点的面组成。
  • 每个面的三个顶点必须是三种不同的颜色。
  • 每条边由两个相邻的三角形共享,形成一个四边形。
  • 每个四边形将有 3 或 4 种不同的颜色。如果与共享边相对的两个顶点恰好是相同的颜色,则它有 3 种颜色。
  • 对于每个四边形,四个顶点中的至少 1 个顶点和最多 3 个顶点具有任何颜色对的颜色。例如,具有 R、G、B 和G有 1 个顶点R−是和3个顶点乙−G,或者您可以将其视为 1 个顶点乙−是和3个顶点G−R,或者您可以将其视为 BR 的 2 个顶点和 GY 的 2 个顶点。在后一种情况下,2G’ 不是同一链的连续颜色。
  • 当您将更多三角形组合在一起(四边形仅组合两个)并考虑可能的颜色时,您将看到 Kempe 的部分

链子出现。我们将在 Chápter 中看到这些 Kémpé chảins 是如何出现的21.
也很容易看出一对颜色(如 RY)将如何与其对应颜色(BG)相邻:

  • 画一张R顶点和一个是由边连接的顶点。
  • 如果一个新顶点连接到这些顶点中的每一个,它必须是乙或者G.
  • 如果一个新顶点连接到 R 而不是是,可能是是,乙, 或者G.
  • 如果一个新的顶点连接到是但不是R,可能是R,乙, 或者G.
  • RY 链要么继续增长,要么被 B 包围,G.
  • 如果你关注 B 和 G,你会为它的链条得出类似的结论。
  • 如果一条链条完全被其对应物包围,则链条的新部分可能会出现在其对应物的另一侧。
    Kempe 证明了所有具有四阶的顶点(那些恰好连接到其他四个顶点的顶点)都是四色的 [Ref. 2]。例如,考虑下面的中心顶点。

数学代写|图论作业代写Graph Theory代考|In the previous figure

在上图中,顶点和是四度,因为它连接到其他四个顶点。Kempe 表明顶点 A、B、C 和 D 不能被强制为四种不同的颜色,这样顶点 E 总是可以被着色而不会违反四色定理,无论 MPG 的其余部分看起来如何上一页显示的部分。

  • A 和 C 或者是 AC Kempe 链的同一部分的一部分,或者它们各自位于 AC Kempe 链的不同部分。(如果一种和C例如,是红色和黄色的,则 AC 链是红黄色链。) – 如果一种和C每个位于 AC Kempe 链的不同部分,其中一个部分的颜色可以反转,这有效地重新着色 C 以匹配 A 的颜色。如果 A 和 C 是 AC Kempe 链的同一部分的一部分,则 B 和 D每个都必须位于 BD Kempe 链的不同部分,因为 AC Kempe 链将阻止任何 BD Kempe 链从 B 到达 D。(如果乙和D是蓝色和绿色,例如,那么一种BD Kempe 链是蓝绿色链。)在这种情况下,由于 B 和 D 分别位于 BD Kempe 链的不同部分,因此 BD Kempe 链的其中一个部分的颜色可以反转,这有效地重新着色 D 以匹配 B颜色。– 因此,可以使 C 与 A 具有相同的颜色或使 D 具有与 A 相同的颜色乙通过反转 Kempe 链的分离部分。

上面的图表是不完整的。这些图只显示了一个四阶顶点(顶点 E)、它的最近邻居(A、B、C 和 D),以及 AC Kempe 链的片段。整个图还将包含几个其他顶点(特别是与 B 或 D 相同的颜色)和足够多的边以成为 MPG。左图有 A 连接到C在 AC Kempe 链的单个部分中(意味着该链的顶点颜色与 A 和 C 相同)。左图显示此 AC Kempe 链阻止 B 连接到DBD Kempe 链条的一个部分。中间的数字在 AC Kempe 链的不同部分有 A 和 C。在这种情况下,B 可以通过 BD Kempe 链的单个部分连接到 D。但是,由于四阶顶点的 A 和 C 位于不同的部分,因此可以反转 C 链的颜色,以便在四阶顶点中,C 有效地重新着色以匹配 A 的颜色,如右图所示. 类似地,可以在左图中反转 D 的部分,以便有效地重新着色 D 以匹配 B 的颜色。

Kempe 还试图证明五阶顶点是可四色的,以证明四色定理 [Ref. 2],但 Heawood 在 1890 年证明他关于五次顶点的论点是不充分的 [Ref. 3]。让我们探讨一下如果我们尝试将我们对度数为四的顶点的推理应用于度数为五的顶点会发生什么。

数学代写|图论作业代写Graph Theory代考|The previous diagrams

前面的图表显示,当在交叉链图中一次执行两种颜色反转时,第一次颜色反转可能会破坏另一个链,从而允许第二次颜色反转影响 F 的一个邻居的颜色。当我们执行2−4反转将 B 从 2 更改为 4 ,这打破了 1-4 链。然后,当我们执行 2-3 反转以将 E 从 3 更改时,这导致 C 从 3 更改为 2 。结果,F 仍然连接到四种不同的颜色;这并没有像预期的那样反转为三个。
不幸的是,由于以下原因,您不能“同时”执行两个冲销。让我们尝试“同时”执行两个反转。在这个交叉链图中,当我们在 1-3 链的 B 侧交换 2 和 4 时,1-4 链中的一个 4 可能会变成 2,当我们在 E 侧交换 2 和 3 时1-4 链,1-3 链中的 3 之一可能会变为 2 。如下图所示:每条链中的一个 2 为灰色阴影。回想一下,这些数字是不完整的;他们专注于一个顶点 (F)、它的邻居 (A 到 E) 和 Kempe 链。其他顶点和边未显示。

请注意左侧的 3 之一如何变为 2。当我们反转时会发生这种情况C和和(最初是 3 和 2 )在 1-4 链的 E 侧。还要注意 4 个中的一个如何在右侧变为 2。当我们在 1-3 链之外反转 B 和 D(最初是 2 和 4)时,就会发生这种情况。现在我们看到了尝试同时交换两条链的颜色时会出现问题的地方。如果这两个 2 恰好通过上图虚线这样的边连接起来,如果我们同时进行双重反转,就会导致两个相同颜色的顶点共享一条边,这是不允许的。我们将在第 1 章重新讨论 Kempe 为五阶顶点着色的策略25.

数学代写|图论作业代写Graph Theory代考 请认准statistics-lab™

统计代写请认准statistics-lab™. statistics-lab™为您的留学生涯保驾护航。

金融工程代写

金融工程是使用数学技术来解决金融问题。金融工程使用计算机科学、统计学、经济学和应用数学领域的工具和知识来解决当前的金融问题,以及设计新的和创新的金融产品。

非参数统计代写

非参数统计指的是一种统计方法,其中不假设数据来自于由少数参数决定的规定模型;这种模型的例子包括正态分布模型和线性回归模型。

广义线性模型代考

广义线性模型(GLM)归属统计学领域,是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。

术语 广义线性模型(GLM)通常是指给定连续和/或分类预测因素的连续响应变量的常规线性回归模型。它包括多元线性回归,以及方差分析和方差分析(仅含固定效应)。

有限元方法代写

有限元方法(FEM)是一种流行的方法,用于数值解决工程和数学建模中出现的微分方程。典型的问题领域包括结构分析、传热、流体流动、质量运输和电磁势等传统领域。

有限元是一种通用的数值方法,用于解决两个或三个空间变量的偏微分方程(即一些边界值问题)。为了解决一个问题,有限元将一个大系统细分为更小、更简单的部分,称为有限元。这是通过在空间维度上的特定空间离散化来实现的,它是通过构建对象的网格来实现的:用于求解的数值域,它有有限数量的点。边界值问题的有限元方法表述最终导致一个代数方程组。该方法在域上对未知函数进行逼近。[1] 然后将模拟这些有限元的简单方程组合成一个更大的方程系统,以模拟整个问题。然后,有限元通过变化微积分使相关的误差函数最小化来逼近一个解决方案。

tatistics-lab作为专业的留学生服务机构,多年来已为美国、英国、加拿大、澳洲等留学热门地的学生提供专业的学术服务,包括但不限于Essay代写,Assignment代写,Dissertation代写,Report代写,小组作业代写,Proposal代写,Paper代写,Presentation代写,计算机作业代写,论文修改和润色,网课代做,exam代考等等。写作范围涵盖高中,本科,研究生等海外留学全阶段,辐射金融,经济学,会计学,审计学,管理学等全球99%专业科目。写作团队既有专业英语母语作者,也有海外名校硕博留学生,每位写作老师都拥有过硬的语言能力,专业的学科背景和学术写作经验。我们承诺100%原创,100%专业,100%准时,100%满意。

随机分析代写


随机微积分是数学的一个分支,对随机过程进行操作。它允许为随机过程的积分定义一个关于随机过程的一致的积分理论。这个领域是由日本数学家伊藤清在第二次世界大战期间创建并开始的。

时间序列分析代写

随机过程,是依赖于参数的一组随机变量的全体,参数通常是时间。 随机变量是随机现象的数量表现,其时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理。研究时间序列数据的意义在于现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。

回归分析代写

多元回归分析渐进(Multiple Regression Analysis Asymptotics)属于计量经济学领域,主要是一种数学上的统计分析方法,可以分析复杂情况下各影响因素的数学关系,在自然科学、社会和经济学等多个领域内应用广泛。

MATLAB代写

MATLAB 是一种用于技术计算的高性能语言。它将计算、可视化和编程集成在一个易于使用的环境中,其中问题和解决方案以熟悉的数学符号表示。典型用途包括:数学和计算算法开发建模、仿真和原型制作数据分析、探索和可视化科学和工程图形应用程序开发,包括图形用户界面构建MATLAB 是一个交互式系统,其基本数据元素是一个不需要维度的数组。这使您可以解决许多技术计算问题,尤其是那些具有矩阵和向量公式的问题,而只需用 C 或 Fortran 等标量非交互式语言编写程序所需的时间的一小部分。MATLAB 名称代表矩阵实验室。MATLAB 最初的编写目的是提供对由 LINPACK 和 EISPACK 项目开发的矩阵软件的轻松访问,这两个项目共同代表了矩阵计算软件的最新技术。MATLAB 经过多年的发展,得到了许多用户的投入。在大学环境中,它是数学、工程和科学入门和高级课程的标准教学工具。在工业领域,MATLAB 是高效研究、开发和分析的首选工具。MATLAB 具有一系列称为工具箱的特定于应用程序的解决方案。对于大多数 MATLAB 用户来说非常重要,工具箱允许您学习应用专业技术。工具箱是 MATLAB 函数(M 文件)的综合集合,可扩展 MATLAB 环境以解决特定类别的问题。可用工具箱的领域包括信号处理、控制系统、神经网络、模糊逻辑、小波、仿真等。

R语言代写问卷设计与分析代写
PYTHON代写回归分析与线性模型代写
MATLAB代写方差分析与试验设计代写
STATA代写机器学习/统计学习代写
SPSS代写计量经济学代写
EVIEWS代写时间序列分析代写
EXCEL代写深度学习代写
SQL代写各种数据建模与可视化代写